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Abstract

The second most expensive part of the 2010 Decennial Census was Address Canvass-

ing (AdCan), a field operation to prepare the Master Address File (MAF) for census

day. The MAF is a database of households in the United States maintained by the

US Census Bureau and is used as a basis for the census and household surveys that

it conducts. Motivated by the importance of the MAF and the cost of a large scale

AdCan operation, there is an interest to use statistical methodologies to explain MAF

errors discovered during canvassing. Ideally, statistical models could be used to predict

future errors and assist with updating of the MAF. A major challenge in constructing

a MAF error model is that important predictor variables associated with MAF errors

are not known. Some recent works at Census Bureau have carried out variable selec-

tion using a collection of data sources, treating counts of errors per census block as

the outcome. It may be possible to use dimension reduction methodologies to obtain

count models with much lower dimensional predictors. Adragni et al. [4] proposed a

methodology called Minimum Average Deviance Estimation (MADE), which is based

on the concept of local regression and embeds sufficient dimension reduction of the

predictors. MADE assumes a forward regression with the response variable following

an exponential family distribution, such as Poisson for counts.

The goal of this project is to evaluate the performance of MADE on large data

sets using simulations. We parallelized several snippets of the MADE source code to

improve its performance and compare the speed up of these parallelized snippets with

their serial alternatives. Simulated data sets with increasing dimensions are used to

evaluate the run time. A limited stress test is performed to determine the extent of

problem size that MADE can handle on maya, a high performance computing cluster
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at UMBC. These tests allow us to evaluate the capabilities of MADE to scale to large

data sets, such as the AdCan modeling problem.
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1 Introduction

The United States Census Bureau is an agency of the United States Department of Commerce

that collects information concerning the population of the United States of America, Puerto

Rico, and associated territories; its mission includes conducting a decennial census of the

population and the American Community Survey. The Census Bureau maintains the Master

Address File (MAF) to help support census and survey operations. The MAF is a database

that contains an accurate, up to date inventory of all known living quarters in the United

States, Puerto Rico and associated territories. The content of the MAF includes address

information, Census geographic location codes, as well as source and history data1 2.

The content of the MAF is continuously updated to reflect the evolving landscape of

living quarters. A major source of updates is the Delivery Sequence File provided by the

United States Postal Service. In preparation for the 2010 Census, the Bureau conducted a

nationwide Address Canvassing (AdCan) operation to ensure accuracy of the MAF. Updates

to the MAF included addition of new habitable addresses (“adds”) and removal of addresses

which were no longer habitable (“deletes”). There has been interest at the Bureau to develop

statistical models for the add and delete outcomes using the wealth of data obtained from

the 2010 AdCan operation. Ideally, if very accurate predictive models were available, they

might be used to help reduce the amount of in-field canvassing needed in future operations.

Young et al. [13] and Raim and Gargano [14] study the prediction problem for counts

of adds and deletes at the census block level. They use count regression models based

on the zero-inflated Poisson and zero-inflated negative binomial distributions. A challenge

encountered in both works is selection of covariates for the model. A number of data sources

may be considered for this purpose, based on economy, geography, demographics, and so on.

1http://www2.census.gov/geo/pdfs/education/Uhl_CAS_2011.pdf
2https://www.census.gov/did/www/snacc/publications/MAF-Description.pdf
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Within each data source, variables must be selected and coded into predictors. Interactions

between predictors might also be important in excplaining the outcomes. In both of these

previous works, the set of predictors selected for the model is fairly large, with some providing

only a small contribution to the model. It would be desirable to reduce the predictor through

formal dimension reduction methods if only a few dimensions contain most of the predictive

power.

Adragni et al. [4] devise a general methodology called Minimum Average Deviance Esti-

mation (MADE). The methodology is built upon the concept of sufficient dimension reduc-

tion while taking into account the distribution of the outcome. A reduction of the covariates

is obtained using a local regression approach that helps capture possible linear and nonlinear

trends. The reduction may be used to predict future outcomes.

MADE is developed for a class of distributions referred to as exponential family dis-

tributions. This class of distributions includes Gaussian, gamma, exponential, binomial,

and Poisson distributions. MADE is reminiscent of Minimum Average Variance Estima-

tion (MAVE) [2], which was designed for Gaussian outcomes. As with MAVE, MADE is

also a kernel-based sufficient dimension reduction based on the estimation of the gradient of

the conditional expectation E(Y |X) by means of a local regression, where Y represents the

response and X is the predictor.

The existing methodologies for sufficient dimension reduction can be grouped into three

classes: moment-based, likelihood-based, and kernel-based methods. Examples of the moment-

based sufficient dimension reduction include sliced inverse regression [5], sliced average vari-

ance estimation [6], inverse regression estimation [7], and directional regression [8]. Examples

of the likelihood-based sufficient dimension reduction include principal fitted components [9]

and likelihood acquired directions [10].

In this technical report, we focus on performance evaluation of MADE when the outcome

is from a Poisson distribution. We evaluate the performance of a previously developed MADE

R code by [4] on high performance computing hardware, and extend it by implementing

parallel computing. Parallelization of MADE enables it to process larger data sets and

decreases its run time.

The remainder of this report is organized as follows. In Section 2, we elaborate on the

method and the statistical and computing tools that were used. In Section 3, we will discuss

the graphs and results that we were able to attain from running the various simulations in

serial and parallel. Finally, we provide some conclusions and recommendations for future

work in Section 4.
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2 Methodology

We assume that Y ∈ R is a response, X is a p-dimensional predictor, and Y |X has a Poisson

distribution with the density function

f(y | µ(x)) =
µ(x)ye−µ(x)

y!
. (2.1)

In the exponential family framework, the canonical parameter θ(X) is related to the mean

function µ(X) = E(Y |X) through the link µ(X) = exp{θ(X)} so that (2.1) becomes

f(y | θ(x)) = exp{yθ(x)− exp[θ(x)]} 1

y!
. (2.2)

Let (Yi, Xi), i = 1, ..., n represent an independent sample from the distribution of (Y,X) so

that Yi|Xi has the distribution (2.2). We do not assume that θ(X) = βTX with a fixed β

globally for all X. Instead, we assume that θ(X) is a continuous and smooth function of X,

so that it can be approximated at any point X by the first order linear expansion

θ(Xi) ≈ θ(X) + [∇θ(X)]T (Xi −X) (2.3)

for any Xi in the neighborhood of X. Let αX = θ(X) and ΓX = ∇θ(X). The term ΓX

retains the core information that connects Yi to Xi locally at X. As X varies in its sample

space, the set {ΓX} describes a u-dimensional subspace S in Rp with u ≤ min(n, p). Let

B ∈ Rp×d with BTB = I be a basis of S so that ΓX = Bγ for some γ = γ(X) ∈ Ru×1. Then,

we have

θ(Xi) = θ(X) + γTXB
T (Xi −X) + e(X,Xi), (2.4)

where e(X,Xi) is assumed negligible. Clearly, if B is known, then θ(Xi) = θ(BTXi). Con-

sequently, the distribution of Y | X with probability density function provided by (2.2) is

the same as the distribution of Y | BTX. This implies that BTX is a sufficient dimension

reduction of X according to the definition of Cook (2007).

Using (2.2) and (2.4), the local log-likelihood for a given X ∈ Rp in the Poisson setting

can now be written as

LX(α, γ, β) =
n∑
i=1

wi(B
TX)[yi(α+ γTBT (Xi−X))− exp{α+ γTBT (Xi−X)}+ log(f0(yi))].

(2.5)

Assuming that αj and γj are known, minimizing the deviance as a function of B is equivalent

to maximizing the objective function

Q(B) =
n∑
j=1

n∑
i=1

wi(B
TXj)[yi(αj + γTj B

T (Xi −Xj))− exp{αj + γTj B
T (Xi −Xj)}]. (2.6)
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While each sample point Xj has its own regression coefficients αj and γj, they all share

a common dimension reduction kernel matrix B. For a given B, the kernel weights are

computed as

wi(B
TX) =

KH(BT (Xi −X))∑n
j=1KH(BT (Xj −X))

, (2.7)

where KH(u) = |H|−1K(H−1/2u) and K(u) denotes one of the usual multidimensional kernel

density functions and the bandwidth H is a d×d symmetric and positive definite matrix [1].

These weights w1(B
TX), ..., wn(BTX) sum to 1. We use a Gaussian kernel mostly in this

work, although the particular choice of kernel density is not required for the method.

The parameters of interest are αj, γj, j = 1, · · · , n, and B. The parameter spaces

are respectively R,Rd, and the Stiefel manifold S(d, p) which is the set of d-dimensional

orthonormal spaces in Rp. These parameters are to be estimated. MADE implements an

algorithm that alternates between iterations of the Newton-Raphson method for αj and γj

and the Stiefel manifold optimization method for B until the required tolerance level is

reached. Following is the full algorithm.

1. Provide an initial B and obtain the weights wij = wi(B
TXj)

2. Do until convergence

(a) Fix B and estimate αj and γj for j = 1, ..., n using Newton-Raphson

(b) Fix αj and γj and the weights wij for i, j = 1, ..., n and estimate B using the

Stiefel manifold optimization

(c) Update the weights wij = wi(B
TXj)

We consider the optimal choice of bandwidth for Gaussian kernel to be H = hI with h =

n−1/(d+4), although that choice may not be optimal for count data. The choice of h is yet to

be further investigated. A cross-validation might be helpful selecting its value.

3 Performance Evaluation

We provide the description and several performance assessments of the parallel implementa-

tion of our codes on maya. We have looked at the distribution of run times across the different

functions as well as the performance of the code under different hardware configurations, and

also evaluated the performance with increasingly large datasets.
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3.1 Implementing Parallel Functions in R

The original R codes for the estimation of the parameters αj, γj, and B were provided

by Adragni et al. [4]. The codes consist of several major functions; for example, objfun

evaluates the objective function Q given current values of the parameters; grad computes

the gradient of Q; kern.weights computes the n× n kernel weights matrix; solve.xi.one

calculates the values of αj and γj in the first step of each iteration using the Newton-

Raphson method; stiefel solves for B on Stiefel manifold. A single iteration of the MADE

optimization algorithm requires one or more calls to each of these functions. In several places,

independent calculations are carried out one after another in a serial manner. For example,

the n weights for a given B are calculated one at a time. In a parallel processing framework,

these calculations can be distributed to a number of processes and carried out simultaneously.

This has the potential to greatly reduce the computing time for large problems.

We proceeded to implement the initial R codes in parallel using the snow package on

the cluster maya. Our efforts to parallelize MADE were concentrated on the four functions:

objfun, grad, solve.xi.one, and kern.weights. The package snow is simple to use

and contains parallel counterparts of apply-type functions which are available in R. The

cluster maya is a 240-node distributed-memory cluster with high performance InfiniBand

interconnect. It is hosted at the UMBC High Performance Computing Facility (HPCF),

the community-based, interdisciplinary core facility for scientific computing and research on

parallel algorithms at UMBC.

The function objfun is easy enough to parallelize as it works by calculating the value

of a function for n different input values. The function grad is similarly easy to parallelize,

except for the fact that the for loop, which we are replacing with a parallel sapply function,

can only apply one function in parallel. The sapply function is good at doing one specific

task, like calling a single function many times, while a for loop can do many different task

within the loop many times. While the for loop may sound better since it can run different

task, it fails because it is more difficult to implement in parallel. The same is true for the

kern.weights function. Lastly, solve.xi.one is a little more complicated as it is called

inside of a loop and does not itself contain any loops, so to get around that we created

another function which is parallelized and itself calls solve.xi.one.call.

As an example of parallelizing a snippet of the MADE code, we look at the objfun

function. This portion of the code calculates the value of a function for n different input

values. Therefore, parallelizing this function means calculating the function value for several

n at the same time, reducing the total run time.

The serial objfun uses a for loop to do more than one task per iteration. To work around

this, it is possible to create a new function which has the same arguments found in the serial

objfun’s for loop and to then have sapply call the new function we just created. Only
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then will sapply work because it is technically doing only one task; but in reality, sapply

is calling a function, which does many tasks, multiple times.

The following is an example of the parallelization of the objective function. The original

version of the objective function was written as

objfun <- function(B0){

ff <- 0

for (j in 1:n) {

X.j <- matrix(X[j,], n, p, byrow = TRUE)

theta.j <- a[j] + (X - X.j) %*% B0 %*% b[j,]

ff <- ff + sum(We[,j] * (y*theta.j - exp(theta.j)))

}

return(-ff)

}

Now using sapply, the parallelized version becomes

objfun <- function(B0, Parallel = FALSE){

ff <- 0

if(Parallel){

x.mat.vec <- apply(x, 1, matrix, n, p, byrow = TRUE)

j <- seq(1, n)

ff.vec <- sapply(j, call.objfun, B0, disp)

ff <- sum(ff.vec)

return(-ff)

}else{

for (j in 1:n) {

X.j <- matrix(X[j,], n, p, byrow = TRUE)

theta.j <- a[j] + (X - X.j) %*% B0 %*% b[j,]

ff <- ff + sum(We[,j] * (y*theta.j - exp(theta.j)))

}

return(-ff)

}

}

And the function call.objfun in the objective function is coded as

call.objfun <- function(j, B0)
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{

X.j <- matrix(X[j,], n, p, byrow = TRUE)

theta.j <- a[j] + (X - X.j) %*% B0 %*% b[j,]

ff.obv <- sum(We[,j] * (y*theta.j - exp(theta.j)))

return (ff.obv)

}

Finally, we change sapply to parSapply to parallelize the code.

ff.vec <- parSapply(cluster, j, call.objfun, B0)

where cluster is a snow cluster object. These same concepts are used, in variation, to

parallelize the other three functions.

3.2 Distribution of Time in MADE

We generated typical data on which we ran the algorithm. The pie chart in Figure 3.1

displays the percentage of time spent in each of the main functions within MADE. The

updateB function took by far the most amount of time to run. The solve.xi.one function

was the second most time consuming process within MADE. This is consistent with what

was initially expected from how the MADE method was created. It should be noted that

any of the snippets of code measured which were quick enough to have had an elapsed time

near zero were omitted.

The function updateB consists almost solely of the stiefel.optim function. Figure 3.2

displays the percentage of time spent in each snippet of the stiefel.optim function. From

here we see that the snippets which take the most time are the ones relating to the opti-

mization itself as well as the last step of the algorithm.

3.3 MADE in Parallel

Figure 3.3 displays the run-time of the MADE function given the same data set for different

combinations of nodes and processes per node. The point corresponding to one node and

one process per node represents the serial version of the code.

It is evident that parallelizing the objfun, grad, solve.xi.one, and kern.weights

functions within MADE provides a faster run-time than the serial version if the optimal

combination of nodes and processes per node is utilized. However, the optimal number of

nodes and processes per node was not what was expected. While two nodes performed better

initially, the most optimal combination of nodes and processes per node was found to be one

node and sixteen processes per node for the data set tested.
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Figure 3.1: Distribution Run Time per Function

Figure 3.2: Distribution Run Time per Function

3.4 Upper Bound Dimension of the Dataset

Figure 3.4 demonstrates the run time for MADE using a data matrix of n = 5000 observations

for p = 100 predictors and various combinations of nodes and processes per node. In terms

of memory, datasets of dimension n = 10000 × p = 100 were too large for the cluster maya

9



Figure 3.3: Run Time of MADE Functions.

to handle and the job would be automatically killed. It therefore appears that the upper

bound of the data set is somewhere between 5000× 100 and 10000× 100.

Using the optimal number of nodes and processes per node (Section 3.2), one node and

sixteen processes per node, a data set of 5000 × 100 in MADE was able to complete in

approximately 13 hours.

4 Conclusions

This work analyzed the performance of an implementation of MADE and considered its

ability to scale to large problems. We analyzed the run time of different components of the

code, so that efforts to improve performance can focus on the most time consuming parts. As

expected, the updateB function took by far the longest to run, followed by the solve.xi.one

function. Within the updateB function, the two snippets which took the most time related

to the optimization loop and the last step of the Stiefel optimization algorithm.
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Figure 3.4: Performance for High Dimensional Data.

We also studied the combination of number of nodes and processes per node needed in

order to find the optimal run time for MADE. It was determined that the optimal combina-

tion was one node and sixteen processes per node. This contradicts our initial expectation

that the code would run more quickly using multiple nodes. A possible explanation for this

could be that there is a great deal of time consuming node-to-node communication when

utilizing multiple nodes, especailly for large data sets. Further examination of MADE and

more simulations are required to analyze this phenomenon.

Finally, we attempted to determine an upper bound for the dimensionality of the data

sets that our code could handle. By examining different sizes of data sets, a range for the

upper bound was determined to be between a dataset of size 5000 × 100 and 10000 × 100.

To run the code for data sets of higher dimensionality, the data set of predictors would need

to be split and the code run several times.

While these results provide insight into the MADE implementation and its run time,

there is still plenty of work left to be done. Ideally, we would like to compare the run times
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of MADE with its predecessor MAVE. It may also be of interest to examine MADE further

and determine if it is possible to alter the code such that the run time decreases when

utilizing multiple nodes. One possible method for alteration could be to write the entire

function or snippets of the code in the C programming language.
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