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Abstract

Alzheimer’s Disease is a neurological disorder chiefly present in the elderly that

affects functions of the brain such as memory and logic, eventually resulting in death.

There is no known cure to Alzheimer’s and evidence points to the possibility of a ge-

netic link. This study analyzes microarray data from patients with Alzheimer’s disease

and disease-free patients in order to evaluate and determine differential gene expression

patterns between the two groups. The statistical problem stemming from this data in-

volves many predictor variables with a small sample size, preventing the use of classical

statistical approaches from being effective. We turn to a novel three-step approach:

first, we screen the genes in order to keep only the genes marginally related to the

outcome (presence of Alzheimer’s); second, we implemented a sparse sufficient dimen-

sion reduction to retain only predictors relevant to the outcome; lastly, we perform

a hierarchical clustering method to group genes that exhibit mutual dependence. We

adapted this methodology from Adragni et. al and expand on their work by optimizing

the existing R code with parallel capabilities in order to enhance performance speed.

Thus, our results reflect both an analysis of the microarray data and a performance

study of the modified code.

1 Introduction

Alzheimer’s Disease (AD) is the most common form of dementia that affects memory,

thought, and behavior. It is an irreversible, progressive brain disorder that slowly destroys
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memory and thinking skills, and eventually the ability to carry out the simplest tasks.

Physiologically, AD progression occurs when irregular protein structures called plaques and

tangles destroy brain cells. These protein fragments originate in the hippocampus, where

the brain forms memories, and their migration throughout the rest of brain leads to the

destruction of other neurological capacities such as the ability to form logical thoughts, to

control behaviors, to speak, and to move [1].

There is no known cure to AD, and scientific research is actively underway for a cure. It

is suspected that there is a genetic link present in AD. Genetic association studies are one

promising area of research to help identify candidate genes or genome regions that contribute

to the disease by testing for a correlation between the disease status and the genetic variation.

Microarray data provides relative gene expressions of many genes. With this set of genes,

we aim to determine which genes are differentially expressed between patients of Alzheimer’s

and individuals who do not have the disease. Previous statistical analysis methods of gene

expressions data include logistic regression, Bayesian regression, and principal component

regression among others. Logistic regression may be the most obvious tool for predicting a

binary outcome, and it has been adapted to the microarray problem of many predictors with

small sample size. One such adaptation noted by [6] is penalized logistic regression, which

addresses multicollinearity and over-fitting. The paper notes that this method may require

additional modifications like bootstrapping to provide better prediction. Segal et al. [10]

describes a Bayesian regression method using singular value decomposition used to analyze

microarray data. This makes use of all of the genes instead of regressing on a subset of the

total genes. This would likely be computationally intensive and would have the problem

that variation of the regression factors would not necessarily be explained by the phenotypic

variation. Principal component regression is another popular technique that has been used

in the literature to obtain the so called eigen-genes, a set of genes that are assumed to be

important [9].

Regression methods that are considered to analyze gene expression data are often typical

for prospective analysis. However, gene expressions data are obtained in a retrospective

setup. It is accepted that for a case-control study, both prospective and retrospective analyses

yield the same result under a logistic regression setup [11].

In the present work, we consider the statistical analysis using a retrospective approach.

Under that setup, we consider the information provided by the genes, given the disease

status. This is often referred to as inverse regression. The methodology is in accord with the

sampling scheme of the gene expression data and has a built-in sparse sufficient dimension

reduction procedure to help identify the most important genes.

The new methodology features principal fitted components, an inverse regression method

for sufficient dimension reduction [4]. PFC differs from the well-known principal components
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analysis as in PC, the outcome of interest is not used in obtaining the relevant components

while PFC does involve the outcome and thus produces a more efficient reduction than a

typical PC.

Similar to PC, PFC produces a set of linear combinations of the initial predictors or genes

that best explain the response. As we expect a small subset of these genes to be relevant in

explaining the outcome, a large number of these genes will be inactive. Our methodology

involves an initial screening of the genes to retain those that are marginally related to the

outcome. Out of the selected set, a sparse sufficient reduction is obtained to yield a linear

combination of the most important sets of genes. The methodology is based on the p-value

guided hard-thresholding for sparse sufficient dimension of [2]. It also relates the variation

from the regression model with the phenotypic variation and includes a clustering that groups

gene expressions based on their interdependence; that is, genes that are dependent occur in

the same cluster, while genes that are independent of each other appear in different clusters.

This clustering emphasizes the dependence structure among the genes, which may help in

better predicting the status of AD. The structure of the grouping of genes is suspected but

not known. Therefore, the group-wise sufficient dimension reduction considered by [3] is

used to obtain a sparse estimation of a sufficient dimension reduction to better predict the

response.

We obtained microarray data that serves as our set of gene expressions. The microarray

data provided gives the expression state of many genes, and we aim to find a relationship

between a subset of those genes with AD [7].

The initial R codes for the p-value guided hard-thresholding for PFC [2] and for the

group-wise sufficient dimension [3] were provided by Dr. Adragni. We merged the two code

sources appropriately for the analysis of the AD data. As the dimensions of the data are

large, the implemented code tends to be sluggish. We implemented a parallel version of the

code on the High Performance Computing hardware to speed up its performance.

The remainder of this report is organized as follows. In Section 2 we introduce dimen-

sion reduction, our implementation of the principal component model, and the hierarchical

clustering used. Section 3 describes the genes we have found to be related to Alzheimer’s. In

Section 4 we describe the effectiveness of the parallelization of the existing R code. Section 5

concludes our paper by defending the relationships we determined between Alzheimer’s and

certain gene expressions.

2 Methodology

A proper regression analysis takes into account the sampling scheme that governed the data

acquisition. Let Y denote the outcome of interest, and X be a p-vector predictor. The data
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may be obtained in a forward or prospective manner as Y |X, in an inverse or retrospective

manner as X|Y , or jointly as (Y,X). In a prospective study, the outcome Y is observed

assuming that the predictors are fixed, not random. In a retrospective study, the covariates

are observed given the observed response.

Genetic data are obtained primarily in a retrospective manner. That is, subjects are

selected based on the disease status or phenotype. Given the phenotype of the subjects,

the gene expressions are observed. A natural statistical study of such data should be via an

inverse regression. It is known that when the outcome is a case-control, both retrospective

and prospective analyzes yield the same conclusion in terms of the propensity of the disease

or phenotype. However, our study shows that more information could be gathered when the

appropriate inverse regression method is applied.

We organize the microarray data in a vector of p predictors X = (X1, . . . , Xp)
T with a

corresponding response variable Y . The response is binary, where Y = 0 when Alzheimer’s

is absent and Y = 1 if present. Obviously, a typical microarray data set has a large value for

p. With a large p, we hope to reduce the dimensionality of X without losing any regression

information of Y contained in X. Reducing the dimensionality of X allows for a better

modeling and prediction of future observations, as well as to create a more viewable data.

The process of replacing X with a lower dimensional function R(X) is called dimension

reduction. When R(X) is obtained to satisfy one of the conditions (i) X|Y,R(X) ∼ X|R(X),

(ii) Y |X,R(X) ∼ Y |R(X), or (iii) Y X|R(X), it is called a sufficient dimension reduction

of X [4]. Consider the regression information contained in the genes given the disease, X|Y .

It can be partitioned into a part that depends on Y , and the other part that is independent

of Y . We will write

X|Y = ν(Y ) + ν(Y )⊥

We assume that ν(Y ) is a linear function of Y as ν(Y ) = ΦY , where Φ ∈ Rp. Moreover, we

assume that ν(Y )⊥ = µ+∆1/2ε where µ = E(X), ∆ ∈ Rp×p, and ε is p-dimensional standard

normal. Row i of Φ = (φ1, · · · , φp)T determines the importance of the associated gene Xi.

That is, φi = 0 implies Xi is not expressed for the disease, but φi 6= 0 is a plausibility of

association of the gene to the disease. Writing Φ = Γλ where λ = ‖Φ‖ and Γ = Φ/‖Φ‖
yields the model

Xy = µ+ Γλy + ∆1/2ε (2.1)

The term Γ is semi-orthogonal, and λ ∈ R. This model is a special case of Cook’s principal

fitted components (PFC) models [5]. The most important parameters in model (2.1) are

Γ and ∆. It is important to understand what information they provide in terms of the

Alzheimer’s data. Let η = ∆−1Γ. Under this model, ηTX ∈ R is a sufficient reduction of

X. This reduction is a linear combination of the p predictors. The magnitude of a row

of η provide information about the relevance of the corresponding gene. When there is no
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relationship between the gene and the disease, the row is close to zero. Thus, when there is

a relationship between the gene and the disease, the row is statistically different from zero.

Furthermore, the dimension p of the genes is large, and only a small subset of the genes are

relevant. Hence, a sparse estimation of Γ is needed to set any entry to zero if the gene is not

related to Alzheimer’s. We adapt the procedure of [2] to obtain the sparse estimate of Γ.

The covariance ∆ provides information about the dependence of the genes after removing

the disease information. We assume that there is a grouping structure of the genes, given the

disease. Genes within a group are correlated, while the groups are independent. However, the

grouping structure is unknown, but identifying this dependence would help better predict the

disease status. To discover this grouping structure, we adopt the group-wise PFC procedure

of [3]. The details follow.

2.1 Group-wise Sparse PFC

The sparse estimation of Γ is based on the so-called “p-value guided hard-thresolding” of

[2]. By ignoring the structure of ∆, model (2.1) can be expressed as p independent linear

regressions

Xi = µi + φiy + δiεi, i = 1, . . . , p (2.2)

This model is a univariate regression model for each gene Xi, i = 1, · · · , p. Gene Xi is

relevant in explaining Alzheimer’s if φi 6= 0. Now a simple t-test can be carried out for the

hypotheses

H0i : φi = 0 against Hai : φi 6= 0 (2.3)

The resulting p-values determine whether H0i is rejected. Let α be the significance level,

π = (π1, · · · , πp)T be the vector of p-values obtained from testing hypotheses (2.3), and let

1p be the p-vector one ones. A crude sparse estimate of Γ is obtained as

Γ̂α = J(π ≤ α1p) ◦ Γ̂ (2.4)

where Γ̂ is an estimator of Γ. The inequality is element-wise, and J represents the indicator

function. The operator ◦ stands for the Hadamard product of matrices. This screening

method is particularly useful because we can immediately remove predictors with corre-

sponding p-values greater than α, thus eliminating some of the irrelevant genes.

After the screening, we compute the F statistic for each of the predictors remaining.

Then, a grid of m significance levels between Fmin and Fmax is obtained. For each level of

significance, a prediction error is computed by cross-validation. The significance level Fj that

has the smallest prediction error is retained to be used to obtain the final sparse estimator

Γ̂αk
.
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PFC group-wise sufficient dimension reduction is then used on the set of q genes that are

obtained from the sparse estimation. The methodology involves partitioning the genes into

sets where genes in the same set are dependent while genes between sets are independent

of each other. We determine the grouping structure of the predictors with a hierarchical

agglomerative clustering. In order to cluster the genes, it is necessary to evaluate the close-

ness of the predictors. Given ∆, the correlation matrix R is obtained by R = D−1/2∆D−1/2

where D ∈ Rq×q is the matrix of diagonal elements of ∆. Then, the distance between any

two predictors, Xi, Xj, is determined by dij = 1− |Rij| where Rij = ρ(Xi, Xj|Y ) is the cor-

relation coefficient of the two predictors given Y . In complete linkage clustering two clusters

Ck and Cl are merged using the following metric

d(Ck, Cl) = max
Xi∈Ck,Xj∈Cl

dij.

Finally, since the clustering is a bottom-up approach, it starts with all predictors being their

own singleton cluster. From here, the two closest clusters are merged; this process is repeated

until all genes form a single cluster. Notice, that for each new clustering, a PFC model can

be fitted with a structured ∆ induced by the conditional independence of clusters. Assuming

that the true structure of ∆ is identified by one of the sets of clusters of predictors, we find

the structure by comparing the q models with respect to a prediction performance.

3 Results

To proceed with our analysis, we used microarray data that was processed from postmortem

human brain tissues donated for the Hisayama study. The RNA samples were prepared front

gray matter of the frontal cortex, temporal cortex, and hippocamus. Eighty eight samples

were taken, and among these samples, 26 cases were diagnosed with AD or an AD-like

disorder, while the remaining 62 samples were non AD. These high-quality RNA samples

were run through microarray analysis using the Affymetric Human Gene 1.0 ST platform.

Only the samples that passed this analysis were used, to ensure quality control. In total,

there were 79 samples that were used, with 32,312 genes analyzed. Of these 79 samples: 33

were from the frontal cortex, 15 AD; 29 taken from temporal cortex, 10 AD; and 17 taken

from the hippocampus, 7 AD. In our results we grouped samples by AD (32 samples) and

non-AD (47 samples).

The first process of the data analysis was a t-test based screening procedure. This gave us

5260 genes that significantly predicted AD. Of these 5260, we chose the 200 with the smallest

p-values to use in our sparse estimation. The sparse estimation then further reduced these

200 to a final selection of 49 genes that most significantly predict Alzheimer’s Disease. We

see in Figure 3.1 that prediction error is at a minimum at 49 predictors, confirming our
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Figure 3.1: Prediction error is minimized when using 49 predictors

sparse estimation method. After determining the final selection of genes, we performed

agglomerative hierarchical clustering to find the dependence structure of these genes. From

Figure 3.2, the minimum prediction error occurs at a set of 3 clusters. This set refers to a

grouping structure with the first 22 (of the 49) in the first group, the next 22 in the second

group and the final 5 in a third group. The gene groupings can be seen in Table 3.1.
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Table 3.1: Grouping of Genes

Group 1

8028380 8062844 8096663 7937275 7985757 8030448 8075637

8135172 8178561 8050060 7950284 8098576 8170891 7960689

7963235 8062880 8081620 8176230 7903507 7982564 7974895

8051773

Group 2

8039378 7905817 8028791 8002041 8037079 8015835 7992447

8036252 8180371 7902435 8041225 8123739 8014794 7899841

7931479 8062796 8091452 7908867 7979663 8026155 7981566

7997352

Group 3 7894596 7893808 7894185 8024436 8121130

Figure 3.2: Prediction error is minimized when using 3 clusters

4 Computational Performance on HPFC

This section discusses the timing and speedup of our simulations on maya 2013. Maya 2013

is made up of 72 nodes, 67 of which are compute nodes, two are develop nodes, one is a

user node, and the last is a management node. Each compute node has room for 64GB of

memory [8]. For the sake of this study, we worked on up to 16 compute nodes and up to 16

processes per node, making it possible to calculate up to 256 processes.

To parallelize our code, we used a SLURM submission script that uses srun to begin. In

the SLURM script, the number of nodes used is determined via --nodes and the number of
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Table 4.1: Timings and observed speedup for the parallel implementation of the code by the

number of processes used with 16 processes per node, with the exception of p = 1 which uses

1 process per node.

p = 1 p = 16 p = 32 p = 64 p = 128 p = 256

Average Time 5.39 4.42 4.59 4.58 4.57 4.53

Observed speedup 1.00 1.22 1.17 1.18 1.18 1.19

tasks per node is specified with --ntasks-per-node.

In order to compare the timings of our serial and parallelized code, we conducted 100

simulations of the data set to time our parallelized function named spfc pvg. For each

simulated data set, we used various levels of parallelization to time the function: one node

with one process, and one, two, four, eight, and sixteen nodes, all with sixteen processes.

The simulated dataset for each simulation run X was generated by the following process

using p = 20000 predictors and n = 200 observations. First a response vector, Y , was

obtained from a binomial distribution with n = 200 observations, 1 trial per observation and

probability of success 0.3. Next, parameter Γ was assigned as a vector of length p = 20000

with the first k = 20 entries as either 1 (rows 1 to 10) or -1 (rows 11 to 20) and the other

entries being 0. The noise parameter ε was a matrix of size 200 x 20000 with entries drawn

from a normal distribution with mean µ = 0 and variance σ2 = 0.5. The dataset X was then

computed by the following formula:

X = Y ΓT + ε

Table 4.1 displays the results of our performance study. The first row shows the average

observed wall clock time for each of the processes in minutes. This documents the amount

of time it took, in total, for the function to run. The second row displays the speedup,

calculated by Sp = T1
Tp

. Comparing adjacent columns in Table 3.1 shows that speed-up only

occurred between serial and our first parallel implementation p = 16. For greater values of p,

we did not see consistent speedup as we increased the processes. These results are visualized

in Figures 4.1 and 4.2. Overall, we can conclude that parallelization as a whole did decrease

the time it took our code to run.
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Figure 4.1: Parallel execution is faster than serial implementation

Figure 4.2: Parallelization allows for speedup of spfc pvg
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5 Conclusions

The results of our time study show that the use of parallel computing techniques decreases

the runtime of our program. However, this decrease is almost negligible. Running our

program on 1 node with 16 processes per node produced the fastest runtime while running

the program serially on 1 node with 1 process per node produced the slowest time. Yet, the

1 node 16 process per node runtime was only faster than the serial run by a factor of 1.25.

With 2 nodes and 16 processes per node the program was faster than the serial run but the

slowest of all parallel runs. From 2 nodes to 16 nodes, the program’s runtime increases in a

linear fashion. There are a few possible explanations for the phenomena we saw. Either the

size of the data set or the extra processes it takes to make the program parallel and split the

data up into separate nodes, running our program on more than one node does not further

decrease the runtime.
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