
Fundamental Experiments with the Tucker Decomposition in the
Matlab Tensor Toolbox

Sergio Garcia Tapia1, Rebecca Hsu2, Alyssa Hu3, Darren Stevens II4

1Department of Mathematics, University at Buffalo, SUNY
2Department of Mathematics, University of Maryland, College Park
3Department of Mathematics and Department of Computer Science,

University of Maryland, College Park
4Department of Computer Science and Electrical Engineering, UMBC

Advisor: Matthias K. Gobbert, gobbert@umbc.edu,
Department of Mathematics and Statistics, UMBC

Abstract

This report explores how data structures known as tensors can be used to perform multi-
dimensional data analysis. If a matrix can be thought of as a two-dimensional array, then a
tensor can be thought of as a multi-dimensional array (with more than two dimensions). Tensor
decompositions are algorithms and tools that can allow the user to directly perform analysis
on this type of data. After explaining the basics of tensors, we work with two different three-
dimensional data sets and decompose the tensors in order to provide analysis and interpretations
of various aspects of the data. We show in detail how to use commands from the Matlab Tensor
Toolbox to set up the problems and compute the Tucker decomposition.

Key words. Tensors, Tucker tensors, Tucker decomposition, Matlab Tensor Toolbox, Princi-
pal component analysis.

1 Introduction

Many application problems in data analysis inherently contain multi-dimensional data. Potential
examples can include behavioral studies across different situations, facial recognition algorithms,
and signals processing and analysis. Matrices are oftentimes used to organize the variables reordered
after having found an appropriate way to express the data in the two-dimensional array. On the
other hand, one can also directly perform analysis on the data by using multi-dimensional arrays
that preserve the inherent structure of such multi-dimensional data represented by tensors.

The basics of how to use and operate with tensors are similar to operations with regular two-
dimensional matrices. With third-order (three-dimensional) tensors, it is clearer to visualize them
as slices of matrices overlayed on top of each other. Multiplying tensors requires an extra step;
one must unfold the tensor into a matrix before proceeding with traditional matrix multiplication
and then refold the result back into a higher order tensor. For multi-dimensional data, one would
normally perform dimension reduction techniques to organize the data into a matrix. Then, a
method such as principal component analysis (PCA) would be applied on the matrix in order to
provide analysis of the data. However, we can apply what is known as a tensor decomposition to
all of the multi-dimensional data at once. One specific tensor decomposition for N -dimensional
tensors is called the Tucker decomposition [5]; specifically for 3-dimensional data, Kiers et al. [4]
also refer to it as 3-mode-PCA (3MPCA). This decomposition factors the original data into a core
tensor that is typically smaller, as well as three factor matrices that measure the level of interaction

1

between the data [5]. Section 2 introduces some basic facts and properties of tensors and explains
the Tucker decomposition more in-depth.

The Matlab Tensor Toolbox1 has many functions available for creating and operating with
tensors, some of which we will discuss in Section 3. The Tensor Toolbox can be used to perform
basic operations on both dense and sparse tensors, such as set up and multiply tensors with other
tensors and with other vectors or matrices. There are in fact functions for working with tensors
that have specific properties, as well as relevant decompositions, such as Tucker or Kruskal tensors.
Section 3 discusses the features of the Matlab Tensor Toolbox in more detail.

In order to provide an illustrative example, Kiers [4] provides a fictitious set of data as a
behavioral study for six different individuals measuring five behavioral responses in four different
scenarios. This data is naturally multi-dimensional and can be expressed as a 6×5×4 tensor. Kiers
applies the 3MPCA decomposition to this data to generate the component matrices and desired
core tensor. Labels were given to each of the components after seeing the column groupings in
order to provide a clear interpretation of the data. Kiers demonstrates mathematically how to use
the results of the decomposition in order to retrieve the original data. This is shown in detail in
Section 4.

Section 5 introduces data from a Dutch psychological experiment with a 326×5×2 tensor. We
apply the Tucker decomposition also to this data set and then use additional steps to analyze the
result. Kiers used the component matrices’ columns to group data and generated labels for those
columns. For the Dutch data set, we take the dot product of the original data with the columns of
one of the component matrices to better summarize the data. We note how we can input different
core tensor sizes and if that affects resulting component matrices and interpretation.

Section 6 summarizes the conclusions from our calculations using the Matlab Tensor Toolbox
and provides an outlook to larger problems.

2 Tensor Analysis

2.1 Tensor Basics

We now formally introduce tensors. Material presented here is based on the Kolda and Bader
paper [5]. Recall that a matrix U ∈ RI×J can be thought of as a 2-dimensional array, where
I, J are positive integers. A tensor X ∈ RI1×···×IN is a generalization of a matrix; that is, it is
an N -dimensional array. As such, many properties and operations of matrices are retained in
higher dimensions with some concepts being more intricate. Tensors are denoted by Euler script
characters as first done above in the usage of X. An element in a tensor is denoted by xi1,...,iN , where
in = 1, . . . , In (that is, the subscripts range from 1 to their corresponding uppercase equivalent).
An N -dimensional tensor is also referred to sometimes as a tensor of order N , or a tensor with N
modes. Addition is done element-wise as one would expect, and the Frobenius norm of a tensor is
the same as that of a matrix, satisfying

||X|| =

√√√√ I1∑
i1=1

· · ·
IN∑

iN=1

x2i1,...,iN for X ∈ RI1×···×IN .

1Version 2.6, http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

2

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

Figure 2.1: A tensor of order 3.

For N -way tensor X, fibers and slices are defined by fixing N−1 and N−2 indices, respectively.
The fibers then are 1-dimensional tensors or arrays (vectors), and the slices are 2-dimensional
tensors or arrays (matrix) obtained from X with some orientation that depends on what indices
have been fixed. For illustrative purposes, we limit our discussion to 3-way tensors and provide
Figure 2.1 as a way to visualize them. For a tensor X ∈ RI×J×K of 3 dimensions, on the one hand,
a fiber is obtained by fixing two of the indices. The possible choices then are vectors X(:, j, k),
X(i, :, k), and X(i, j, :), for i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . ,K; these correspond to
columns, rows, and tube fibers, respectively. In Figure 2.2, we see that fibers of a 3-way tensor are
pillars with some orientation. On the other hand, a slice of a tensor X is obtained by fixing one
of the indices and the choices would be matrices X(i, :, :), X(:, j, :), and X(:, :, k) that correspond
to horizontal, lateral, and frontal slices, respectively. In Figure 2.3, we see that the the slices of a
3-way tensor are represented as planes with certain orientations.

Introducing fibers also allows us to introduce the idea of unfolding tensors. Visually, the mode-n
unfolding or matricization of a 3-way tensor G ∈ RP×Q×R, where n = 1, 2, or 3, means to take the
mode-n fibers, to rotate them into column orientation, and then line them up sequentially. The
result is that we express a tensor G as a matrix G(n) with dimensions that depend on n = 1, 2, 3, as
well as P,Q,R. The benefit of this is that it allows us to consider mode-n matrix multiplication.
The mode-n product between a tensor and matrix is defined if certain dimensions match as is the
case for matrices. If G ∈ RP×Q×R is a tensor of 3 modes, and if G(3) ∈ RR×PQ is its mode-3

unfolding, then the mode-3 product with a matrix C ∈ RK×R is expressed as

Y = G×3 C ⇐⇒ Y(3) = CG(3).

where Y ∈ RP×Q×K , and Y(3) ∈ RK×PQ is its mode-3 unfolding. An example of this is explored in
detail in Section 4.

2.2 Principal Component Analysis

Many methods for dealing with multi-dimensional data by using matrices have been developed.
Among them is principal component analysis (PCA), a technique that seeks to find an appropriate
representation for data that has been collected and organized in a matrix. Generally, data is
arranged in a matrix U such that each column constitutes a different type of measurement performed

3

Figure 2.2: Fiber representations of a 3-way tensor.

Figure 2.3: Slice representations of a 3-way tensor.

and each row a different trial. The goal is then to find a matrix P such that its vectors (known as the
principal components of U) are a basis for the row space of U where the trial vectors are contained.
Since each principal vector is associated with a corresponding variance between measurement types
in A, the independent directions related to a large variance suggest underlying patterns in the data.
A generalization of this technique to higher-order tensors has been developed and it is known as
a Tucker decomposition [5] or 3MPCA [4]. The convenience is that we are then able to retain the
multi-dimensional nature of data and perform analysis on it directly, instead of having to represent
it as a matrix to use matrix analysis techniques.

2.3 Tucker Tensor Decomposition

We mentioned that tensors can be decomposed. Here, we concern ourselves with a method resem-
bling PCA, known as the Tucker decomposition. Given a tensor X ∈ RI×J×K , a Tucker decompo-
sition attempts to express it as

X ≈ G×1 A×2 B ×3 C (2.1)

for core tensor G ∈ RP×Q×R, and with A ∈ RI×P , B ∈ RJ×Q, and C ∈ RK×R being factor matrices
that are orthogonal visually represented by Figure 2.4, for integers 1 ≤ P ≤ I, 1 ≤ Q ≤ J , and
1 ≤ R ≤ K. The numbered subscripts indicate the mode of multiplication in which the product
between the tensor G and the matrices are being multiplied that was discussed in Section 2.1. The
entries themselves are given by

4

Figure 2.4: Visual representation of Tucker decomposition.

xijk ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr.

By saying the decomposition resembles PCA, we mean that it is a form of higher-order princi-
pal component analysis where the component matrices are principal components [5], which is why
Kiers [4] refers to it as 3MPCA. Therefore, we oftentimes use 3MPCA and Tucker decomposition
interchangeably. The way in which to interpret the components of the decomposition is also some-
times dependent on the data set in question. Since the component matrices measure the level of
interaction [5] between the information recorded, the technique can be used to group several vari-
ables that are most closely related to one another, as we demonstrate in Section 4. Alternatively,
the decomposed result can be used jointly with the original data to provide insight into the recorded
information, as shown in Section 5.

The Tucker decomposition for a given tensor is defined for different core tensor sizes, and
therefore the decomposition is not unique. The decomposition can be computed through numerical
methods such as Alternating Least Squares (ALS), which is an iterative method that depends on
an initial guess, a stopping tolerance, and more, thus the result is not unique even for one choice
of core tensor size.

3 Matlab Tensor Toolbox

The Tensor Toolbox has many functions available for creating and operating with tensors in Matlab.
In particular, there are specific functions for working with tensors of specific structures, including
regular tensors, sparse tensors, and Tucker-decomposed tensors.

3.1 Literature Review

The Tensor Toolbox for Matlab has been used and referenced in different research papers. Kolda
and Bader’s paper on Tensor Decompositions and Applications served as background reading for
our research [5]. Other papers with interesting applications of the Tensor Toolbox will be briefly
discussed. Fitzgerald, Coyle, and Cranitch investigate the separation of drum sounds from music
with tensor factorization models [2]. Also, a lot of data can be represented with links and graphs,
especially those involving relationships such as online connections in social networks. Thus, the
Tensor Toolbox can be applied to predict future links, specifically by using a CP tensor decomposi-
tion (involving Alternating Least Squares) [1]. The Tensor Toolbox is compared to GigaTensor, an
algorithm used to deal with large tensors and their decompositions, using Hadoop MapReduce [3].

5

Tensor Toolbox runs faster than GigaTensor when the size of the tensor (with same-size modes)
is less than 107. However, any tensor of size greater than 107 and the Tensor Toolbox runs out
of memory; thus, GigaTensor is helpful to use, as it appears to support tensors at least of size
109 [8]. Furthermore, Kolda and Sun previously commented on memory issues of applying Tucker
on a large sparse tensor in a 2008 paper and propose a Memory Efficient Tucker method to avoid
memory overflow [6].

3.2 Regular (Dense) Tensors

The tensor command is the most basic, which converts an existing array A into a tensor. Addi-
tionally, the user is allowed to pass an array argument specifying the desired size (e.g., [2 3 4] for a
2× 3× 4 tensor). Alternatively, one can use the tenrand function to create a random tensor of a
size determined by the passed array argument. Similar to functions ones and zeroes for matrices,
the functions tenones and tenzeros create tensors of a desired size filled with ones and zeros, re-
spectively. Having created a tensor, a user might be interested in information about it, such as its
size or the information stored in it. Such inquiry can be done for a tensor X by X.size and X.data

(or double(X)), with the former returning an array with the size and the latter a multi-dimensional
array with the data that the tensor contains. In fact, using these two in conjunction is an easy
way to replicate the tensor by passing the data array and size array. The extraction of elements
is the same as for matrices, since one can just pass specific indices (or array of indices). Lastly,
component-wise operations can be done with the dot operator, such as X.*Y for multiplication, or
X./Y for division. Some functions, like the sqrt function for matrices, cannot be used; instead,
the tenfun(@foo, X) is needed to perform the component-wise operations defined in some cus-
tom @foo function (note the character preceding the function name) to an existing tensor X. For
instance, tenfun(@sqrt,X) takes the square root of every element in X.

3.3 Sparse Tensors

The syntax for the construction of sparse tensors is similar to that of regular tensors. The sptensor
function is used, with the appropriate arguments being an array of subscripts (separated by a
semicolon) for where to put non-zero entries, an array for the value desired at each subscript,
and another to specify the size of the sparse tensor. If no size array argument is given, then the
function will create a sparse tensor just big enough to hold the non-zero elements. Instead, one
might be interested in using sptenrand to create a sparse tensor with random entries from a normal
distribution on the interval (0,1), with some default mean and standard deviation. For this, one
need only pass an array of the desired size, as well as an integer representing the number of non-
zeros wanted on the sparse tensor. If, instead, such a number is not an integer and is instead a
real number between the interval (0, 1), then it is treated as a percentage of non-zeros in the sparse
tensor (which, therefore, depends on size). Analogous to the case of normal tensors above, one can
use X.subs, X.vals, and X.size to obtain the subscripts of the non-zero entries, the values of these
entries, and the size of the sparse tensor, respectively. Another useful function is find (not limited
to sparse tensors) which takes as input a tensor whose entries are subjected to a certain condition,
such as find(X>0.9), which considers the entries of tensor X that are greater than 0.9, and then
extracts the corresponding subscripts. The nnz function also allows the user to obtain information
on the tensor, in this case, the number of non-zeros. The elemfun function works for the non-zeros
in sparse tensors the same way as the tenfun function works for regular tensors. For instance, to

6

obtain the square root for non-zero elements in a tensor X, one would do elemfun(X, @sqrt).

3.4 Tucker Tensors

Another tensor construction that will be represented here is that of a Tucker tensor. Recall that a
Tucker decomposition expresses a tensor of, say, order 3, as X ≈ G×1 A×2 B ×3 C for core tensor
G and matrices A, B, and C. One simply creates a tensor G with the tensor function, and a set of
matrices as in U = {A, B, C} for matrices A, B, C. Then, passing these arguments in that order
to the ttensor function creates the Tucker tensor, though only its components are output and not
the full tensor. The components can be accessed by the dot operator, such as in X.G for the core
tensor, and U{i} for the i-ith component matrix, i = 1, 2, 3. It is interesting to note that a Tucker
tensor can be used as a core for another Tucker tensor.

Aside from being able to create a tensor whose Tucker decomposition components are pre-
specified at the input phase, one can attempt to find the Tucker decomposition of a regular tensor
by using the tucker_als function. The function takes a tensor and an array that specifies the
best-rank approximation desired, so that it can output a Tucker-decomposed tensor by trying to
fit an alternating least squares model. Other arguments the function can take (which have certain
default values if not explicitly specified) are tolerance, the maximum number of iterations, and an
initial guess. The idea is that if we know the rank Rn of the matrix obtained from each mode-n
unfolding of the tensor and provide this as input, then the decomposition is more likely to be
accurate.

3.5 Tensor Products and Miscellaneous

Tensor operations such as multiplication are handled with the ttv, ttm, and ttt. The first takes
as arguments a tensor, a vector, and a number indicating the mode of multiplication (so that the
product is defined). One can pass multiple vectors at once if enclosed in curly braces, such as
{A, B, C, D}, followed by an array specifying the mode in which the vectors will be multiplied
with the tensor. In the context above, it could be as [1 3], which suggests the multiplications that
will take place are the tensor with A in mode-1 and with C in mode-3, with the other multiplications
not carried out since they are unspecified. The ttm multiplication works the same way. Lastly,
the ttt function is used to multiply two tensors. One simply passes the two tensors as arguments
and two arrays specifying which modes will be multiplied with each other (the order matters, for
this might be the difference between the product being handled as an outer product or an inner
product).

If at any point one wishes to unfold these tensors (that is, matricize them), one can do so with
the tenmat function. Simply pass as arguments the tensor, X, and two arrays; one specifying the
modes to be converted to rows, and the other specifying the modes to be converted to columns. Ad-
ditionally, any type of tensor can be converted into a regular type of tensor via the full command,
which takes as input any type of tensor and returns a dense (regular) tensor.

4 Illustrative Example of Tensor Decomposition

As discussed, the purpose of utilizing tensors and their decompositions is to make analyzing multi-
dimensional data easier. Kiers et al. [4] provide several data sets that illustrate the Tucker decom-
position and their respective interpretations, and they provide one particularly small illustrative

7

Table 4.1: Fictitious data set of scores of six individuals on five response variables for four situations.

Indi- Doing an exam Giving a speech Family Picnic Meeting a new date
vidual E S C T A E S C T A E S C T A E S C T A
Anne 0.0 0.0 1.2 3.0 3.0 0.6 0.6 1.3 2.4 2.4 3.0 3.0 1.8 0.0 0.0 3.6 3.6 2.5 0.9 0.9
Bert 0.0 0.0 0.8 2.0 2.0 0.2 0.2 0.8 1.8 1.8 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.4 1.8 1.8
Claus 0.0 0.0 0.8 2.0 2.0 0.2 0.2 0.8 1.8 1.8 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.4 1.8 1.8
Dolly 0.0 0.0 1.2 3.0 3.0 0.6 0.6 1.3 2.4 2.4 3.0 3.0 1.8 0.0 0.0 3.6 3.6 2.5 0.9 0.9
Edna 0.0 0.0 1.0 2.5 2.5 0.4 0.4 1.1 2.1 2.1 2.0 2.0 1.4 0.5 0.5 2.4 2.4 2.0 1.3 1.3
Frances 0.0 0.0 1.2 3.0 3.0 0.6 0.6 1.3 2.4 2.4 3.0 3.0 1.8 0.0 0.0 3.6 3.6 2.5 0.9 0.9

example, for which the multiplication of the Tucker decomposition can be explicitly checked. Note
that the article refers to this decomposition as 3MPCA and we will use this term while referring
to tables from this article.

4.1 Original Input Data

Table 4.1 shows the original fictitious data provided in the Kiers article that will be used for the
decomposition [4]. This table shows the scores of

• I = 6 individuals — Anne, Bert, Claus, Dolly, Edna, and Frances — displaying

• J = 5 behavior types — emotional (E), sensitive (S), caring (C), thorough (T), and accurate
(A) — in

• K = 4 different situations — doing an exam, giving a speech, family picnic, and meeting a
new date.

The data is presented in Table 4.1 in the form of the original (fictitious) psychological experiment.
It gives naturally rise to a tensor of data X ∈ R6×5×4, where the matrix of numbers in each subtable
of the four situations is one slice X(:, :, k) ∈ R6×5 for each k = 1, . . . , 4, that is,

X(:, :, 1) =

0.0 0.0 1.2 3.0 3.0
0.0 0.0 0.8 2.0 2.0
0.0 0.0 0.8 2.0 2.0
0.0 0.0 1.2 3.0 3.0
0.0 0.0 1.0 2.5 2.5
0.0 0.0 1.2 3.0 3.0

 , X(:, :, 2) =

0.6 0.6 1.3 2.4 2.4
0.2 0.2 0.8 1.8 1.8
0.2 0.2 0.8 1.8 1.8
0.6 0.6 1.3 2.4 2.4
0.4 0.4 1.1 2.1 2.1
0.6 0.6 1.3 2.4 2.4

 ,

X(:, :, 3) =

3.0 3.0 1.8 0.0 0.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
3.0 3.0 1.8 0.0 0.0
2.0 2.0 1.4 0.5 0.5
3.0 3.0 1.8 0.0 0.0

 , X(:, :, 4) =

3.6 3.6 2.5 0.9 0.9
1.2 1.2 1.4 1.8 1.8
1.2 1.2 1.4 1.8 1.8
3.6 3.6 2.5 0.9 0.9
2.4 2.4 2.0 1.3 1.3
3.6 3.6 2.5 0.9 0.9

 .

To enter this data into Matlab, you first create a 3-D array kiersX and then use the function
tensor from the Tensor Toolbox to build the tensor tensorX, as shown in the following code:

kiersX = zeros(6,5,4);

kiersX(:,:,1) = [0.0 0.0 1.2 3.0 3.0;

8

0.0 0.0 0.8 2.0 2.0;

0.0 0.0 0.8 2.0 2.0;

0.0 0.0 1.2 3.0 3.0;

0.0 0.0 1.0 2.5 2.5;

0.0 0.0 1.2 3.0 3.0];

kiersX(:,:,2) = [0.6 0.6 1.3 2.4 2.4;

0.2 0.2 0.8 1.8 1.8;

0.2 0.2 0.8 1.8 1.8;

0.6 0.6 1.3 2.4 2.4;

0.4 0.4 1.1 2.1 2.1;

0.6 0.6 1.3 2.4 2.4];

kiersX(:,:,3) = [3.0 3.0 1.8 0.0 0.0;

1.0 1.0 1.0 1.0 1.0;

1.0 1.0 1.0 1.0 1.0;

3.0 3.0 1.8 0.0 0.0;

2.0 2.0 1.4 0.5 0.5;

3.0 3.0 1.8 0.0 0.0];

kiersX(:,:,4) = [3.6 3.6 2.5 0.9 0.9;

1.2 1.2 1.4 1.8 1.8;

1.2 1.2 1.4 1.8 1.8;

3.6 3.6 2.5 0.9 0.9;

2.4 2.4 2.0 1.3 1.3;

3.6 3.6 2.5 0.9 0.9];

tensorX = tensor(kiersX)

Notice that the last line does not have a semi-colon, so Matlab will print out the tensor tensorX,
which looks as follows and automatically includes its dimension:

tensorX is a tensor of size 6 x 5 x 4

tensorX(:,:,1) =

0 0 1.2000 3.0000 3.0000

0 0 0.8000 2.0000 2.0000

0 0 0.8000 2.0000 2.0000

0 0 1.2000 3.0000 3.0000

0 0 1.0000 2.5000 2.5000

0 0 1.2000 3.0000 3.0000

tensorX(:,:,2) =

0.6000 0.6000 1.3000 2.4000 2.4000

0.2000 0.2000 0.8000 1.8000 1.8000

0.2000 0.2000 0.8000 1.8000 1.8000

0.6000 0.6000 1.3000 2.4000 2.4000

0.4000 0.4000 1.1000 2.1000 2.1000

0.6000 0.6000 1.3000 2.4000 2.4000

tensorX(:,:,3) =

3.0000 3.0000 1.8000 0 0

1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000

9

3.0000 3.0000 1.8000 0 0

2.0000 2.0000 1.4000 0.5000 0.5000

3.0000 3.0000 1.8000 0 0

tensorX(:,:,4) =

3.6000 3.6000 2.5000 0.9000 0.9000

1.2000 1.2000 1.4000 1.8000 1.8000

1.2000 1.2000 1.4000 1.8000 1.8000

3.6000 3.6000 2.5000 0.9000 0.9000

2.4000 2.4000 2.0000 1.3000 1.3000

3.6000 3.6000 2.5000 0.9000 0.9000

4.2 Illustrative 3MPCA Decomposition

Now, recall that a Tucker decomposition of a 3-way tensor X expresses the tensor as in (2.1). Since
we specify in Matlab the size we want our core tensor to be, that will also determine the sizes of
our component matrices. We specify the size based on how many classifications or groupings we
want to use as our comparisons within each mode. For two groupings in each mode of X ∈ R6×5×4,
Kiers [4] chooses the core dimensions to be 2×2×2 and then states one choice of possible component
matrices

A =

1.0 0.0
0.0 1.0
0.0 1.0
1.0 0.0
0.5 0.5
1.0 0.0

 ∈ R6×2, B =

1.0 0.0
1.0 0.0
0.6 0.4
0.0 1.0
0.0 1.0

 ∈ R5×2, C =

1.0 0.0
0.8 0.2
0.0 1.0
0.3 1.2

 ∈ R4×2, (4.1)

and the faces of the core tensor G ∈ R2×2×2

G(:, :, 1) =

[
0.0 3.0
0.0 2.0

]
, G(:, :, 2) =

[
3.0 0.0
1.0 1.0

]
. (4.2)

In A, rows 1, 4, and 6 are identical, and so are rows 2 and 3. In B, rows 1 and 2 are identical, as
well as rows 4 and 5. In C, rows 1 and 2 are very similar, and so are rows 3 and 4. In terms of the
application, the mathematical result of (4.1) is actually reported in [4] in the form of Table 4.2,
where the classification into two groups in each component resulting from the core tensor of size
2× 2× 2 are expressed in labels inspired by the application.

Table 4.2: Component values from 3MPCA.

Component matrix A Component matrix B Component matrix C
Individual Femininity Masculinity Response Emotionality Conscientiousness Situation Social Performance
Anne 1.0 0.0 Emotional 1.0 0.0 Exam 0.0 1.0
Bert 0.0 1.0 Sensitive 1.0 0.0 Speech 0.2 0.8
Claus 0.0 1.0 Caring 0.6 0.4 Picnic 1.0 0.0
Dolly 1.0 0.0 Thorough 0.0 1.0 Date 1.2 0.3
Edna 0.5 0.5 Accurate 0.0 1.0
Frances 1.0 0.0

10

Table 4.3: Core G ∈ R2×2×2 resulting from 3MPCA (Tucker decomposition).

Performance Situations Social Situations
G: Core Emotionality Conscientiousness Emotionality Conscientiousness

Femininity 0.0 3.0 3.0 0.0
Masculinity 0.0 2.0 1.0 1.0

Each component shows the relationship between the elements within each mode and categorizes
them based on the dimensions that we choose. For component A, we are simplifying our 6 people
into 2 categories. Looking at the resulting matrix above, we can see that Anne, Dolly, and Frances
have the same values, as well as Bert and Claus. From what Kiers tells us about these individuals [4],
this split could be interpreted as grouping femininity against masculinity. Since Edna’s original
values lie between the masculine and feminine values, her component values are also half in each
category and Kiers interprets this to mean that Edna is androgynous.

Component B shows the relationship between the qualities of behavior (Kiers refers to them
as response variables). Notice how columns E and S of the original data match and columns T
and A match. On the other hand, C is its own entity. Intuitively, we can say that emotional and
sensitive behaviors could be grouped together and we could label that with Emotionality. We can
also intuitively say that thorough and accurate behaviors could be grouped together, so we will
label it as Conscientiousness. As shown in the Kiers paper, these two labels form the 2nd mode.
Caring does not neatly fit into either label, so as in the case with Edna, it exhibits a combination
of the two labels.

The final component C shows the relationship between the different situations and groups them
into two categories. Here, the data appears slightly harder to interpret since none of the entries
match perfectly and cannot be grouped just based on that. Instead, we can interpret the entries
here as part of each category with preferences towards one or another. From the labels Kiers used,
the interpretation is that doing an exam is purely a performance situation, as opposed to a speech
which is mostly performance but still has a social aspect. Looking at the original data, we can see
that doing an exam and giving a speech have little or no scores in the E or S columns (social), with
high scores in the T and A columns (performance). A picnic is an entirely social affair with almost
no performance aspects, while a date is also a largely social affair that still has some performance
aspects.

Table 4.3 again collects the faces of the core tensor from (4.2) in terms of the application.
Based off our labels for the components, we use the same labels for the core. The core tensor
gives a summary of all the interactions among the three sources of variation in the data. The
front face G(:, :, 1) is related to performance situations, and the columns are labeled in [4] as
conscientiousness and emotionality, respectively. The back face G(:, :, 2) on the other hand is
related to social situations, and its columns are labeled as emotionality and conscientiousness,
respectively. The first row of each face is related to femininity and the second row of each face is
related to masculinity.

From the core tensor, we can summarize that females have very strong conscientiousness in
performance situations and strong emotionality in social situations, but little emotionality in per-
formance situations and low conscientiousness in social situations. This sounds intuitively correct.
One might expect males to have similar conscientiousness in performance situations, but perhaps

11

less emotionality in social situations. We look back at the original data to see that females do have
higher scores on the conscientiousness responses (T and A) in the performance situations (Exam,
Speech) and higher scores on the emotionality responses (E and S) in the social situations (Picnic,
Date). Also in the original data, we note that the two males have lower scores on the conscien-
tiousness responses (T and A) in the performance situations (Exam, Speech) and lower scores for
emotionality responses (E and S) for social situations (Picnic and Date).

4.3 Verifying and Understanding Results

For clarity, we explain how to carry out the computations necessary to obtain the tensor that
corresponds to the Kiers table displayed earlier. First, the multiplication with the tensor that is
taking place is dependent on the mode being considered. The idea is that a tensor has 3 dimensions,
or modes, and subscripts indicate the mode of multiplication considered when taking the product
with the factor matrices. For instance, mode-3 multiplication satisfies

Y = G×3 C ⇐⇒ Y(3) = CG(3)

where C ∈ RK×R, the G(3) ∈ RR×PQ, and Y(3) ∈ RK×PQ are mode-3 unfoldings of G ∈ RP×Q×R

and Y ∈ RP×Q×K . Hence, carrying out the mode-3 multiplication corresponds to unfolding or
matricizing G and multiplying by C on the left (assuming the dimensions match for the product
to be defined). Intuitively, unfolding a 3-way tensor G means to consider the fibers (that is, the
columns, rows, or tubes) of a certain mode and making such fibers the columns of Gn (see Figure 2.2
for clarification of fibers). One can visualize this unfolding as taking the tube fibers, rotating them
so as to make them columns, and then lining them up sequentially to obtain columns that form
the tensor as a matrix; as presented in Figure 4.1. Thus, recall that the third component matrix
in the decomposition mentioned in this section is

C =

1.0 0.0
0.8 0.2
0.0 1.0
0.3 1.2

and that the displayed frontal slices of core tensor G ∈ R2×2×2 are

G(:, :, 1) =

[
0.0 3.0
0.0 2.0

]
, G(:, :, 2) =

[
3.0 0.0
1.0 1.0

]
.

Figure 4.1: Unfolding of mode-3 fibers.

12

Since the mode-3 unfolding means we make the tube fibers of G into columns of the unfolded matrix
G(3), then tube fibers can be thought of as columns going into the page (towards the other slices),
so that we get

G(3) =

[
0.0 3.0 0.0 2.0
3.0 0.0 1.0 1.0

]
and the multiplication yields

Y(3) = CG(3) =

0.0 3.0 0.0 2.0
0.6 2.4 0.2 1.8
3.0 0.0 1.0 1.0
3.6 0.9 1.2 1.8

 .

We can then follow this procedure for the other modes by unfolding the tensor represented by these
slices in the appropriate mode, so that one can carry out the multiplications in modes 1 and 2 with
component matrices A and B, respectively.

The Matlab Tensor Toolbox can of course do these calculations for us, namely the function ttm

implements the entire calculation G×1 A×2 B×3 C in (2.1). For the matrices A, B, C, and tensor
G in (4.1)–(4.2), the Matlab code would be

A = [1.0 0.0;

0.0 1.0;

0.0 1.0;

1.0 0.0;

0.5 0.5;

1.0 0.0];

B = [1.0 0.0;

1.0 0.0;

0.6 0.4;

0.0 1.0;

0.0 1.0];

C = [1.0 0.0;

0.8 0.2;

0.0 1.0;

0.3 1.2];

G = zeros(2,2,2);

G(:,:,1) = [0.0 3.0;

0.0 2.0];

G(:,:,2) = [3.0 0.0;

1.0 1.0];

tensorG = tensor(G);

X = ttm(tensorG,{A,B,C})

which results in the output

X is a tensor of size 6 x 5 x 4

X(:,:,1) =

0 0 1.2000 3.0000 3.0000

13

0 0 0.8000 2.0000 2.0000

0 0 0.8000 2.0000 2.0000

0 0 1.2000 3.0000 3.0000

0 0 1.0000 2.5000 2.5000

0 0 1.2000 3.0000 3.0000

X(:,:,2) =

0.6000 0.6000 1.3200 2.4000 2.4000

0.2000 0.2000 0.8400 1.8000 1.8000

0.2000 0.2000 0.8400 1.8000 1.8000

0.6000 0.6000 1.3200 2.4000 2.4000

0.4000 0.4000 1.0800 2.1000 2.1000

0.6000 0.6000 1.3200 2.4000 2.4000

X(:,:,3) =

3.0000 3.0000 1.8000 0 0

1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000

3.0000 3.0000 1.8000 0 0

2.0000 2.0000 1.4000 0.5000 0.5000

3.0000 3.0000 1.8000 0 0

X(:,:,4) =

3.6000 3.6000 2.5200 0.9000 0.9000

1.2000 1.2000 1.4400 1.8000 1.8000

1.2000 1.2000 1.4400 1.8000 1.8000

3.6000 3.6000 2.5200 0.9000 0.9000

2.4000 2.4000 1.9800 1.3500 1.3500

3.6000 3.6000 2.5200 0.9000 0.9000

This result confirms indeed that for this small case with explicitly chosen numbers, the product
G ×1 A ×2 B ×3 C is nearly equal to the input tensor. That is, the tensor X calculated by ttm

above is different from the original tensor tensorX in Section 4.1 in only a few components. Recall
that these tensors have dimension 6× 5× 4, but X is here calculated from a core tensor with lower
dimensions, so it is to be expected that the agreement is not perfect even for such a small data set.

The matrices in this section were not calculated, but chosen by hand in Kiers [4]. Their product
is nearly equal to the original tensor, which is not common, in particular for a core tensor with
smaller dimensions than the original data tensor. So, the data and decomposition in this section
provides an example of (2.1) with nearly equality instead of approximation.

4.4 Computed Tucker Decomposition

Ordinarily, it is not possible to guess the values of A, B, C, and G in the Tucker decomposition,
of course. We demonstrate here how to use the Matlab Tensor Toolbox function tucker_als to
compute one decomposition. Namely, for the tensor X ∈ R6×5×4 and requesting a core tensor with
dimensions 2× 2× 2, the Matlab code after setting up the tensor tensorX as in Section 4.1 would
read

tuckerX = tucker_als(tensorX, [2 2 2])

14

The output variable tuckerX is a struct that holds A, B, C, and G as fields U{1}, U{2}, U{3}, and
core, respectively, thus the following Matlab code can be used to extract them:

A = tuckerX.U{1}

B = tuckerX.U{2}

C = tuckerX.U{3}

tensorG = tuckerX.core

Back in mathematical notation, the obtained matrices A ∈ R6×2, B ∈ R5×2, C ∈ R4×2 are

A =

0.4869 −0.2690
0.2697 0.6151
0.2697 0.6151
0.4869 −0.2690
0.3786 0.1617
0.4869 −0.2690

 , B =

0.4615 −0.4646
0.4615 −0.4646
0.4472 −0.0678
0.4324 0.5309
0.4324 0.5309

 , C =

0.3844 0.6853
0.4013 0.4577
0.4746 −0.4531
0.6826 −0.3400

 ,

and faces of the core tensor G ∈ R2×2×2 are

G(:, :, 1) =

[
16.3956 −0.5072
0.8613 3.4340

]
G(:, :, 2) =

[
0.5610 9.9596
0.1826 −1.255

]
.

As discussed at the end of Section 2.1 already, a Tucker decomposition is not unique, and moreover,
tucker_als is an iterative method, so different runs can give different results.

We will assume that the labels for the columns in the component matrices are the same as
in the Kiers article [4]. We can see that the females have the same values and the males have
the same values, with only Edna being different. It also makes sense that females have larger
values of femininity as opposed to masculinity (note the negative signs for masculinity), though it
is surprising that the males have much higher values of masculinity, but still some femininity (note
the positive signs). We can see something similar with the grouping of the response variables. From
this, we might also interpret that an exam is mostly a performance situation, with still some social
aspects which sounds unintuitive.

Looking at the core tensor, we decided to reverse the labeling for the columns in order to
preserve the interpretation under the assumption that the high value of 16.3956 corresponds to
what should be the high value for female conscientiousness in performance situations. Just as
in the example from Kiers, we can summarize that females have very strong conscientiousness
in performance situations and strong emotionality in social situations, but little emotionality in
performance situations and low conscientiousness in social situations, which is similar to results in
the Kiers article. One might also expect males to have similar conscientiousness in performance
situations, but perhaps less emotionality in social situations. Surprisingly, this decomposition tells
us that males have a fairly strong emotionality towards performance situations, with little response
at all towards social scenarios. Looking back at the data, we can see that females do indeed have
higher scores on the conscientiousness responses (T and A) and higher scores on the emotionality
responses (E and S) in the performance situations (Exam, Speech) and social situations (Picnic,
Date) respectively. While the two males do show low scores on everything in the social situations,
they don’t show comparatively higher emotionality on the performance situations. This iterative
process leads to a different interpretation than the Kiers article and is a potential nuance for further
study.

15

Table 4.4: Component matrix A for the Tucker decomposition with 3 categories.

Component matrix A
Individual Femininity Masculinity Other
Anne 0.4869 −0.2690 −0.1546
Bert 0.2697 0.6151 −0.2211
Claus 0.2697 0.6151 −0.2211
Dolly 0.4869 −0.2690 −0.1546
Edna 0.3786 0.1615 0.9114
Frances 0.4869 −0.2690 −0.1546

4.5 Other Core Tensor Dimensions

Since the Tucker decomposition allows us to specify the dimensions we want to use, we are not
limited to cube cores (such as 2×2×2). Say, for instance, we wanted to see if using 3 classifications
for people beyond male and female would be a better fit to represent Edna as opposed to being a
composite between male and female. We would specify the core tensor to be 3 × 2 × 2, and the
first component should have 3 columns. The individuals who are purely one or the other should
have the same if not very similar values in their original columns, while Edna should undergo a
drastic change in both of the 2 original columns now that Edna is freed from the constraint of 2
classifications.

Comparing the A matrix from Section 4.4 to Table 4.4, we see that our original columns for
everyone except Edna are the same, and everyone has negative values in the third column, except
for Edna in this instance. If the Kiers article did something similar, we could expect the third
column to have a 1.0 for Edna with 0.0 in masculinity and femininity. A similar component matrix
could be generated for the response variables. Since Caring has a different value from all other
response variables, it may have a strong correlation to the third category if we specified our core
to have dimensions of 2× 3× 2. It should be noted that having core dimensions very close to the
original data’s dimensions serve little purpose since the goal is to shrink the original data to a size
that can be summarized. Having any of the core dimensions as 1 would also be unproductive, since
we would not be categorizing the modes or showing any useful numbers for comparison.

5 Practical Application of Tensor Decomposition

We now look at a larger data set that still has the same structure as the illustrative example in
Section 4. This data set is one of many available through the Three-Mode Company [7], a website
devoted to providing three-mode data sets to motivate the use of three-mode data analysis. We
discuss a couple ways in which one can make use of the results of the decomposition to obtain
meaningful information.

5.1 Dutch Children Psychological Experiment

The data set consists of results from a Dutch psychological experiment involving:

• I = 326 children who exhibited

16

Table 5.1: First five rows of Dutch children data.

Individual PS CM R AV DI

1 3 2 1 2 7
2 6 7 1 1 1
3 1 2 1 2 7
4 7 7 7 1 1
5 6 4 4 1 1

• J = 5 behaviors — Proximity Seeking (PS), Contact Maintaining (CM), Resistance (R),
Avoidance (AV), Distance Interaction (DI) — in

• K = 2 stressful situations where the children were put in a room with a stranger and the
mother was later brought back.

Hence, the data can be represented in the form of a 3-way tensor X ∈ R326×5×2. A score between 1
and 7 is given to each child to rate their behavior in each of the 5 categorical scales. Data collected
for the first 5 children in situation 1 is displayed in Table 5.1 for example.

5.2 Applying Tucker Decompositions

We compute a Tucker decomposition using tucker als with a requested core tensor size of 2×2×2.
The 2 for the first mode attempts to split the children in 2 groups. For the second mode, the 2
attempts to place the more closely related behaviors together. For the third mode, we pick it as
a default since there are 2 situations. Thus, we obtain core G ∈ R2×2×2, and component matrices
A ∈ R326×2, B ∈ R5×2, and C ∈ R2×2 as

A =

0.0476 −0.0663
0.0571 0.0811

...
...

0.0556 −0.0236
0.0547 −0.0455

 , B =

0.5444 −0.3705
0.4363 −0.5090
0.3391 −0.1313
0.3919 0.3124
0.4947 0.6992

 , C =

[
0.7342 0.6789
−0.6778 0.7342

]
,

G(:, :, 1) =

[
0.3376 16.3568
−1.7602 0.7655

]
G(:, :, 2) =

[
178.6889 −0.6780
−0.0978 −80.4707

]
.

Oftentimes, the interest in psychological experiments is to understand behavioral patterns.
With this motivation, we restrict our attention to the B matrix because it corresponds to the 5
response variables:

B =

0.5444 −0.3705
0.4363 −0.5090
0.3391 −0.1313
0.3919 0.3124
0.4947 0.6992

Proximity Seeking

Contact Maintaining
Resistance
Avoidance

Distance Interaction

By sign and magnitude, the second column of B noticeably groups the first three behaviors of
Proximity Seeking, Contact Maintaining, and Resistance and the last two behaviors of Avoidance
and Distance Interaction.

17

We project the first 5 children’s data onto the second column of B. In other words, we take the
dot product of each row of the children’s data with the second column of B and get

X(1 :5, : , 1)B(: , 2) =

3 2 1 2 7
6 7 1 1 1
1 2 1 2 7
7 7 7 1 1
6 4 4 1 1

−0.3705
−0.5090
−0.1313

0.3124
0.6992

 =

3.2583
−4.0955

3.9993
−6.0638
−3.7725

 .

Negative values correspond to the extent to which behaviors of Proximity Seeking and/or Contact
Maintaining are present. Positive values correspond to the extent to which behaviors of Avoidance
and/or Distance Interaction are present. This projection helps summarize information about the
behavior of each child in situation 1.

The Tensor Toolbox allows us to request different tensor core sizes. For further exploration,
we compute a Tucker decomposition by requesting a core tensor of size 2× 3× 2, which results in
component matrices A ∈ R326×2, B ∈ R5×3, C ∈ R2×2, and core tensor G ∈ R2×3×2

A =

0.0476 −0.0667
0.0570 0.0807

...
...

0.0552 −0.0240
0.0546 −0.0458

 , B =

0.5444 −0.3706 0.6470
0.4363 −0.5084 −0.5573
0.3391 −0.1316 −0.3101
0.3919 0.3111 0.3238
0.4947 0.7001 −0.2643

 , C =

[
0.7342 0.6790
−0.6790 0.7342

]
,

G(:, :, 1) =

[
0.3369 16.3405 4.6376
−1.7663 0.7502 1.3683

]
, G(:, :, 2) =

[
178.6895 −0.0863 0.0055
−0.1397 −80.4702 0.9545

]
.

We also compute a Tucker decomposition for a core tensor of size 2×4×2, which gives component
matrices A ∈ R326×2, B ∈ R5×4, C ∈ R2×2, and core tensor G ∈ R2×4×2

A =

0.0476 −0.0663
0.0570 0.0809

...
...

0.0552 −0.0242
0.0546 −0.0456

 , B =

0.5444 −0.3713 0.6499 −0.0087
0.4363 −0.5086 −0.5581 −0.4555
0.3391 −0.1305 −0.3113 0.8760
0.3919 0.3128 0.3178 −0.0483
0.4947 0.6990 −0.2612 −0.1509

 , C =

[
0.7342 0.6789
−0.6789 0.7342

]
,

G(:, :, 1) =

[
0.3446 16.3399 4.6349 −0.4621
−1.7529 0.7657 1.3615 1.6279

]
, G(:, :, 2) =

[
178.6896 −0.0853 0.0051 0.0168
−0.1362 −80.4694 0.9541 −0.0784

]
.

In this instance, the first and second columns of B do not drastically change across the different
sizes of the core tensor.

It is important to note at this point that we have performed a similar decomposition on two
different sets of data, but used them for different methods of interpretation. With the Kiers article,
the decomposition was used to show how all of the components related to each other and is an
illustrative example on how to label the columns given that the properties of the individuals are
known. For the Dutch experiment, we chose to only focus on the B matrix that corresponded to the
response variables. Due to the similarity of sign and magnitude of the first column in B, we chose
to focus on the second column. We have extended the analysis done with Tucker by projecting
the rows of the original data onto the second column of the second component matrix B. Doing
this allowed us to provide a summary of the children’s behavioral tendencies. How one chooses to
analyze and interpret the results depends on the data that is being used as well as what the user
wants to look for.

18

6 Conclusions

Data can exist in more than two dimensions and tensor decompositions allow us to directly per-
form analysis on this multi-dimensional data, as opposed to performing multiple analyses on two-
dimensional data through techniques such as principal component analysis (PCA). We considered
two examples from psychological studies due to their intuitive nature, one small and one modest
sized one. We showed the details of commands from the Matlab Tensor Toolbox needed to set up
and analyze them.

The Matlab Tensor Toolbox (version 2.6) was able to do the calculations for the small amount
of data in the examples of Sections 4 and 5 in seconds. This suggests it might do well with larger
data sets, and highlights that other programming languages like C might be able to handle even
larger computations. Using these tools, there is a wide range of potential applications for multi-
dimensional data such as signals analytics, facial recognition, big-data analysis, etc. with much
larger datasets.

Acknowledgments

These results were obtained as part of the REU Site: Interdisciplinary Program in High Performance
Computing (hpcreu.umbc.edu) in the Department of Mathematics and Statistics at the University
of Maryland, Baltimore County (UMBC) in Summer 2016. This program is funded by the National
Science Foundation (NSF), the National Security Agency (NSA), and the Department of Defense
(DOD), with additional support from UMBC, the Department of Mathematics and Statistics, the
Center for Interdisciplinary Research and Consulting (CIRC), and the UMBC High Performance
Computing Facility (HPCF). HPCF is supported by the U.S. National Science Foundation through
the MRI program (grant nos. CNS–0821258 and CNS–1228778) and the SCREMS program (grant
no. DMS–0821311), with additional substantial support from UMBC. Co-author Darren Stevens II
was supported, in part, by the UMBC National Security Agency (NSA) Scholars Program through
a contract with the NSA. The authors thank both our team’s graduate assistant Jonathan Graf and
faculty mentor Dr. Matthias K. Gobbert for their support throughout the program and beyond,
and we are grateful to the project client Dr. Tyler Simon from the Laboratory for Physical Sciences
for pointing us to the interesting issue of tensor analysis and the Matlab Tensor Toolbox.

References

[1] E. Acar, D. M. Dunlavy, and T. G. Kolda, Link prediction on evolving data using matrix
and tensor factorizations, in 2009 IEEE International Conference on Data Mining Workshops,
Dec. 2009, pp. 262–269.

[2] D. Fitzgerald, E. Coyle, and M. Cranitch, Using tensor factorisation models to separate
drums from polyphonic music, in Proceedings of the International Conference on Digital Audio
Effects (DAFX09), 2009.

[3] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, Gigatensor: Scaling ten-
sor analysis up by 100 times — algorithms and discoveries, in Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, ACM,
2012, pp. 316–324.

19

hpcreu.umbc.edu

[4] H. A. L. Kiers and I. V. Mechelen, Three-way component analysis: Principles and illus-
trative application, Psychological Methods, 6 (2001), pp. 84–110.

[5] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51
(2009), pp. 455–500.

[6] T. G. Kolda and J. Sun, Scalable tensor decompositions for multi-aspect data mining, in
2008 Eighth IEEE International Conference on Data Mining, Dec. 2008, pp. 363–372.

[7] P. M. Kroonenberg, The Three-Mode Company. http://three-mode.leidenuniv.nl. Ac-
cessed September 12, 2016.

[8] E. E. Papalexakis, U. Kang, C. Faloutsos, N. D. Sidiropoulos, and A. Harpale,
Large scale tensor decompositions: Algorithmic developments and applications, IEEE Data En-
gineering Bulletin, 36 (2013), pp. 59–66.

20

http://three-mode.leidenuniv.nl

	Introduction
	Tensor Analysis
	Tensor Basics
	Principal Component Analysis
	Tucker Tensor Decomposition

	Matlab Tensor Toolbox
	Literature Review
	Regular (Dense) Tensors
	Sparse Tensors
	Tucker Tensors
	Tensor Products and Miscellaneous

	Illustrative Example of Tensor Decomposition
	Original Input Data
	Illustrative 3MPCA Decomposition
	Verifying and Understanding Results
	Computed Tucker Decomposition
	Other Core Tensor Dimensions

	Practical Application of Tensor Decomposition
	Dutch Children Psychological Experiment
	Applying Tucker Decompositions

	Conclusions

