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Abstract

Prediction of precipitation using simulations on various climate variables provided
by Global Climate Models (GCM) as covariates is often required for regional hydro-
logical assessment studies. We use a sufficient dimension reduction method to analyze
monthly precipitation data over the Missouri River Basin (MRB). At each location,
effective reduced sets of monthly historical simulated data from a neighborhood pro-
vided by MIROC5, a Global Climate Model, are first obtained via a semi-continuous
adaptation of the Sliced Inverse Regression, a sufficient dimension reduction approach.
These reduced sets are used subsequently in a modified Nadaraya-Watson method for
prediction. We implement the method on a computing cluster and demonstrate that
it is scalable. We observe a significant speedup in the runtime when implemented in
parallel.

Key words. Sufficient Dimension Reduction, Spatio-temporal, MIROC5, Precipita-
tion, Parallel Computing.

1 Introduction

Daily precipitation data is often required as an input to hydrological modeling tools (e.g.: [3])
to assess the impact of decadal climate changes on crop and water yields at the regional scale.
One of the methods to predict precipitation is to use simulated data provided by Global Cli-
mate Models (GCMs) as covariates in a regression model with the observed precipitation as
the response [13]. Under such models, a common approach is to predict the monthly precip-
itation and simulate daily precipitation in a manner consistent with the monthly forecasts
(e.g.: [3]).

In this paper we discuss a method to forecast precipitation at the monthly level over
the Missouri River Basin (MRB) using simulated data on several climate variables provided
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by the Model of Interdisciplinary Research on Climate (MIROC5; [9]) as predictors. The
MRB is the largest river basin in the United States. It is present in ten U.S. states and
covers more than 500, 000 square miles, which amounts to about a sixth of the United States
geographic area. The MRB is home to 12% of all U.S. farms and 28% of all land used for
farming [10], making it a significant agricultural region. Although 90% of the basin is not
irrigated, making the region dependent on rainfall, it provides 44% of the nation’s wheat,
22% of grain corn and 34% of cattle. As a result, it is important to assess the impact of
future changes in the climate on the availability of water in the region [8].

Prediction of daily maximum/minimum temperatures and precipitation in the MRB was
studied by the 2014 UMBC REU team [2] using simulated data from two climate models:
Hadley Center Coupled Model (HadCM3; [4]) and MIROC5. While predictions of daily
maximum/minimum temperatures were found to be satisfactory, predictions of daily precip-
itation were not sufficiently accurate. The 2015 UMBC REU team [2] studied the prediction
of precipitation at the monthly level instead using the monthly level simulated data from
HadCM3 and MIROC5. Although predicting at the monthly level was computationally less
expensive, the quality of predictions for the precipitation could not be improved, possibly be-
cause of the difficulty in predicting a semi-continuous response (point mass at 0) and heavy
model dependency. Here we try to address that concern by recognizing the complicated,
possibly non-linear, relationship between the observed and simulated data from MIROC5
and adopting a non-parametric approach. We circumvent the challenge of fitting traditional
spatio-temporal models to data from a large number of locations (21,000) as in the MRB
region, by reducing the dimension in the set of a large of number of covariates consisting of
spatially and temporally separated values of several climate variables at each location using
semi-continuous adaptations of the Sliced Inverse Regression (SIR; [6]) and Nadaraya-Watson
estimator (NWE) for prediction. Since the data can be fit at each location, the method is
‘embarassingly parallel’, which is a parallelization of the problem where processes do not
communicate with each other during the computation. This offers significant computational
advantage when implemented on a computing cluster in parallel.

The rest of the paper is organized as follows: Section 2 describes the MRB region, the
data used, and the statistical and computational methods used. Section 3 outlines the results
obtained. Finally, Section 4 summarizes the findings and offers suggestions for future work.

2 Methodology

2.1 Study Area and Data Description

The observed precipitation data are provided by [7]. It has a temporal coverage of 1950 −
2005 and a spatial resolution of 0.125◦(longitude) ×0.125◦(latitude), making it 12km ×12km
gridded data. MIROC5 provides simulated data on several climate variables. It has a
temporal coverage of 1859−2010 and a spatial resolution of 1.4◦(longtitude) ×1.4◦(latitude),
which is 150km ×150km gridded data. MIROC5 data is ensemble averaged and spatially
interpolated to match the resolution of the observed data prior to our analysis.
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The area that we consider ranges from longitude −115.5◦ to −89.25◦ and latitude 36.5◦

to 49◦, which encompasses the entire Missouri River Basin. This rectangular region at the
resolution of the observed data consists of 21,000 locations. Monthly data from 1950− 1994
is used for training and the data from 1995− 2005 is used for testing. This amounts to 540
time points for training and 132 for testing at each location. We use the following monthly
variables as covariates in our model: precipitation, sea-level pressure, relative humidity, and
maximum/minimum temperatures. For a given location s, we include 30 lags (current and
previous 29 months) for each variable, as well as the current values of those variables, except
precipitation, at eight neighboring locations of s in a regular grid, amounting to a total of
182 covariates.

2.2 Sliced Inverse Regression for semi-continuous data

Let Y (s, t) be the monthly observed precipitation at the location s and time t, where s ∈
D ⊂ R2 and t = 1, .., T . Here the set D is the MRB region bounded by the rectangle formed
by longitude −115.5◦ to −89.25◦ and latitude 36.5◦ to 49◦ and T is December 1994. Let
Xi(s, t), where i = 1, . . . , q, q = 5 be the simulated monthly data on precipitation, sea-level
pressure, relative humidity, maximum, and minimum temperatures provided by MIROC5.
We assume that Y (s, t) depends on the current and lagged values of Xi(s

′, t′), where s′ ∈ D,
and t′ = t− 1, t− 2, . . . , 1 as:

Y (s, t) = g(W(s, t), e(s, t)),

where g is an unknown function e(s, t) is random noise and W(s, t) = (X1(s, t) . . . Xq(s, t−
p) Xs1(s, t) . . . Xsq(s, t))

′
and Xi(s, t) = (Xi(s, t) . . . Xi(s, t− p))

′
, Xsi(s, t) = (Xi(s1, t)

. . . Xi(s8, t))
′
, i = 1, . . . , q (except precipitation), p is the number of lags from t, and nodes

s1 − s8 are the eight neighbors of s as shown in Figure 2.1. For simplicity we arbitrarily set
p to 30. With this choice of covariates, the vector W(s, t) is of dimension r = 182, which
prohibits fitting a non-parametric regression model. Therefore, reducing the dimension of
W(s, t) to something as low as 5 while preserving the regression information is desirable. In
other words, we seek a matrix B(s) ∈ Rr×d(s) such that the distribution of Y (s, t) |W(s, t)
is same as the distribution of Y (s, t) | B(s)TW(s, t). Estimating such a matrix (rather
the subspace spanned by the d(s) columns of it) is sometimes known as sufficient dimension
reduction (SDR) or effective dimension reduction (EDR). One such method to estimate B(s)
is Sliced Inverse Regression (SIR; [5]).

The first step in our prediction method is to reduce the dimension at each location s in
the MRB region D using the SIR method. Although in practice d(s) must also be estimated,
we fix d(s) = 5 for simplicity. Since Y (s, t) is semi-continuous, we use a variant of SIR [6]
shown in Algorithm 1.
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Figure 2.1: Eight neighbors in the spatial grid.

Algorithm 1 Semi-continuous (Tobit) SIR

Step 1: Normalize w:
z(s, t) = Σ̂−1/2[w(s, t)− w̄],

where Σ̂ and w̄ are the sample covariance matrix and sample mean of w respectively.
Step 2: Divide the range of y(s, t) into L slices Il, l = 1, .., L, with {0} being the first slice.
Let nl denote the number of observations in slice Il.
Step 3: Compute the sample means of the normalized values of w(s, t) within each slice:

z̄l(s, t) =
1

nl

∑
i:y(s,ti)∈Il

z(s, ti)

Step 4: Compute the weighted matrix:

V = n−1
L∑
l=1

nlz̄l(s, t)z̄
T
l (s, t)

Step 5: An estimate of the column space of B(s) is given by the basis vectors:

β̂(s)i = Σ̂−1/2η̂(s)i,

where i = 1, .., d(s) and η̂(s)i is the eigenvector corresponding to the ith largest eigenvalue
of V . Therefore, the reduced subspace is represented by B̂(s) = (β̂(s)1, .., β̂(s)d(s)).

2.3 Nadaraya-Watson Estimator for semi-continuous data

In the second step of our prediction method, we use the reduced data set (y(s, t),v(s, t)),
where v(s, t)) = B̂(s)Tw(s, t) and t = 1, .., T , where the estimated basis matrix B̂(s) reduces
the dimension of w(s, t) from r to d(s). We modify the Nadaraya-Watson Estimator (NWE;
[12]) for the semi-continuous response y(s, t), by fitting two separate NWEs as shown in
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Algorithm 2. Define z(s, t) (not the same as z(s, t) in Algorithm 1) as

z(s, t) =

{
0 if y(s, t) = 0
1 if y(s, t) > 0

Let I be the index set of time points t such that y(s, t) > 0.

Algorithm 2 Semi-continuous Nadaraya-Watson Estimator

Step 1: Binary prediction using a new covariate v(s, t′) at a future time point t′:

1.

z∗(s, t′) =
n∑

t=1

wi0z(s, t), (2.1)

where wi0 =
KH(v(s, t)− v(s, t′))∑n

t=1(KH(v(s, t)− v(s, t′)))
, KH is a d-dimensional kernal (eg.: normal)

and H is a smoothing parameter. Note that z∗(s, t′) ∈ [0, 1].
2.

ẑ(s, t′) =

{
0, if z∗(s, t′) < 0.5

1, if z∗(s, t′) ≥ 0.5

Step 2: Prediction of the rain intensity (positive value) at a future time point t′ using the
covariate v(s, t′):

ŷ+(s, t′) =
∑
t∈I

wi0y(s, t),

where wi0 =
KH(v(s, t)− v(s, t′))∑

t ∈ I(KH(v(s, t)− v(s, t′)))
. Note that the kernel K and the parameter

H need not be same as in equation 2.1. Also note that ŷ+(s, t′) is strictly positive.
Step 3: Prediction of y(s, t′) at v(s, t′):

ŷ(s, t′) = ŷ+(s, t′)I(ẑ(s, t′) = 1)

The novelty of the prediction method illustrated in Algorithms 1 and 2 is two-fold.
Since the method is applied at each location, it is ‘embarassingly parallel’ and therefore
can easily be implemented on a computing cluster. Secondly, the resulting predictions are
semi-continuous with a point mass at 0.

3 Results

In order to assess the accuracy of the model, the data is divided into a training and a testing
set. The training set consists of entire MRB region from the time periods 1950 − 1994
and the testing set covers the remaining data from the period 1995 − 2005. As a measure
of prediction accuracy, we use the mean squared error (MSE) as each location s defined
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as mse(s) = 1
nf

Tf∑
t=T+1

(ŷ(s, t) − y(s, t))2, where Tf is December 2005 and nf (= 132) is the

number of time points (months) in the testing period.
Figure 3.1a shows a histogram of ŷ(s, t) from all the locations and time periods in the

testing set, overlaid with the histogram of the observed monthly precipitation y(s, t). Since
both the predictions and the observed values are semi-continuous with a point mass at 0,
we show the proportion of 0 values as points on the vertical axis on the histograms. The
predicted proportion of 0 values (blue point) across all the locations and time points is very
small and is close to the observed proportion of 0 values (red point). Figure 3.1b shows
the MSE values at each location across the MRB. The red/orange MSE values represent
high accuracy predictions while yellow/green MSE values represent poorer accuracy. The
figure illustrates higher accuracy in some of the more central and arid regions of the MRB
and lower prediction accuracy in parts of south-east and north-west MRB. These regions
with low accuracy seem to correlate with regions of high altitude and high forestation (e.g.,
Yellowstone National Park in the upper lefthand corner of Wyoming, Flathead National
Forest in western Montana and the Mark Twain national forest in Missouri). We suspect
that due to the varying altitudes and vegetation densities in these regions, overall weather
variability is greater and therefore causing our model to produce inaccurate results.

(a) Observed and predicted monthly precipita-
tion, including the proportion of 0 values for
both

(b) MSE from positive predictions for months
with positive rainfall (true positives)

Figure 3.1: Prediction Results.

Monthly precipitation data in MRB for the period 1950− 2005 was also analyzed by [1].
They fitted multiple linear regression models at each location of MRB using a combina-
tion of simulated data on precipitation, sea-level pressure, relative humidity, and maxi-
mum/minimum temperatures (same covariates as we do in our analysis) from MIROC5. In
order to assess overall accuracy of the model and to compare with the models in [1], we cal-
culate a standardized mean squared error value (smse) defined in equation 3.1. This quantity
is equivalent to 1 − R2, so smaller values indicate a model with a better fit. Values above
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1 indicate that the model does a poor job of predicting precipitation. Standardized mean
squared error can be defined as:

smse =

∑
(y(s, t)− ŷ(s, t))2∑

(y(s, t)− ȳ)2
, (3.1)

where the summations are over all the locations in MRB and time points in the testing
period and ȳ is the mean of all observed values. The smse value for our model is 0.6679,
which is a 19% improvement over the corresponding value of 0.8262 computed based on the
most successful model in [1].

3.1 Parallelization

Since the two steps of dimension reduction and prediction is carried out at each location
s in MRB, we can turn the computation into an ‘embarassingly parallel’ problem and use
a computing cluster to make predictions in parallel. This is a significant computational
advantage over some of the traditional spatio-temporal models, which are often not readily
parallelizable. We use a parallel computing protocal called Message-Passing Interface (MPI;
[11]), implemented by the R package Rmpi( [14]). The procedure is shown in the following
algorithm:

Algorithm 3 Parallel Implementation

Step 1: Load all the requisite data in on Process 0.
Step 2: Partition the data geo-spatially into “chunks”.

• Think of the region we are modeling as a lon × lat grid of longitude and latitude
values.

• If the region has more longitudes than latitudes, divide the region into chunks by row
(else, by column).

• For models considering spatial dependency, append neighboring values on the borders
of each chunk.

Step 3: Distribute each chunk of data to its own process (leaving all overflow values for
Process 0 to manage).
Step 4: On each process, perform the predictions at each longitude-latitude combination
across the subregion provided by Process 0.
Step 5: From each process, send finished predictions back to Process 0 to be merged.
Step 6: From Process 0, merge the data back into one coherant array of prediction values
and write the data to memory.

Table 3.1 shows the wall clock runtime (in HH:MM:SS) for a subregion in MRB and
for the entire MRB. The runtime speedup between the subregion and the entire MRB is
similar, indicating that the prediction method is scalable. The plot in Figure 3.2 visualizes
the numbers in Table 3.1. It shows the speedup plot against the optimal speedup with
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Figure 3.2: Speedup plot for the parallelized
code.

Processes Subregion* MRB
1 01:31:02 35:00:28
4 00:27:29 09:48:53
8 00:14:20 05:08:00
16 00:07:45 02:50:10

Table 3.1: Performance Study Results.
∗ denotes a region from latitude -101 to
-97 and longitude 39.25 to 42.95.

increasing number of processes. The speedup Sp for p number of processes is defined as the
ratio T1

Tp
, where T1 and Tp are the runtimes on a single process and on p number of processes,

respectively. As the plot shows, we were able to achieve a near-optimal speedup in prediction
across the subregion and the entire MRB. Notice that the speedup is more prominent when
predictions are made for the entire MRB indicating that our method is scalable, since the
benefit from parallelizing is proportional to the size of the problem (number of locations).

4 Conclusions

In this paper we discussed a prediction method for monthly level precipitation data in the
MRB region using the semi-continuous Sliced Inverse Regression method for dimension re-
duction followed by a modified Nadaraya-Watson estimator. We successfully demonstrated
that the method can be implemented to work on a large dataset. The accuracy of the pre-
dictions were shown to improve upon the method from the 2015 REU project [1]. We further
showed that parallelization of the method greatly improved the computational efficiency on
both the subregion and the entire Missouri River Basin, although the speedup is closer to
optimal on the subregion. We note that although we improved upon the model from the 2015
UMBC REU [1], our standardized mean squared error is still relatively high, so further work
is needed to continue improving the accuracy of rainfall predictions. Additionally, since the
monthly precipitation data does not have a high proportion of zero values, the methodology
described in this paper is more suitable for precipitation at the daily level.
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