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Abstract

Parallelization of code, using multiple cores/threads, and heterogeneous computing, using the CPU with other devices,
has come to the forefront of computing as methods to reduce the execution time of computationally demanding algorithms.
For our project, we test various hardware setups on the maya cluster at UMBC, which include multiple nodes and GPUs,
by solving the Poisson equation using the conjugate gradient method. To explore these different setups, we made use of
both industry benchmarks and our own code, which we design using the compilers native to each device and API. We find
significant gains both in using a heterogeneous model and after parallelizing our code.

1 Introduction

The University of Maryland, Baltimore County (UMBC) High Performance Computing Facility (www.umbc.edu/hpcf) houses
the 240-node cluster maya capable of performing computationally intensive tasks using state of the art equipment. The maya
cluster contains an array of cutting edge devices each of which requires a performance evaluation to explore optimal setups
and greatest total usage of hardware. Properly identifying the best setup will both shed light on the complex inner workings
of the cluster as well as improve the performance available to the diverse range of researchers who rely on it.

To test the maya cluster, we focused on using the CG (Conjugate Gradient) method, which solves a large, sparse system of
linear equations. We developed our own code for a matrix-free implementation of the CG method, and tested it by solving the
Poisson test problem in two dimensions. In our tests we used both homogenous and heterogeneous computing models. For our
homogenous tests used MPI (Message Passing Interface) for communication between nodes, testing both blocking and non-
blocking communication, and a variety of different total node and total process combinations. Our heterogenous tests used
the available K20 NVIDIA GPUs on the cluster, with an identical implementation of our CG test problem written in CUDA.
We tested both serial runs of the GPUs and parallel runs of the GPU using MPI for communication from node-to-node.

Although our test problem is comprehensive, there is a clear need for a benchmark to provide more thorough, reliable
results. A benchmark is a portable program that runs a specified task on a system and returns a meaningful metric of the
system’s performance that can be compared to existing results from other systems. We chose the Sandia High Performance
Conjugate Gradient (HPCG) benchmark to test the maya cluster, which also uses the CG method to solve the Poisson
equation, here in three dimensions and with preconditioning.

The Sandia HPCG benchmark (http://software.sandia.gov/hpcg/) was created by Sandia National Laboratories to
complement the Top 500 benchmark (www.top500.org), which is now 35 years old. Like the Top 500 benchmark, the HPCG
benchmark provides a stable, well-tested framework for benchmarking that ensures reliable results. Also, being a more recent
bechmark, it was also made to better fit current high performance computing needs [2]. The benchmark publishes a list of
the results that other clusters have attained after running the benchmark. The HPCG benchmark returns a measurement in
GFLOP/s (Giga FLoating Point OPerations per second), a floating point operation being any arithmetic operation between
stored decimal numbers. Thus, the total number of GFLOP/s can be thought of as the total computational throughput
of the system, and an increase in total GFLOP/s is analagous to an increase in total power of the system. Running the
benchmark will give us results that can be compared against other similarly equipped clusters, giving a good indication of
how much more the cluster can be improved and a useful metric of maya’s total potential in the future.

The HPCG benchmark allows for a variety of different setups that can affect runtime, including the multi-threading
library OpenMP (which our code for the Poisson test problem does not include), different compiler options, and MPI for
multi-node setups. Our tests used a variety of different total process and thread counts.

Section 2 of this report details the system architecture and related hardware, including the node architecture in Section 2.1
and GPU architecture in Section 2.2. Section 3 outlines the test problems used for testing including our own Poisson test
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problem, described in Section 3.1, and the Sandia HPCG benchmark, described in Section 3.2. Section 4 describes the
hardware and software setups we used as well as how they were implemented. We describe our implementation for a node-
only test in Section 4.1, our implementation of a serial GPU test in Section 4.2, and an implementation of a parallel GPU
test in Section 4.3, which all used our Poisson test problem to run. In Section 4.4, we detail our approach to running the
HPCG benchmark. Section 5 reports the resuls we observed with Section 5.1 detailing and explaining our resuls for our node
only implementation of our Poisson test problem, Section 5.2 detailing our results for our serial GPU implementation of our
Poisson test problem, Section 5.3 detailing our results for our parallel GPU implementation of our Poisson test problem, and
Section 5.4 detailing our results from the HPCG benchmark. In Section 6, we draw our conclusions and explain the possible
future experiments/applications related to the tests we performed.

2 System Specification

2.1 Node Architecture

The 72 nodes of the newest portion of maya are set up as 67 compute nodes, 2 develop nodes, 1 user node, and 1 management
node. Figure 2.1 shows a schematic of one of the compute nodes that is made up of two eight-core 2.6 GHz Intel E5-2650v2
Ivy Bridge CPUs. Each core of each CPU has dedicated 32 kB of L1 and 256 kB of L2 cache. All eight cores of each CPU
share 20 MB of L3 cache. The 64 GB of the node’s memory is formed by eight 8 GB DIMMs, four of which are connected
to each CPU. The two CPUs of a node are connected to each other by two QPI (quick path interconnect) links. The nodes
in maya 2013 are connected by a quad-data rate InfiniBand interconnect.

An individual node can compile and run native C programs. However, a program can also be run in parallel across
multiple nodes using MPI for any data distribution between explicit processes. However, it is worth noting that parallelizing
an algorithm or program is not always beneficial. While it can greatly reduce the computation time of a more computationally
intense program, based on how parallelizable the algorithm is, but communicating data can also be expensive. Therefore,
there is a trade-of between calculation time and communication time, and parallel computing is most beneficial for large
problems.

To submit a parallel job to the cluster, the user must request a specific number of nodes as well as how many processes
should be spawned on each individual node. The number of total jobs that can be spawned on a node is dictated by the total
number of cores available, which in the case of a maya node is 16. More information on submitting jobs to the maya cluster
can be found on the UMBC HPCF website.

2.2 GPU Architecture

The NVIDIA K20 GPU (Graphics Processing Unit) is built upon a massively parallel architecture and can be used to
speed up identical calculations on independent pieces of data. This is accomplished by taking the calculations and placing
them onto the K20’s 2,496 CUDA cores and running every calculation in parallel, giving the GPU a theoretical maximum
performance of 1.2 TFLOP/s (FLOPS = FLoating OPerations per Second). The CUDA cores within the K20 are arranged
into blocks of 192 cores, known as streaming multiprocessors (SM). While every SM has its own L1 cache, the majority of the
GPU’s memory is located in a local 5 GB bank that is shared amongst all SMs. The SMs operate upon the single-instruction,
multiple-data (SIMD) paradigm, as every core executes the same instruction but on an seperate, independent piece of data
in memory. Figure 2.2 illustrates a high-level design of the K20 architecture.

On the software layer, a set of instructions for the GPU is written as a kernel in the CUDA language. A kernel is a single
function that is to be run on the GPU that needs to have specified both the number of threads/cores and blocks it is going
to be run on. In software, a block is simply a data structure that can be queued for execution on the GPU with a certain
number of threads for execution specified. Kernels are run asynchronously, which means that it will run in the background
while the calling program continues execution. This can be problematic if the calling function relies on a kernel to return
values for continued execution. Once a kernel has been created and sent to the GPU, each streaming multiprocessor will
execute the kernel on data in global memory. To operate on different pieces of data, each core has an id number that can
split the data up into different sections.

As shown in Figure 2.2 the GPU is connected to the CPU through a PCI Express bus. For the GPU to run a CUDA
kernel, it must first be passed both the instructions and the data from the CPU. The latter process is often expensive and,
as the amount of data gets larger, the amount of time devoted to communication can become a limiting factor in the runtime
of a program.
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Figure 2.1: Illustration of node architecture with dual sockets shown as well as physical cores within each socket, on-chip
cache, and respective memory channels.

Figure 2.2: NVIDIA K20 GPU architecture with streaming multiprocessors, compute cores, and cache shown.

2.3 Software Specification

To effectively test the hardwares listed we rely on a variety of different languages and associated compilers. For all of the
parallel implementations, including the HPCG benchmark, the MVAPICH2 1.9 MPI (Message Passing Interface) C/C++
library implementation is used to communicate data from node to node. To compile MPI code, the mpi.h header file must
be included and an appropriate compiler that can recognize MPI functions calls must be used. We used mpicc for our code,
which is simply the Intel compiler version 2013_sp1.1 with an MPI wrapper, to compile all of our MPI related code. For
our CUDA code, we used the nvcc compiler to compile, and compiled with the mpicc for any files with MPI function calls.
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3 Test Problems

3.1 Poisson Test Problem

The Poisson equation is an elliptic partial differential equation. Our team will be analyzing this equation with homogeneous
Dirichlet boundary conditions

−∆u = f in Ω, (3.1)

u = 0 on ∂Ω, (3.2)

in the two-dimensional domain Ω with boundary ∂Ω and with the Laplace operator being defined as ∆u = ∂2u
∂x1

2
+ ∂2u

∂x2
2
.

This problem is discretized by the finite difference methods using the conventional five-point stencil, which results in a
system of linear equations. Our team will implement the conjugate gradient (CG) method to solve this linear system using
a matrix-free implementation of the algorithm that computes the result of the matrix-vector product of the system matrix
with an input vector.

For each dimension, we use N + 2 mesh points and construct and uniform mesh spacing h = 1/(N + 1). The mesh points
are defined as (xk1

, xk2
) ∈ Ω̄ ∈ R2 with xki = hki, ki = 0, 1, ..., N,N + 1 in each dimension i = 1, 2. The approximations to

the the solution at the mesh points are denoted by uk1,k2
≈ u(xk1

, xk2
). Consequently, the second-order derivatives in the

Laplace operator at the N2 interior mesh points are denoted by

∂2u(xk1 , xk2)

∂x21
+
∂2u(xk1 , xk2)

∂x22
≈ uk1−1,k2 − 2uk1,k2 + uk1+1,k2

h2
+
uk1,k2−1 − 2uk1,k2 + uk1,k2+1

h2
(3.3)

for ki = 1, ..., N , i = 1, 2 as the approximations at the interior points. These approximations combined with the boundary
condition produces a system of N2 linear equations for the finite difference approximations at the N2 interior mesh points.

When we collect the N2 approximations uk1,k2
in a vector u ∈ RN2

using the natural order of the mesh points, the
problem can be stated as a system of linear equations in the form

Au = b (3.4)

with the system matrix defined as A ∈ RN2×N2

and a right-hand side vector b ∈ RN2

. Concretely we have

A =


S T
T S T

. . .
. . .

. . .

T S T
T S

 ∈ RN
2×N2

(3.5)

with a tri-diagonal matrix S = tridiag(−1, 4,−1) ∈ RN×N for the diagonal blocks of A and T = −I ∈ RN×N , which denotes
the negative identity matrix for the off diagonal blocks of A. The matrix A is known to be symmetric positive definite and
thus the conjugate gradient method is guaranteed to converge for this problem.

We consider the elliptic problem (3.2) on the unit square with right-hand side function

f(x1, x2) = (−2π2)
(

cos(2πx1) sin2(πx2) + sin2(πx1) cos(2πx2)
)
, (3.6)

for which the solution u(x1, x2) = sin2(πx1) sin2(πx2) is known. On a mesh with 33 × 33 points and mesh spacing h =
1/32 = 0.03125, the numerical solution uh(x1, x2) can be plotted vs. (x1, x2) as a mesh plot as in Figure 3.1 (a). The shape
of the solution clearly agrees with the true solution of the problem. At each mesh point, an error is incurred compared to the
true solution u(x1, x2). A mesh plot of the error u− uh vs. (x1, x2) is plotted in Figure 3.1 (b). We see that the maximum
error occurs at the center of the domain of size about 3.2e–3, which compares well to the order of magnitude h2 ≈ 0.98e–3
of the theoretically predicted error.

Table 3.1 lists the mesh resolution N of the N ×N mesh, the number of degrees of freedom N2 (DOF; i.e., the dimension
of the linear system), the norm of the finite difference error ‖u− uh‖ ≡ ‖u− uh‖L∞(Ω)

, the ratio of consecutive errors
‖u− u2h‖/‖u− uh‖ , the number of conjugate gradient iterations #iter. In nearly all cases, the norms of the finite difference
errors in Table 3.1 decrease by a factor of about 4 each time that the mesh is refined by a factor 2. This confirms that the
finite difference method is second-order convergent, as predicted by the numerical theory for the finite difference method.
The fact that this convergence order is attained also confirms that the tolerance of the iterative linear solver is tight enough
to ensure a sufficiently accurate solution of the linear system.
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(a) Numerical solution uh (b) Error u− uh

Figure 3.1: Poisson Test Problem: Mesh plots of (a) the numerical solution uh vs. (x1, x2) and (b) the error u − uh
vs. (x1, x2).

Table 3.1: Poisson Test Problem: Convergence study.

N DOF ‖u− uh‖ Ratio #iter

32 1,024 3.0128e–03 N/A 48
64 4,096 7.7811e–04 3.87 96

128 16,384 1.9765e–04 3.94 192
256 65,536 4.9797e–05 3.97 387
512 262,144 1.2494e–05 3.99 783

1024 1,048,576 3.1266e–06 4.00 1,581
2048 4,194,304 7.8019e–07 4.01 3,192
4096 16,777,216 1.9366e–07 4.03 6,452
8192 67,108,864 4.7377e–08 4.09 13,033

3.2 Sandia HPCG Benchmark

A benchmark is a portable application that can be used globally with the intention of testing the performance of a com-
puting system. The Sandia High Performance Computing Conjugate Gradient (HPCG) benchmark is a conjugate gradient
benchmark code for a 3D domain on an arbitrary number of processors. This benchmark, which is written in portable C++
code, generates a 27-point finite difference matrix with sub-block sizes on each processor specified by the user, provides a
more detailed description of the benchmark implementation [1].

The problem generated by this benchmark can be viewed as a stationary heat diffusion model of a single degree with zero
Dirichlet boundary conditions, whose global domain dimensions are Nx ×Ny ×Nz with Nx = nxpx, Ny = nypy, Nz = nzpz,
where nx × ny × nz are the local sub grid dimensions in the x-, y-, and z-dimensions, respectively, assigned to each MPI
process with a total number of MPI processes P , which are factored into three dimensions as px × py × pz.

In the setup phase, a sparse linear system is constructed using the 27-point stencil at each of the grid points in the 3D
domain [2]. Therefore, the equation at a given point will rely on the values at its specific location as well as the values of its 26
neighboring points. For the interior points in the matrix, the setup is weakly diagonally dominant, while the boundary points
are set up to be strictly diagonally dominant. The setup for this matrix implements the synthetic conservation principle for
the interior points and displays the impact of no Dirichlet boundary values on the boundary equations.

The resulting properties of the generated linear system include all initial guesses with a value of zero, a matching right-
hand-side vector and a solution vector that is equal to one. The system matrix is a symmetric positive definite, non-singular
matrix with 27 nonzero entries per row for interior points and 18 to 7 entries for the boundary equations.
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4 Implementation and Parallelization

4.1 C/MPI Implementation for Poisson Test Problem

There are several obstacles that first need to be overcome to use the conjugate gradient method on a computer. The first
obstacle involves accessing the mesh and storing the solution in a way that reduces cache misses. The conjugate gradient
method requires both matrix vector multiplications and vector dot-products, but implementing these operations on a matrix
or two-dimensional array would be computationally inefficient as it would lead to non-contiguous memory accesses and,
consequently, wasted CPU cycles. Instead, a matrix-free implementation should be implemented where every matrix is
replaced by a vector. Herein lies one of the biggest benefits of the conjugate gradient method in that it can be implemented
with only four vectors: the solution vector u, the residual vector r, the search direction p, and an auxiliary vector q.

A parallel implementation of the conjugate gradient method requires the solution matrix to be split up into ln pieces,
where ln = N/P and P is the number of running processes. The new local pieces of u are then solved for on each process
and stored within a local solution vector ul, where ul has ln ·N components. By partitioning the computation across several
processes, the run time can ideally be reduced by a factor of P . However, while parallelizing the conjugate gradient method
reduces the total amount of computational time, it also presents a problem of communication as ul will need to access adjacent
columns in u to perform a necessary matrix-vector product. These columns need to be sent to adjacent processes so they can
correctly execute. We tested two separate methods of communication to accomplish this task: blocking and non-blocking.
To do so we used several different MPI commands.

Blocking communication involves the use of the MPI_Recv and MPI_Send functions [6]. In a blocking implementation
the method that calls either of these functions may wait until the process with which its communicating receives or sends a
message. This ensures accuracy of data when the code is run, but it can also lead to deadlock between processes — deadlock
is a situation in which a process waits indefinitely to receive or send a message. A simple solution to this problem has each
process with an even-numbered rank send before receiving and each odd-numbered process receive before sending. This is
an elegant, simple solution in that it both prevents deadlock and reduces any waiting between processes.

Non-blocking communication involves the use of the MPI_Irecv and MPI_Isend functions [6]. A non-blocking function call
will not prevent further execution in a process when it is called, inherently solving the problem of deadlock and potentially
improving the efficiency of the code, since those calculations that do not require the information being received can be
executed while waiting. However, because our implementation of blocking code is so efficient, our non-blocking and blocking
code produce very similar results.

4.2 C/CUDA Implementation for Poisson Test Problem

An alternative method to parallelizing the conjugate gradient method across multiple nodes is to instead export the calcula-
tions to the GPU using the CUDA programming language. A standard GPU is massively parallel and usually has thousand
of computing threads that can handle very basic computational tasks. This can greatly reduce the computation time of a
function, but there are two problems that can skew GPU results. The first is time spent communicating data to and from
the GPU, which can often be slower than the computation by several orders of magnitude, and the second is simplifying the
problem to the point of straightforward computation, with little to no branching or loops.

To avoid a lot of communication between the GPU and the host node, we utilized the cuBLAS library of functions,
which provides fast implementations of basic matrix operations that run on the GPU. To access the cuBLAS library on
the maya cluster the user needs to load two modules to the system using the module load cuda60/toolkit/6.0.37 and
module load cuda60/blas/6.0.37 commands. Once loaded, the cuBlas module includes functions like cublasSetVector

and cublasGetVector which can be used to send and receive vectors from the GPU, and also cublasDcopy which will copy
a vector in GPU memory space to another vector in GPU memory space [5]. The conjugate gradient function uses two
inner products, three vector updates, and one matrix-vector product all of which can be implemented using the cublasDdot,
cublasDaxpy, and cublasDscal functions respectively [5]. By replacing all naive C implementation in the conjugate gradient
function with cuBLAS function calls, the number of communications between the host node and the GPU is reduced to the
lowest possible number. Communication now only happens at the beginning of the function, when first setting the vectors,
and at the end when the solution is retrieved from the GPU.

Another problem to avoid with GPUs is having your code branch or loop because this can often lead to cache misses or
delayed execution of a task. This is problematic in that a kernel is only as fast as its slowest execution, and a lot of looping
in GPU code can delay a thread for a long period of time. To avoid this problem, we had each thread calculate an individual
product at a particular mesh point, avoiding a loop over a set of points and thereby taking full advantage of the parallelism
offered by the GPU.
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4.3 C/MPI/CUDA Programming

The CG function could theoretically be sped up even further by splitting the problem up across multiple nodes and then
implementing GPU acceleration on each. This requires both the MPI interface, to communicate between nodes, and the
CUDA interface, to communicate between host socket and device. To maximize performance, the resulting implementation
must then take into account all of the limiting factors and benefits associated with using GPU acceleration across several
nodes. In other words, our implementation needs MPI to pass relevant vectors between nodes, but it uses the GPU exclusively
to do local calculations. Based on our previous results, we used blocking over non-blocking MPI calls to reduce total runtime.

4.4 Sandia HPCG Implementation

The HPCG benchmark can be downloaded from the Sandia National Laboratories website and unpacked into a local reposi-
tory. Once unpacked, the QUICKSTART file gives detailed instructions on how the benchmark can be set up and executed, but
a few changes were made to run on the maya cluster. Once in the directory that was set up in step 2 of the QUICKSTART file,
the user should add a run.slurm to the bin directory. This should run the executable xhpcg and write the results of stdout
to slurm.out and of stderr to slurm.err.

The remaining files and directories are meant for accessing source and changing compiler flags to add or remove behavior
and libraries. Specifically, the README file includes general details on the HPCG benchmark as well as details on changing
the memory footprint of the benchmark. Another file, named INSTALL, details the appropriate command line arguments for
the benchmark’s executable and how to set flags that can be set compiler and run-time flags.

The unpacked benchmark also includes several directories. The setup directory includes various system-specific Makefiles
that are meant to be copied and used based on the system running the benchmark. These makefiles include flags to enable
OpenMP and MPI. The tools directory contains a file that holds various flags for the documentation produced by the source
files and the run results. Finally, The src directory contains all relevant source code for HPCG benchmark.

Once the code is compiled, runs should be done for a very short amount of time to test that the code is working. Because
the Sandia HPCG implementation never actually converges, but rather relies on running sets of 50 iterations, the user can
specify the length of time to run the benchmark. The official benchmark must be run for at least 5 hours. The user can
also specify nx, ny, nz, and P , defined in Section 3.2. Additionally, the user can specify the number of OpenMP threads nt
assigned to each process per node.

In order to compare larger problem sizes while comparing parallel performance, we designed an experiment to incorporate
small and large problem sizes with convenient scaling for comparisons. We set nx = ny = nz and increased each dimension
by powers of 2, starting at the minimum constraint of 16 implemented in the code. We were able to go up to 128 without
running into memory issues. Additionally, we picked P to have a cube root in order to maintain a global grid in a cubic
shape. This resulted in P = 1, 8, 64, 512, using all possible combinations of nodes and processes. Furthermore, we limited the
number software threads such that the product of the number of cores and threads is less than or equal to 16. For example,
if 8 cores are specified, a maximum of 2 threads are used, allowing runs with 8 cores to use nt = 1 or 2. Table 4.1 shows the
problem sizes that result from our experimental design. This experimental design was not used for the official benchmark,
but rather an initial performance study, only running for 60 seconds. The official benchmark should use all available nodes
and cores and, as stated before, run for a much longer time than our experimental design runs.

Table 4.1: Sandia HPCG Benchmark: Number of unknowns Nx ×Ny ×Nz for a given number of MPI processes P and
local mesh resolution nx × ny × nz.

nx × ny × nz P = 1 P = 8 P = 64 P = 512
16 4,096 32,768 262,144 2,097,152
32 32,768 262,144 2,097,152 16,777,216
64 262,144 2,097,152 16,777,216 134,217,728

128 2,097,152 16,777,216 134,217,728 1,073,741,824
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5 Results

5.1 Poisson Test Problem using C/MPI

We perform the same computational experiments as [4]. Organized as [4, Table 4.1], Tables 5.1 and 5.2 show the observed
wall clock times for runs on all available combinations of nodes for N = 1024, 2048, 4096, and 8192. First, doubling the nodes
with the same processes per node halves the run time, approximately. for example, the behavior in either Table 5.1 and 5.2
for mesh resolution 8192, going from 1 to 64 nodes with 1 process per node. Starting with a wall clock time of 01:44:30 for
1 node, stepping along the row shows times 00:52:24 for 2 nodes, 00:26:30 for 4 nodes, 00:13:24 for 8 nodes, 00:06:48 for
16 nodes, 00:03:27 for 32 nodes, and 00:01:32 for 64 nodes. It is clear that as the nodes are doubled, the wall clock time
is approximately halved, which can by examining other rows as well. This confirms the quality of the high-performance
InfiniBand interconnect, the network link that allows communication between nodes [4].

Stepping along columns in Tables 5.1 and 5.2 shows a more complicated behavior. For a given node count, going from
1 to 2 nodes and from 2 to 4 nodes shows a decrease in run time, but not by approximately half, as expected based on the
behavior of doubling nodes. This is due to the architecture of a node, with 2 CPUs per node, and 8 cores per socket. The
total number of cores is denotes by process(es) per node in Tables 5.1 and 5.2. When 1, 2, 4, or 8 processes are requested,
processes are not split up onto two CPUs but instead one CPU fills out all its cores. For example, requesting 1 node and 4
processes per node will use four cores on one CPU and 0 cores on the other, instead of 2 on each. The difference this makes
is based on the L1, L2, and L3 cache architecture as shown in Figure 2.1. For nodes in Maya, each core has its own L1 and
L2 cache but all 8 cores share L3 cache. Hence, going from 1 node to 2 nodes results in decreasing the amount of data stored
on the L3 cache per core, causing an increase in cache misses and a decrease in overall productivity.

Going from 4 to 8 cores raises a different problem in that there is little to no decrease in run time. This is due to there
being only 4 memory channels per CPU. Since each node contains two 8-core CPUs, the default behavior of allocating all
8 processes on one CPU results in a bottleneck when these processes attempt to access memory through only 4 memory
channels, which makes the 8 cores exhibit the behavior of 4 cores as each core competes for memory access. When a memory
access collision of this nature happens, a core must wait for the other to finish memory access before accessing the channel.

This slowdown is not seen when going from 8 to 16 processes per node. The reason for this is equivalent to comparing the
time difference in doubling nodes. When the number of requested processes increases above the number of cores in a single
socket the node splits the load between the two sockets.

Tables 5.1 and 5.2 also shows that the difference between blocking and non-blocking communication is almost non-
existent, with non-blocking having slightly lower wall clock time. This was due to our implementation of the clocking code.
For blocking, if a process sends data to another process, it will wait for the other process to receive before continuing on
to the next task in execution. In our implementation we had processes with even IDs send first and then receive, and odd
processes receive first and then send. Because each process was only sending to its right or left neighbor, the time each
process waited became negligible.

Tables 5.3 and 5.4 and Figures 5.1 and 5.2 show the speedup and efficiency results of running four mesh resolutions, N
= 1024, 2048, 4096, and 8192, up to 1024 processes on both blocking and non-blocking setups. The increase in number of
parallel processes used went as 2ν with ν = 0, 1, 2, ..., 10, where 1 node was used for number of parallel processes 1 to 16
and 2 to 64 nodes with 16 processes was used for 32 to 1024 number of parallel processes. The dashed black lines show an
optimal trend. Speedup is calculated with Sν = T1/Tν where ν goes as 2ν for ν =1, 2,...,10. Tp is the wall clock time using
p MPI processes, and T1 is the wall clock time for 1 node with 1 process per node. Efficiency is calculated with Ep = Sp/p,
where p is the number of parallel processes and Sp is the speedup corresponding to those processes. In Figures 5.1 and 5.2,
the optimal trend line for speedup is simply Sp = p and Ep = 1 for efficiency

Stepping along the mesh 1024 row within either speedup sub-table (b) shows a rapid speedup decrease away from optimal,
then increase to optimal, for processes 1 to 16. From processes 16 to 1024 a steady decrease is shown. These tables show that
as the mesh size increases, this dip away from the optimal trend has a greater length, but a smaller height, and can be seen
in either efficiency sub-table (c). For example, stepping along a mesh 2048 row shows a dip from 1 to 64 processes, but a
smaller efficiency at 64 than the efficiency of mesh 1024 at 16 processes. Mesh 4096 has a dip from 1 to 256 processes, but a
smaller efficiency at 256 than the efficiency of mesh 2048 at 64. Mesh 8192 does not have a dip, only a degradation away from
optimal. This behavior for increasing mesh size shows that as the mesh increases, this dip collapses into a curve, which is
shown in sub-plots (b) of Figures 5.1 and 5.2. Furthermore, lower mesh resolutions eventually degrade faster. Hence, higher
mesh resolutions are more efficient at higher numbers of processes. For example, mesh resolution 8192 is less efficient for a
lower number of processes, but the highest in efficiency at 1024 processes. The speedup sub-plots confirms this showing that
mesh resolution 8192 follows a more linear trend while mesh resolutions 1024, 2048, and 4096 have greater speedup than 8192
at lower numbers of processes, but plateau at higher numbers. This behavior is due to hardware communication. Because the
computational intensity of mesh resolution 1024 is less than that of 8192, lower numbers of processes are suitable for 1024, and
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Table 5.1: Poisson Test Problem: Observed wall clock time in HH:MM:SS for C/MPI of all available combinations of
nodes and processes per node for blocking communication commands.

(a) Mesh resolution N ×N = 1024× 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:09 00:00:03 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
2 processes per node 00:00:05 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:04 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:02 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

16 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048× 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:01:36 00:00:48 00:00:20 00:00:07 00:00:03 00:00:01 00:00:00
2 processes per node 00:00:53 00:00:27 00:00:11 00:00:03 00:00:02 00:00:01 00:00:00
4 processes per node 00:00:40 00:00:20 00:00:08 00:00:02 00:00:01 00:00:00 00:00:00
8 processes per node 00:00:38 00:00:18 00:00:07 00:00:01 00:00:00 00:00:00 00:00:00

16 processes per node 00:00:18 00:00:07 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00

(c) Mesh resolution N ×N = 4096× 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:12:57 00:06:31 00:03:19 00:01:40 00:00:43 00:00:16 00:00:09
2 processes per node 00:07:08 00:03:50 00:01:53 00:00:57 00:00:25 00:00:09 00:00:07
4 processes per node 00:05:20 00:02:44 00:01:24 00:00:42 00:00:17 00:00:06 00:00:03
8 processes per node 00:05:11 00:02:37 00:01:22 00:00:40 00:00:14 00:00:03 00:00:02

16 processes per node 00:02:37 00:01:22 00:00:40 00:00:15 00:00:03 00:00:02 00:00:01

(d) Mesh resolution N ×N = 8192× 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 01:44:30 00:52:24 00:26:30 00:13:24 00:06:48 00:03:27 00:01:32
2 processes per node 00:59:30 00:29:22 00:14:57 00:07:33 00:03:50 00:02:01 00:00:55
4 processes per node 00:42:57 00:21:31 00:10:54 00:05:34 00:02:51 00:01:28 00:00:40
8 processes per node 00:41:36 00:20:59 00:10:37 00:05:23 00:02:48 00:01:26 00:00:38

16 processes per node 00:21:00 00:10:36 00:05:28 00:02:52 00:01:28 00:00:40 00:00:14

higher numbers of processes are suitable for 8192. With higher processes for a mesh resolution of 1024, communication time
dominates because the mesh per process is so small. For lower processes for a mesh resolution of 8192, run time is massive
because of the computational intensity. This illustrates the power of parallel computation, showing that as a problem’s
computational intensity increases, more processes is necessary for faster calculations.
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Table 5.2: Poisson Test Problem: Observed wall clock time in HH:MM:SS for C/MPI of all available combinations of
nodes and processes per node for non-blocking communication commands.

(a) Mesh resolution N ×N = 1024× 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:09 00:00:03 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
2 processes per node 00:00:05 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:03 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:02 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

16 processes per node 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048× 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:01:38 00:00:48 00:00:20 00:00:07 00:00:03 00:00:01 00:00:00
2 processes per node 00:00:55 00:00:27 00:00:11 00:00:04 00:00:02 00:00:00 00:00:00
4 processes per node 00:00:41 00:00:19 00:00:08 00:00:02 00:00:01 00:00:00 00:00:00
8 processes per node 00:00:40 00:00:19 00:00:05 00:00:00 00:00:00 00:00:00 00:00:00

16 processes per node 00:00:18 00:00:06 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00

(c) Mesh resolution N ×N = 4096× 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:13:00 00:06:32 00:03:20 00:01:40 00:00:43 00:00:17 00:00:08
2 processes per node 00:07:21 00:03:51 00:01:53 00:00:57 00:00:25 00:00:08 00:00:08
4 processes per node 00:05:19 00:02:42 00:01:23 00:00:41 00:00:17 00:00:07 00:00:03
8 processes per node 00:05:13 00:02:41 00:01:21 00:00:40 00:00:16 00:00:03 00:00:02

16 processes per node 00:02:39 00:01:21 00:00:40 00:00:15 00:00:04 00:00:02 00:00:01

(d) Mesh resolution N ×N = 8192× 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 01:44:21 00:52:30 00:26:22 00:13:17 00:06:51 00:03:26 00:01:31
2 processes per node 00:57:45 00:30:15 00:14:52 00:07:30 00:03:53 00:02:01 00:00:56
4 processes per node 00:42:44 00:21:30 00:10:54 00:05:34 00:02:51 00:01:29 00:00:40
8 processes per node 00:41:39 00:20:55 00:10:34 00:05:24 00:02:45 00:01:27 00:00:36

16 processes per node 00:21:09 00:10:37 00:05:28 00:02:50 00:01:27 00:00:38 00:00:13
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Table 5.3: Poisson Test Problem: (a) Observed wall clock time in HH:MM:SS, (b) observed speedup, and (c) observed
efficiency for C/MPI using blocking communication commands. Number of parallel processes denotes 1 node for 1 to 16
processes, and 16 processes for 2 to 64 nodes. This produced processes with order 2n for n = 0, 1, ..., 10.

(a) Observed wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

1024 00:00:09 00:00:05 00:00:03 00:00:03 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
2048 00:01:37 00:00:55 00:00:41 00:00:39 00:00:19 00:00:06 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
4096 00:13:00 00:07:05 00:05:20 00:05:15 00:02:42 00:01:23 00:00:42 00:00:15 00:00:04 00:00:02 00:00:02
8192 01:44:31 00:57:58 00:43:20 00:41:36 00:21:02 00:10:49 00:05:30 00:02:52 00:01:29 00:00:40 00:00:14

(b) Observed speedup
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

1024 1.00 1.67 2.54 3.19 16.72 31.07 45.99 52.63 52.27 48.57 35.14
2048 1.00 1.77 2.38 2.46 5.02 14.10 63.54 94.79 129.41 130.25 114.23
4096 1.00 1.84 2.44 2.48 4.81 9.36 18.35 49.36 185.16 276.55 300.33
8192 1.00 1.80 2.41 2.51 4.97 9.65 18.99 36.26 70.38 156.09 447.34

(c) Observed efficiency
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

1024 1.00 0.84 0.63 0.40 1.04 0.97 0.72 0.41 0.20 0.09 0.03
2048 1.00 0.88 0.59 0.31 0.31 0.44 0.99 0.74 0.51 0.25 0.11
4096 1.00 0.92 0.61 0.31 0.30 0.29 0.29 0.39 0.72 0.54 0.29
8192 1.00 0.90 0.60 0.31 0.31 0.30 0.30 0.28 0.27 0.30 0.44

(a) (b)

Figure 5.1: Poisson Test Problem: Observed speedup and observed efficiency vs number of processes for C/MPI using
blocking communication commands. Number of parallel processes denotes 1 node for 1 to 16 processes, and 16 processes for
2 to 64 nodes. This produced processes with order 2ν for ν = 0, 1, ..., 10.
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Table 5.4: Poisson Test Problem: (a) Observed wall clock time in HH:MM:SS, (b) observed speedup, and (c) observed
efficiency for C/MPI using non-blocking communication commands. Number of parallel processes denotes 1 node for 1 to 16
processes, and 16 processes for 2 to 64 nodes. This produced processes with order 2n for n = 0, 1, ..., 10.

(a) Observed wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

1024 00:00:09 00:00:05 00:00:04 00:00:03 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00
2048 00:01:38 00:00:56 00:00:41 00:00:40 00:00:20 00:00:06 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
4096 00:13:00 00:07:21 00:05:21 00:05:16 00:02:39 00:01:24 00:00:44 00:00:15 00:00:05 00:00:02 00:00:02
8192 01:45:12 00:57:12 00:43:25 00:41:46 00:21:01 00:10:39 00:05:26 00:02:56 00:01:28 00:00:39 00:00:13

(b) Observed speedup
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

1024 1.00 1.75 2.33 3.20 15.52 30.83 44.66 53.08 53.58 44.71 35.54
2048 1.00 1.73 2.36 2.44 4.74 14.10 61.20 101.23 119.90 140.93 129.02
4096 1.00 1.77 2.43 2.47 4.90 9.28 17.67 49.48 141.49 285.25 312.83
8192 1.00 1.84 2.42 2.52 5.00 9.86 19.33 35.66 71.60 158.59 450.95

(c) Observed efficiency
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

1024 1.00 0.87 0.58 0.40 0.97 0.96 0.70 0.41 0.21 0.09 0.03
2048 1.00 0.86 0.59 0.31 0.30 0.44 0.96 0.79 0.47 0.28 0.13
4096 1.00 0.88 0.61 0.31 0.31 0.29 0.28 0.39 0.55 0.56 0.31
8192 1.00 0.92 0.61 0.31 0.31 0.31 0.30 0.28 0.28 0.31 0.44

(a) (b)

Figure 5.2: Poisson Test Problem: Observed speedup and observed efficiency vs number of processes for C/MPI using
non-blocking communication commands. Number of parallel processes denotes 1 node for 1 to 16 processes, and 16 processes
for 2 to 64 nodes. This produced processes with order 2ν for ν = 0, 1, ..., 10.
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5.2 Poisson Test Problem using CUDA

Figure 5.3 and Table 5.5 both compare the runtimes of a serial run on the GPU against a run on a single node. The results
are pretty consistent with the GPU beating the single node in almost every test except one. The one exception is the case
of 16 processes on a single node for N = 1024, which beats the GPU by 1 second. This case illustrates the relative cost
of communication through the PCI Express bus versus communication through the dual QPI links between sockets. The
mesh size is small enough that the relative size of computation is negligible when compared to the time required to transfer
data through the PCI Express bus. Another factor is size of transfer, in the case of the GPU the entire solution needs to be
transferred to and from the GPU, whereas with the node only half of the solution vector is sent while the other half rests on
the master socket.

The rest of the results reflect the same pattern with the GPU undercutting the single node in total runtime. Figure 5.3
clearly illustrates this discrepancy in runtime, and shows the steady increase as the mesh becomes finer. Again this is a
consistent result for the GPU given what is known about the hardware, namely that as the problem size increases, the
amount of time required for computation dwarfs the time needed to transfer the necessary vectors. As a result the GPU’s
computational advantage over the node results in drastically reduced runtimes.

Table 5.5: Poisson Test Problem: Observed wall clock time in HH:MM:SS for CUDA only with 1 node with 1, 2, 4, 8,
and 16 processes for blocking communication commands and serial code with 1 GPU.

N p = 1 p = 2 p = 4 p = 8 p = 16 GPU
1024 00:00:09 00:00:05 00:00:03 00:00:03 00:00:00 00:00:01
2048 00:01:37 00:00:55 00:00:41 00:00:39 00:00:19 00:00:13
4096 00:13:00 00:07:05 00:05:20 00:05:15 00:02:42 00:01:41
8192 01:44:31 00:57:58 00:43:20 00:41:36 00:21:02 00:13:33

Figure 5.3: Poisson Test Problem: Observed wall clock time vs mesh resolution for CUDA only code and parallel CPU
code for 1 node with 1, 2, 4, 8, and 16 processes.
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5.3 Poisson Test Problem with CUDA and MPI

Figure 5.4 and Table 5.6 show the complete results of our tests of the GPU in parallel vs. nodes in parallel. The results
are much different than the results from the serial GPU, although the trends remain similar. In particular, the opportunity
cost of using the GPU only becomes beneficial when the mesh becomes finer and the amount of computation time increases.
However, unlike running a serial GPU, using GPUs in parallel is always less efficient than an equal number of nodes using
all the cores one or two sockets, illustrated in Figures 5.4 (a)–(d). In fact, as is evident from Figure 5.4 (e), a serial run on
the GPU is always more efficient than using 2 GPUs in parallel.

As stated earlier, the parallel GPU implementation shares a similar trend to the serial GPU implementation in that an
increase in computation results in a better comparative performance to a node-only run. This was explained by the cost of
communicating data to and from the GPU through the PCI Express bus, which is an expensive operation considering the
relatively slow transfer speeds that the bus runs at. In our serial code, this was remedied by placing all necessary calculations
on the GPU and only communicating with the GPU to send an initial guess and receive a final solution. However, in the
case of a parallel implementation, the CG method requires that a vector of size N be passed to both adjacent processes or,
in this case, nodes to produce the correct results. In a node-only implementation this involves calling only an MPI_Recv

and MPI_Send routine for each vector, but with GPUs this involves retrieving each vector from the GPU, communicating
the vectors through MPI, and storing received vectors onto the GPU. In total, this is a total of four transfers, two node-
to-node and two host-to-device, transfer operations on an already slow PCI Express bus. The results, are understandably
underwhelming as the amount of communication between nodes is far from negligible and ends up inflating the final runtime
by a substantial margin.

Table 5.6: Poisson Test Problem: Observed wall clock time in HH:MM:SS for CUDA and MPI. CPU computation was
done with (a) 2, (b) 4, (c) 8, and (d) 16 nodes with 1, 2, 4, 8, and 16 processes per node. GPU computation was done with
(a) 2, (b) 4, (c) 8, and (d) 16 nodes with 1 process per node and 1 GPU per node.

(a) 2 nodes
N p = 2 p = 4 p = 8 p = 16 p = 32 GPU

1024 00:00:03 00:00:01 00:00:00 00:00:00 00:00:00 00:00:03
2048 00:00:48 00:00:27 00:00:20 00:00:18 00:00:07 00:00:23
4096 00:06:31 00:03:50 00:02:44 00:02:37 00:01:22 00:02:58
8192 00:52:24 00:29:22 00:21:31 00:20:59 00:10:36 00:23:47

(b) 4 nodes
N p = 4 p = 8 p = 16 p = 32 p = 64 GPU

1024 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01
2048 00:00:20 00:00:11 00:00:08 00:00:07 00:00:01 00:00:11
4096 00:03:19 00:01:53 00:01:24 00:01:22 00:00:40 00:01:32
8192 00:26:30 00:14:57 00:10:54 00:10:37 00:05:28 00:11:59

(c) 8 nodes
N p = 8 p = 16 p = 32 p = 64 p = 128 GPU

1024 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:02
2048 00:00:07 00:00:03 00:00:02 00:00:01 00:00:00 00:00:08
4096 00:01:40 00:00:57 00:00:42 00:00:40 00:00:15 00:00:51
8192 00:13:24 00:07:33 00:05:34 00:05:23 00:02:52 00:06:17

(d) 16 nodes
N p = 16 p = 32 p = 64 p = 128 p = 256 GPU

1024 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01
2048 00:00:03 00:00:02 00:00:01 00:00:00 00:00:00 00:00:08
4096 00:00:43 00:00:25 00:00:17 00:00:14 00:00:03 00:00:39
8192 00:06:48 00:03:50 00:02:51 00:02:48 00:01:28 00:03:55
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(a) (b)

(c) (d)

(e)

Figure 5.4: Poisson Test Problem: Observed wall clock time vs. mesh resolution for CUDA and MPI, with (a) 2, (b) 4,
(c) 8, and (d) 16 nodes with 1 process per node, 2 processes per node, 4 processes per node, 8 processes per node, 16 processes
per node, and 1 GPU per node. Plot (e) shows results of parallel GPU code for nodes 2, 4, 8, and 16, and serial GPU code.
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5.4 Sandia HPCG Benchmark

Tables 5.7 through 5.10 illustrate the results we received from our tests. Each of the tables represents different subgrid sizes
where every dimension of the local subgrid is the same or nx = ny = nz ≡ n. The reported values are for n = 16, 32, 64, 128.
The total thread count on every node was kept at or below 16 threads.

Our results for the Sandia HPCG benchmark mirror several trends that we had encountered before as well as some new
trends that are associated with multi-threading. Looking at Tables 5.7 to 5.10, moving down a column generally corresponds
to an increase in total GFLOP/s, although the total number of processes remains the same. This is consistent with the results
from our node-only implementation, namely that more processes on a single socket decreases the total L3 cache allocated to
each process resulting in more cache misses and decreased productivity.

Another trend that was mimicked from our native node-only results is the increase in computational throughput as problem
size increases. The outlier to this trend can be see in the results from Table 5.8 in which achieves the best throughput despite
having a relatively small problem size. The most likely reason for this anomaly lies in the 20 MB (≈ 224 bytes) of on-chip
L3 cache. With a local subgrid dimension of 32 × 32 × 32 and a range of total threads from nt = 1 to nt = 16, the total
number of grid elements on one core is between 215 and 219. Each of these elements is 8 bytes, so the total memory overhead
is between 218 and 222 bytes, which can be fit entirely into cache. There is also additional memory overhead associated with
the data structures and implementation of the benchmark itself, although, looking at the results, we can assume that the
problem size with the additional memory overhead still fits into cache. Moving onto 64× 64× 64 local subgrid sizes increases
the memory overhead to between 221 and 225 bytes, which is much more difficult to fit into cache and also adds more data
fragmentation. Adding in the additional memory overhead from the data structures used in the implementation results in a
dataset too large for cache. Ultimately, this causes longer memory accesses and a lower total throughput.

Moving along a row on each table gives some insight into multithreading with the HPCG benchmark. Looking specifically
at the serial implementation of the benchmark, which is row (a) on Tables 5.7 to 5.10, we can see that increasing the number
of software threads running on a single core results in a loss of computational throughput or total GFLOP/s. The reason
for this is simple, although we increase the total number of tasks in software we are not actually increasing the degree
of parallelism in the program. This is simply because a single core, without hyper-threading, has access to only a single
execution unit, and as a result only one software thread can run at a time on a core. The slowdown is a direct result of the
core having its cache split between threads and the added overhead of the operating system timesharing multiple processes
on a single core. Both of these waste CPU cycles that could be otherwise used for computation, resulting in a lower total
throughput.

For sufficiently many processes P = 512, we see that multi-threading eventually pays off by 2 threads performing better
than 1 thread. For the larger problem sizes in Tables 5.9–5.10, we obtain results of about 240 GFLOP/s. These results are
obtained when using 64 nodes with the combination of pN = 8 processes per node and nt = 2 threads per process.
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Table 5.7: Sandia HPCG Benchmark: observed GFLOP/s for local subgrid dimensions nx×ny×nz = 16×16×16 using
multi-node with multi-threading computation. Variable P denotes total processes for given node configuration, N denotes
number of nodes, pN denotes processes per nodes, nt denotes number of threads per pN .

(a) P = 1
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 1 pN = 1 1.97 1.73 1.44 1.20 0.85

(b) P = 8
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 1 pN = 8 7.85 7.45 N/A N/A N/A
N = 2 pN = 4 9.37 8.46 7.72 N/A N/A
N = 4 pN = 2 9.43 8.73 7.93 6.68 N/A
N = 8 pN = 1 9.98 9.00 8.45 7.11 5.58

(c) P = 64
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 4 pN = 16 9.77 N/A N/A N/A N/A
N = 8 pN = 8 21.77 21.69 N/A N/A N/A
N = 16 pN = 4 31.38 31.08 31.33 N/A N/A
N = 32 pN = 2 47.15 44.97 42.38 37.94 N/A
N = 64 pN = 1 53.82 50.00 46.54 41.43 34.62

(d) P = 512
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 32 pN = 16 45.58 N/A N/A N/A N/A
N = 64 pN = 8 113.50 112.36 N/A N/A N/A

Table 5.8: Sandia HPCG Benchmark: observed GFLOP/s for local subgrid dimensions nx×ny×nz = 32×32×32 using
multi-node with multi-threading computation. Variable P denotes total processes for given node configuration, N denotes
number of nodes, pN denotes processes per nodes, nt denotes number of threads per pN .

(a) P = 1
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 1 pN = 1 1.57 1.53 1.46 1.49 1.33

(b) P = 8
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 1 pN = 8 4.06 4.10 N/A N/A N/A
N = 2 pN = 4 6.44 6.19 6.21 N/A N/A
N = 4 pN = 2 8.03 7.58 7.68 7.63 N/A
N = 8 pN = 1 11.24 11.18 11.36 10.87 10.01

(c) P = 64
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 4 pN = 16 26.15 N/A N/A N/A N/A
N = 8 pN = 8 30.18 29.72 N/A N/A N/A
N = 16 pN = 4 45.74 43.98 43.75 N/A N/A
N = 32 pN = 2 58.60 56.97 56.17 55.42 N/A
N = 64 pN = 1 79.97 79.37 77.88 75.52 71.38

(d) P = 512
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 32 pN = 16 170.03 N/A N/A N/A N/A
N = 64 pN = 8 209.92 211.84 N/A N/A N/A
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Table 5.9: Sandia HPCG Benchmark: observed GFLOP/s for local subgrid dimensions nx×ny×nz = 64×64×64 using
multi-node with multi-threading computation. Variable P denotes total processes for given node configuration, N denotes
number of nodes, pN denotes processes per nodes, nt denotes number of threads per pN .

(a) P = 1
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 1 pN = 1 1.01 1.02 1.00 0.99 0.98

(b) P = 8
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 1 pN = 8 3.80 3.90 N/A N/A N/A
N = 2 pN = 4 6.14 6.08 6.06 N/A N/A
N = 4 pN = 2 7.31 7.14 7.27 7.31 N/A
N = 8 pN = 1 8.33 8.19 8.15 8.14 8.12

(c) P = 64
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 4 pN = 16 29.86 N/A N/A N/A N/A
N = 8 pN = 8 30.80 30.68 N/A N/A N/A
N = 16 pN = 4 45.76 46.40 45.53 N/A N/A
N = 32 pN = 2 56.57 56.65 55.49 54.90 N/A
N = 64 pN = 1 64.27 63.30 62.93 62.95 62.41

(d) P = 512
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 32 pN = 16 223.92 N/A N/A N/A N/A
N = 64 pN = 8 209.62 238.82 N/A N/A N/A

Table 5.10: Sandia HPCG Benchmark: observed GFLOP/s for local subgrid dimensions nx × ny × nz = 128× 128× 128
using multi-node with multi-threading computation. Variable P denotes total processes for given node configuration, N
denotes number of nodes, pN denotes processes per nodes, nt denotes number of threads per pN .

(a) P = 1
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 1 pN = 1 1.06 1.06 1.05 1.06 1.05

(b) P = 8
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 1 pN = 8 3.77 3.77 N/A N/A N/A
N = 2 pN = 4 6.00 5.82 5.97 N/A N/A
N = 4 pN = 2 7.35 7.27 7.31 7.30 N/A
N = 8 pN = 1 8.24 8.10 8.06 8.09 8.02

(c) P = 64
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 4 pN = 16 29.94 N/A N/A N/A N/A
N = 8 pN = 8 30.35 30.36 N/A N/A N/A
N = 16 pN = 4 47.48 47.49 47.29 N/A N/A
N = 32 pN = 2 58.18 58.06 57.99 57.63 N/A
N = 64 pN = 1 66.45 65.96 65.69 65.65 65.16

(d) P = 512
nt = 1 nt = 2 nt = 4 nt = 8 nt = 16

N = 32 pN = 16 236.51 N/A N/A N/A N/A
N = 64 pN = 8 210.94 230.42 N/A N/A N/A
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6 Conclusions

The purpose of our studies was to test the available hardware on the maya cluster and find out which setups provided optimal
performance on a specified computational problem. Our tests and benchmarks covered a wide breadth of setups and the
results we found both accomplished our original project goal and shed light on the inner workings of the hardware for future
experiments.

To begin, we tested both serial and hardware CPU-only setups on the cluster using our own CG code. We found that
parallel runs provided significant speedups over serial runs, although they did not scale to the theoretical optimal performance.
It was also found to be more efficient to use more nodes rather than more processes on a node to reduce the amount of L3
cache sharing within a node’s socket. We also found that our parallel implementation achieved essentially identical results
regardless of whether blocking or non-blocking MPI calls were used. This was mainly a result of our implementation which
ensured that blocking calls would finish almost immediately.

We also tested the available NVIDIA K20 GPUs in a heterogeneous computing model, implementing both parallel and
serial implementations. We found that the serial GPU implementation could provide significantly faster results than a
equivalent CPU-only setup, and the gains in performance were maximized as problem size and amount of total calculations
increased. The parallel implementation of the GPUs was not as successful and could not compete with the equivalent
CPU-only setups simply because communicating necessary data from one GPU to another was very expensive.

The last test we ran used the Sandia High Performance Conjugate Gradient benchmark. In our tests we used both MPI
to handle cluster-level parallelism and OpenMP to handle core-level parallelism. The results for our tests were consistent and
reflected both knowledge gained from previous tests as well as new discoveries. Similar to our CPU-only implementation of
CG, the Sandia benchmark received the best performance when total nodes were increased and, therefore, the total degree
of cache sharing was reduced. In addition, we found that increasing the total of threads running on a single core, with
hyperthreading disabled, was detrimental to the total throughput of the benchmark, as the thread would fight for execution
time on the core.

Overall, our tests were quite successful, both affirming and revealing several aspects of the maya cluster. Firstly, they
affirm that parallel implementations of algorithms can provide substantial performance benefits. Secondly, they reveal the
potential of using heterogeneous computing and the gains in performance that can be had if properly implemented. Lastly,
our benchmark tests revealed important facts about processes running locally on a node and how a user can best setup a
problem to run optimally on the cluster.

Our results are also important in the broader context of the HPCG benchmark, which recently published a list of clusters
that had run the benchmark [3]. The list features clusters from around the world and reports their total throughput in
PFLOP/s, each of which is equivalent to 106 GFLOP/s. Most notably, at the top of the list, is a cluster that uses the
Intel Phi in its tests of the benchmark, indicating that an integration of the Phi into the benchmark is both plausible and
beneficial. It is also worth noting that the TiTech cluster, the final entry on the list, contains a similar number of cores to the
maya cluster (≈ 2,512 vs. 2,720) and reports 0.003700 PFLOP/s = 3,700 GFLOP/s using an optimized implementation of
the benchmark code, indicative of the theoretical performance available. Using our best result that is obtained on 64 nodes
with 16 processes per node, or 1,024 cores, which gave us approximately 240 GFLOP/s, we can now develop a comparison:
If TiTech only used 1,024 cores instead of 2,720, it would likely have a result of 1,393 GFLOP/s. This means that our result
on maya with the unoptimized implementation of the benchmark is within a factor of six.

Our results are promising, considering the use of the unoptimized implementation, and point to the opportunity for more
experimentation with other run configurations. As demonstrated by other entries on the benchmark list, using the Intel Phis
in maya could also substantially improve our results and provide us with valuable context on how the cluster performs.
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