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Abstract

In order to further understand diabetes mellitus, it is necessary to investigate the
dynamics of insulin secretion in the bloodstream. Diabetes is a disease characterized
by improper concentrations of blood glucose due to irregular insulin production. Beta
cells are responsible for the production and regulation of insulin based on changes
in glucose levels. Clusters of these cells, known as islets of Langerhans, are part of
the endocrine system in the pancreas. Ultimately, insulin secretion occurs because of
changes in the calcium concentration levels in beta cells. This dynamical process is
composed of electrical, metabolic, and mitochondrial components that work together
to release insulin into the blood. A mathematical model has been developed that
captures the full dynamics of insulin secretion including the fast- and slow-bursting
behavior from electrical and glycolytic oscillations, respectively.

Using the Dual Oscillator Model, we will examine how calcium handling within indi-
vidual pancreatic beta cells affects the synchronization of metabolic oscillations within
electrically coupled islets. Calcium permeability was implemented into the Dual Os-
cillator Model, and numerical solutions of the system were obtained via Matlab using
a modified ordinary differential equation solver for stiff systems and the Automatic
Differentiation for Matlab software. A synchronization index has been developed to
quantitatively describe the synchronization of variables between nearest neighboring
cells and throughout the islet as a whole. We consider how calcium diffusion between
heterogeneous cells affects the behavior of metabolic oscillations and their synchro-
nization. In particular, we want to examine fructose-1, 6-bisphosphate and glucose-6-
phosphate. Our research will show whether calcium diffusion between cells enhances,
diminishes, or terminates metabolic oscillations.
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1 Introduction

Diabetes mellitus, a group of diseases related to glucose levels in the blood stream, affects over
29 millions Americans and over 380 million people worldwide. Furthermore, the population
of people with diabetes is expected to double by the year 2030, posing a major threat to the
human race [1]. There are two major forms of diabetes, type 1 diabetes and type 2 diabetes.
Both types rely on insulin production in the pancreas to regulate high glucose levels. Type 1
diabetes is an autoimmune disorder where insulin cannot be produced because the immune
system attacks and destroys beta cells. Type 2 diabetes occurs when insulin is insufficiently
produced to regulate the glucose levels [1]. Both types result in unhealthy glucose levels in
the bloodstream. The growing number of cases of diabetes requires a deeper understanding
of the pancreas, where insulin is produced. A brief explanation of the physiology of S-cells
is discussed in Section 2, along with a look at the Dual Oscillator Model. Our methodology
is described in detail in Section 3 and our results are examined in Section 4. And finally, we
draw our conclusions in Section 5.

2 Background

2.1 Physiology

As mentioned above, insulin is produced in the pancreas. The pancreas consists of clusters
of cells called islets of Langerhans. Each islet contains three different types of cells: a-cells,
B-cells, and d-cells. Our research focused on (-cells and the metabolic oscillation process
that occurs within these S-cells [2]. As our title suggests, we were interested in researching
how calcium affects the synchronization of cells within an islet. But first, it is necessay to
understand the oscillation process in order to model synchrony within an islet.

An in-depth look at (-cells reveals a sophisticated and complex system of metabolic
and electrical oscillations, cell coupling, and synchronization. Insulin is produced to control
glucose levels. This multi-step process begins when glucose enters a [-cell, which starts the
glycolysis process. As glucose is metabolized in the mitochondria, adenosine triphosphate
(ATP) is created, and adenosine diphosphate (ADP) produces energy. As a result, Karp
channels close. Next, the [-cell depolarizes which then permits calcium to enter the [§-cell.
Continuing on, insulin is secreted as ATP levels drop and ADP levels rise. Finally, K 7p
channels open again and this signifies the end of the depolarization process. The length of
this process depends on whether the islet consists of mostly fast-bursting cells or mostly
slow-bursting cells. If it is a fast-bursting islet, the metabolic oscillation will execute within
tens of seconds. If it is a slow-bursting islet, these oscillations will progress over four to six
minutes [6].

As mentioned above, we are interested in the oscillation synchrony and cell communi-
cation made possible through gap junctions. [-cells are connected by channels, called gap
junctions, which allow metabolites and ions to be transferred between the cells. As one cell
experiences the bursting process, the cell communicates to its neighboring cells, affecting the
bursting process. This results in the synchronization of -cells and the islets they comprise.



2.2 Mathematical Model
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The Dual Oscillator Model consists of seven differential equations, each with one in-
dependent variable: V,n,[Cay|, [Cae|, [ADP],[G6P], [FBP]. The model can be separated
into three components: electrical, mitochondrial, and glycolytic. The first four equations
(2.1)-(2.4) comprise the electrical component, the fifth equation (2.5) characterizes the cell’s
mitochondria activity. The last two equations (2.6) and (2.7) describe the glycolytic activity
occurring in the cell.

2.3 Electrical Component

Equation 2.1 represents membrane potential V' is calculated by summing up the following
ionic currents (2.8)-(2.11) and dividing them by the membrane capacitance, Cy,.

I, = gin(V — Vi) (2.8)
Ica = Goameo(V — Vi) (2.9)
I'x(ca) = 9r(cay(V — Vi) (2.10)
Iarp) = gxarpy(V — Vi) (2.11)
such that,
9K (Ca) = 9K (Ca) (%) (2.12)



9rarp) = Gr(ATP)Oxc(ADP, AT P) (2.13)

In equation (2.2), n is the activation variable for the voltage dependent K channels,
while equation (2.3) represents the free cytosolic Ca®" concentration. In equation (2.4) the
concentration of Ca®" in the endoplasmic reticulum is represented by Cae. The variables
[ADP], [G6P], and [FBP] in equations (2.5)-(2.7) represents the [ADP], [G6P], and [FBP]
concentrations, respectively.

The free cytosolic Ca®t equation, (2.3), relies on the following equations,

Imem = —(alca + kpycaCa) (2.14)
Jer = Jieak — JsERCA (2.15)
such that
Jicat: = Preak(Cae, — Ca) (2.16)
Jserca = ksercaCa (2.17)

where the fraction of free to total cytosolic Ca®" is represented by, the flux of Ca?* across
the plasma membrane is denoted by Jem, the flux of Ca®™ out of the endoplasmic reticulum
is referred to as J.,, the leakage permeability is referred to as pieax, and ksgrca refers to the
SERCA pump rate.

A more detailed look into the DOM can be found in [6] and [10].

3 Numerical Methods

Implementation of the Dual Oscillator Model (DOM) occurred in a two-fold process: through
a single cell model and an islet model. The single cell model represents the intracellular
dynamics of a single [S-cell within each islet. The system of seven ordinary differential
equations described in (2.1)-(2.7) states the relationship between the electrical, glycolytic,
and mitochondrial activity that occurs within a S-cell. The full islet model was implemented
by inserting the single cell model into a larger dynamical system based on a collection of
Matlab files utilized in previous work at the University of Maryland, Baltimore County High
Performance Computing Facility [3], [4], [5].

The culmination of our work involves the inclusion of Ca?* diffusion via gap junctions
between individual 3-cells. By implementing Ca?* diffusion in the full islet model we were
able to investigate the role of calcium in the metabolic oscillations in the face of heterogeneity
and the overall synchronization of an islet. Heterogeneity was introduced into the islet
model in one of two ways: by varying the initial conditions between individual cells or by
modeling two types of slow cells with different glucokinase reaction rates, Jgx. Variation in
initial conditions was achieved by drawing independently from a standard normal distribution
scaled around the mean initial conditions with a standard deviation of 20 percent of the
mean initial conditions. Lastly, a synchronization index adapted from [11] was developed
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and implemented to measure synchronization across an islet. More details regarding the
details of the synchronization index implementation can be found at the end of this section.

The Dual Oscillator Model (DOM) described in equations (2.1-2.7) was formally im-
plemented using the dynamical systems software XPPAUT in the form of an .ode file [9].
Bertram successfully solved the system of equations and provided phase planes for each of
the seven variables using initial conditions and parameter values found in [9]. Using the
same initial conditions and parameter values, we implemented the DOM into Matlab. This
was accomplished by vectorizing the DOM such that

dy
a— 3.1
dt f( 7y)a ( )
where
y=(V,n,Ca,Cae, ADP, GGP, FBP)T. (3.2)

It can be observed that equation (3.2) is a vector of the seven state variables, and the rate
of change of the system as described in equation (3.1) holds the right hand side of equations
(2.1-2.7).

The built-in Matlab solver ode15s was chosen to obtain numerical solutions for the in-
dividual DOM model since the system can be categorized as a stiff system of differential
equations. In a stiff system such as this, calculations within the system are occurring on
wide time scales. Some interactions take milliseconds to complete, while others are on the
scale of minutes. The built-in solver ode15s utilizes backward difference numerical differen-
tiation methods to approximate the derivatives, selects the most efficient initial time step,
and updates the Jacobian and time interval as needed throughout the iterations to achieve
optimal results [7]. Numerical solutions to the islet model utilized a modified version of Mat-
lab’s ode15s function to accommodate for memory issues [6]. Additionally, the Automatic
Differentiation for Matlab software was implemented to provide a symbolic Jacobian matrix
to the ordinary differential equation solver [5].

Islets of Langerhans were simulated as cubes of N x N x N cells, where the islet config-
uration of [-cells was chosen based on the type of simulation. For simulations with varying
initial conditions, the configuration consisted entirely of slow-bursting cells that had iden-
tical bursting parameter values. For simulations with two types of slow-bursting cells, the
configuration consisted of alternating layers of each type of slow cell. In the latter simulation,
a 50-50 ratio of the two types of slow cells was used.

To simulate a slow-bursting cell, the parameter values for Jok, gr(ca), and g arp) were
selected using an exploratory parameter space method. In this study bursting parameter
values were chosen to ensure Jgx lies within a region where metabolic oscillations are inde-
pendent of calcium oscillations or “calcium independent” region where

0.045 < Joi < 0.15,

approximately [9]. To simulate two types of slow-bursting cells, the value for Jgx was varied
by ten percent. One slow cell type is denoted by having Jsx = 0.143 and the other slow cell
type with Jgx = 0.133. Values for the glucokinase flux were chosen at the upper bound of
the calcium independent region to ensure the bursting period stayed within a reasonable time



frame. The values chosen accomplished this given the sensitivity of the system dynamics to
changes in Jgg.

In order to realistically simulate -cell islets, coupling was introduced into the model to
represent the movement of ions between cells. Voltage coupling and calcium permeability
were implemented into the DOM by introducing an adjacency matrix, GG, such that

% = f(t,y) + Gy. (3.3)
Matrix G contains values of either one or zero: elements equal to one represent a connection
between neighboring cells, and elements equal to zero represent no connection. The product
of the adjacency matrix and a vector containing the coupling strengths results in the matrix
used in equation (3.3). Simulations involving no coupling, only voltage coupling, and voltage
coupling paired with calcium diffusion were performed. When coupling was introduced to
the system, an assortment of coupling strengths for both voltage (1, 5, 10, 50, 100, and 500
pS) and calcium (0.1, 0.011, 0.01, and 0.009 ms™!) was implemented.

3.1 Synchronization Indexing

A synchronization index was developed to quantitatively describe the synchronization of
the voltage, V, free cytosolic calcium concentration, [C'a], and the fructose-1,6-bisphosphate
concentration, [F'BP] throughout the islet. The Pearson correlation matrix was used to
determine the pairwise correlation between nearest neighboring cells. Next we find the
minimum row mean of the correlation matrix. This is accomplished by taking the averages
across each row in the matrix. Then the minimum of each of the averages was chosen as the
synchronization index for the islet.

4 Results

In contrast with previous years, our modifications incorporate calcium diffusion along with
voltage coupling and allow us to study how calcium handling between individual §-cells af-
fects the oscillations and synchronization within pancreatic islets, particularly in FBP. Using
these modifications, we simulate and describe how varying parameters and the heterogeneity
of cells change oscillations within a multicellular islet. See Section 3 for further techniques
used in the objectives of our studies.

4.1 Single ($-cell Model Results

After implementing the original DOM file from XPPAUT to Matlab, we compared the results
between the two to ensure that we converted the model accurately. We compared the oscil-
lations for all variables and confirmed that the oscillations were equivalent between the two

files. Figure 4.1 shows the voltage, calcium, and FBP oscillations for slow- and fast-bursting
[-cells produced by the Matlab version of the DOM.
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Figure 4.1: Single cell traces obtained from the revised DOM in Matlab for the (a) fast-
bursting and (b) slow-bursting (-cells in a 30 minute period.
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Figure 4.2: Voltage, calcium, and FBP traces for 3 x 3 x 3 islet containing hetergeneous
B-cells with voltage coupling = 0 pS and calcium diffusion = 0 ms™*.

4.2 Coupling Between Individual §-cells

We extend our studies further by observing how voltage coupling and calcium diffusion
effects the metabolic oscillations and synchronization of a 3 x 3 x 3 pancreatic islet. The
islet consists of only slow-bursting [-cells with initial conditions drawn independently from
a normal distribution with 20 percent standard deviation and plotted over the course of 30
minutes.



(a) Voltage Coupling Only (b) Voltage Coupling & Calcium Diffusion

Figure 4.3: Electric and metabolic oscillations with voltage coupling = 5 pS and calcium

diffusion = 25 ms™*
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Figure 4.4: Electric and metabolic oscillations with voltage coupling = 10 pS and calcium
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4.2.1 Voltage Coupling

We simulated islets with uniform, constant voltage coupling between nearest neighboring (-
cells and various levels of voltage coupling, including 0, 1, 5, 10, 50, 100, 500 picosiemens (pS).
In Figure 4.2, the absence of voltage coupling allows the cells to oscillate independently from
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Figure 4.5: Electric and metabolic oscillations with voltage coupling =50 pS and calcium
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(a) Voltage Coupling Only (b) Voltage Coupling & Calcium Diffusion
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Figure 4.6: Electric and metabolic oscillations with voltage coupling =100 pS and calcium

diffusion = % ms!

one another and no synchronization between the cells is observed. As the amount of voltage
coupling between the [-cells increases to 10 pS as shown in Figure 4.4(a), the oscillations
slowly begin to synchronize. Increasing the voltage coupling even further to 50 pS, Figure
4.5 shows that a high amount of voltage coupling between cells allows for the oscillations
to synchronize more rapidly than when the voltage coupling was lower. As the amount of
voltage coupling increases, the synchronization of the oscillations within the pancreatic islet
also increases. For islets that were uncoupled, and hence unsynchronized, a 3 x 3 x 3 islet
used about 26.27 minutes of computational time to simulate 30 min, whereas an islet that
was highly synchronized took about 1.42 minutes.

4.2.2 Calcium Diffusion

In addition to adding voltage coupling to the pancreatic islet model, calcium diffusion was
also incorporated into the code to observe if calcium handling had an effect on oscillations
between S-cells. For each of the voltage coupling parameters, we simulated various levels of
calcium diffusion as percentages of the voltages, including 0.9, 1, 1.1, and 10 percent. We
only show traces for 0.9 percent of voltage coupling because we did not notice any different
effects when the calcium diffusion value was higher than this. For simulations in which
calcium diffusion was 100 or 1000 percent of the voltage coupling parameter, the oscillations
did not change drastically, which suggests that calcium diffusion did not kill the oscillations
as mentioned by [8]. As seen in Figure 4.3, when calcium diffusion was added, the oscillations
become more synchronized in comparison to when there was only voltage coupling present.
This phenomenon can also be seen in Figure 4.4 where voltage coupling plays a larger role,
but calcium diffusion also synchronizes the oscillations further. When voltage coupling is
around 50 pS, as shown in Figure 4.5, there is not very much difference between Figure
4.5(a) when only voltage coupling present and Figure 4.5(b) when there is an addition of
calcium diffusion. As voltage increased higher than 50 pS, calcium diffusion did not affect
the synchronization of the oscillations as much as when the voltage coupling was lower.
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Figure 4.7: Voltage, calcium, and FBP traces for 3 x 3 x 3 islet containing two different slow

B-cells with voltage coupling = 0 pS and calcium diffusion = 0 ms™!.
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Figure 4.8: Electric and metabolic oscillations for varying Jgk experiment with voltage

coupling = 10 pS and calcium diffusion = 1 ms™!.

4.3 Varying Jgk in Slow [-cells

Beyond only varying the initial conditions of the S-cells, we also chose two different Jgk
values to simulate how two different types of slow cells interact with one another when
voltage coupling and calcium diffusion is introduced. Figure 4.7 represents the oscillations
when there is no voltage coupling or calcium diffusion involved. Unlike the varying initial
condition experiments, the two different kinds of cells begin at the same initial conditions, but
continue to oscillate at their own respective rhythms. When introducing voltage coupling,
represented in Figures 4.8 and 4.9, the electrical and metabolic oscillations synchronize over
time, but it is still possible to see that the traces are not completely overlapped. However,
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Figure 4.9: Electric and metabolic oscillations for varying Jgk experiment with voltage
coupling = 100 pS and calcium diffusion = 10 ms™!.

(a) Varying Initial Conditions (b) Varying Jgk Values

Volage

Figure 4.10: Plot showing scaled image data from a 2-D matrix containing synchronization
indices of islets with corresponding voltage coupling and calcium diffusion parameters for
varying (a) initial conditions and (b) Jgk values.

whenever calcium diffusion is introduced, the traces become synchronous in both cases.
The addition of voltage coupling when varying the Jgk values has the same effects as seen
when varying the initial conditions of the [-cells within an islet. When calcium diffusion is
introduced in every case of voltage coupling, the traces become more synchronous, unless
voltage coupling has already completely synched the traces.

4.4 Synchronization of Pancreatic Islets

To measure the synchronization of an islet as a whole, we performed the methods described
in Section 3 and represented the synchronization of a 3 x 3 x 3 multicellular islet with var-
ious voltage coupling and calcium diffusion parameters. In Figure 4.10, the yellow boxes
indicate high synchronization, whereas the blue boxes represent low synchronization. Figure
4.10(a) represents the synchronization plots for the varying initial conditions experiments,
whereas Figure 4.10(b) represents the synchronization plots for the two different Jgx value
experiments. As seen in both figures in the voltage synchronization plot, as voltage coupling
increased, regardless of the amount of calcium diffusion, the voltage oscillations became more
synchronized within the islet. When the voltage coupling was a low value, the synchroniza-
tion index of the voltage oscillations were close to zero, and therefore, not synchronized;
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however, when calcium diffusion increased, the synchronization index of the voltage oscilla-
tions slightly increased. In both experiments, the calcium synchronization plots remained
highly synchronized through all voltage coupling and calcium diffusion parameters with syn-
chronization index values ranging from around 0.95 to 1. In the FBP synchronization plot,
the same phenomenon was observed as in the voltage synchronization plot: as voltage cou-
pling increased, the synchronization of the islet also increased. As calcium diffusion increased
for low values of voltage coupling, the synchronization of the islet increased slightly. Within
the FBP oscillations, it is important to note that in the experiments where we incorported
two different slow cells within the islet, the range of the synchronization indices for the FBP
plots was between approximately 0.85 and 1. When voltage coupling was very high, such as
500 pS, the synchronization of the islet seems to be lower. This occurred because we only
simulated the oscillations for 30 minutes; when we run the simulations for longer times with
voltage coupling at 500 pS, the FBP oscillations eventually synchronize.

4.5 Computational Challenges

Although there were many successes during our research project, we also faced several com-
putational challenges while running simulations that we believe can be improved in the
future. In the 5 x 5 x 5 islet, there were specific cases where the cluster maya at the UMBC
High Performance Computing Facility (HPCF) ran out of memory, despite only saving the
variables V, Ca, and FBP, because there were too many time steps in the simulations. This
occurred in cases when the islet’s initial conditions were perturbed by 20 percent and when
the coupling was low, resulting in low synchronization within the islet. We also attempted
to run the pancreatic islet model containing 10 x 10 x 10 cells, but this also proved to be
too computationally challenging for the cluster maya as only the simulations that were com-
pletely synchronous finished running with results. As an example, for 3 x 3 x 3 islets with
varying initial conditions that were uncoupled, and hence unsynchronized, it took about
26.27 minutes to run completely, whereas an islet that was highly synchronized took about
1.42 minutes. For simulations that have many time steps, such as uncoupled 5 x 5 x 5 and
10 x 10 x 10 islets, these would not only take a long time to run, but also need a large amount
of memory in order to save the traces for voltage, calcium, and FBP.

5 Conclusion

Utilizing a revised version of the Dual Oscillator Model we were able to better understand
the effects of calcium diffusion between [-cells. The individual S-cells have gap junctions
which allow Ca?* to diffuse. By implementing Ca?* diffusion in the full islet model, we were
able to mainly focus on the role of calcium in the metabolic oscillations and synchronization.

The Dual Oscillator Model was created in a two-step process. The first step was the repli-
cation of the single cell model from XPPAUT to Matlab. Using the same initial conditions
and parameter values in the XPPAUT file, we implemented the DOM into Matlab. The
second step was creating the islet model. The full islet model was implemented by inserting
the single cell model into a larger multi-cellular system on a 3-D lattice. We used the built in
Matlab solver odelbs, which helped the model run faster by cutting down time in calculat-
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ing derivatives and updating Jacobians. By introducing coupling between the cells, the cells
started to develop synergy. In order to measure synchronization between cells in the islet,
we successfully built on a previous synchronization index and developed and implemented
an updated synchronization index. We were able to produce plots that show the effect of
calcium diffusion in a 3x3x3 islet with initial conditions drawn individually from a normal
distribution with 20 percent standard deviation.

Through multiple trials we came to a conclusion that calcium diffusion between S-cells
in a pancreatic islet does indeed synchronize metabolic oscillations when voltage coupling
is low. For example when voltage coupling is 1, 5, 10 pico siemens and calcium is applied,
the [-cells have a higher synchronization index. However when voltage coupling is high
(approximately 50 pS). The role of calcium in the synchronization of metabolic oscillations
is overshadowed by voltage coupling. Although there were slight variation in the plots, there
was no significant evidence that calcium diffusion plays a role when voltage coupling is high.
Ultimately, calcium diffusion between pancreatic [-cells plays a role in the synchronization
of metabolic oscillations.

Moving forward in this project it would be beneficial to use the same Dual Oscillator
Model with a larger Islet (i.e. 10x10x10). Creating a larger islet would make sure that
edge cells are not influencing the oscillations in any way. This would be done to produce
a more intricate and accurate cell arrangement. It would also be interesting to study the
synchronizations of islets in the pancreas with one another. This would allow future research
to observe the cause of the synchronizations of islets.
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