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Proposal

Our goal is to create a computational model of an islet of Langerhans, consisting of α-,
β-, and δ-cells. We will focus on varying the geometries and proportions of the cells in this
islet, and study the hormonal secretion and reception of each cell at any point in time. We
are currently considering basic cubic and spherical models, among others. Besides changing
the physical shape of our islet, we will change the sequential ordering of the cell types in our
model.

We will have three different models (one for each cell type). While β-cells are already
electronically wired, α-cell and δ-cell paracrine interactions depend on a spatial-temporal
model. We will use ODEs to model the behavior of these cells. We will use a diffusive PDE
equation to model the propagation of the secretions (0.1). Out of computational concerns,
we will hope to find and assume parameters that would allow us to use an analytical solution
to the diffusive PDE. Currently, we are contemplating using the heat kernel to approximate
a solution to (0.2). However, if such an approximation cannot be realized, we may just end
up numerically solving the PDE’s despite of the increase in computational complexity.

∂u

∂t
−D∇2u = f(u, t) (0.1)

K(t, x, y) =
1

(4πDt)3/2
e−|x−y|

2/4Dt (0.2)

Upon creating a modeling tool, we will be able to model experimental scenarios with similar
geometries and proportions to human and mouse islets given in your presentation. We hope
to simulate a core and mantle geometry for the mouse model by creating a core of β-cells with
an α and δ mantle. We will see which geometries work best for such a simulation. Afterward,
we will be prepared to compare our results to experimental data (already done by the NIH).
We will also be able to use these models to isolate specific cell types and compare them to
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each other at different points in the model, while toggling certain secretions — or any system
parameter — to test if any paracrine interactions tame heterogeneity.

1 Introduction

Diabetes is a metabolic disorder that is characterized by high blood glucose levels. Type
I diabetes is a result of destroyed β-cells which renders the body unable to produce insulin
in order to effectively decrease blood glucose levels. Type II diabetes occurs when the body
becomes resistant to insulin. The percentage of the population that is affected by diabetes
rose from 8.3% in 2010 to 9.3% in 2012, or 25.8 million to 29.1 million respectively [1].

The cells responsible for the regulation of blood glucose are found in the pancreas in
islets of Langerhans. These islets contain five types of cells; however, we only study α-, β-,
and δ-cells. β-cells experience voltage oscillations when glucose is introduced. This is due
to calcium entering the cell, which results in insulin release. α-cells secrete glucagon, which
rises when blood glucose levels are low, and is regulated by insulin and somatostatin. δ-cells
secrete somatostatin, which inhibits α- and β-cells.

We are interested in modeling islets comprised of these cells in order to further understand
paracrine interactions between them. In order to accomplish this we extend a previous Tri-
Hormone Model, which simulates the interactions between one of each cell type. This model
simulates the interaction of a δ-cell with a α- and β-cell by allowing the somatostatin to
suppress insulin and glucagon through GIRK channels. It also simulates the interaction of
β-cells with α- and δ-cells by allowing insulin to inhibit glucagon secretion through K(ATP)
channels. These interactions take place within a common space in the islet. This simulation
concluded that paracrine interactions are able to suppress α-cells that secrete inappropriately
when cell types are distributed on a bell-shaped curve [5].

Our model scales this Tri-Hormone Model into a N ×N ×N cube with the capability of
choosing the cell type arrangement. We incorporate β-cell coupling and model the behavior
between α- and δ-cells as diffusive. α- and δ-cells do not communicate via gap junctions,
thus their secretion is treated as heat diffusion. We model this secretion by

∂u

∂t
−D∇2u = f(u, t) (1.1)

For our computational model we implement a system of twenty-six, twenty-three, and
twenty-one ordinary differential equations for α-, β-, and δ-cells, respectively. To further
comprehend how these cells interact in space we measure the rate of change for variables
such as voltage, calcium, and the hormone that is secreted by each cell.

We simulate more realistic islets by looking at varying distributions and arrangements of
α-, β-, and δ-cells. We look at four different cases which display the interactions in a cubic
model arranged in three planes of each type of cell. Then we compare this with a mouse
islet cell distribution, which accurately depicts the observed percentages of α-, β-, and δ-cells
in a mouse islet. We compare this to our three-plane distribution in order to measure the
difference in secretion in space for different cell distributions.
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2 Background

The endocrine component of the pancreas is made up of groups of hormone-releasing cells
called islets of Langerhans. These clusters are made up of individual α-, β-, and δ-cells. The
α-cells secrete glucagon, a hormone that increases blood glucose levels. To lower glucose
levels, β-cells release insulin. Finally, when levels are high, δ-cells secrete somatostatin to
regulate the α-cell and β-cell secretions.

Diabetics have issues with insulin secretion. In type I diabetes, an autoimmune attack
results in destroyed β-cells leaving the body with an inability to produce insulin. Type
II diabetes pertains more to the body’s resistance to insulin than the destroyed β-cells.
Statistics indicate that 25.8 million people suffer from diabetes [cite]. As a result, the study
of pancreatic islets is an area of scientific research. A computational model to simulate α-,
β-, and δ-cell paracrine interaction could provide the field with faster and more accurate
methods of modeling paracrine interactions to aid diabetic research. Upon the creation of
such a tool, scientists will no longer be limited to human simulations. Comparisons and
cross studies of those could be made with in-vivo mice as well.

A main difference between rodent and human islets is the respective percentages of α-,
β-, and δ-cells. In rodent islets, β-cells compose 60-80% of the total cell population, α-cells
make up about 15-20%, and δ-cells account for less than 10%. In human islets, β-cells make
up 48-59% of the total amount of cells, α-cells compose about 33-46%, and δ-cells make up
less than 20% [3].

Another difference between rodent and human islets is the spatial distribution of α-, β-,
and δ-cells. In rodents, the core of an islet is made up of β-cells, and the mantle is composed of
α- and δ-cells. In contrast, human islets have a more disorganized cell population distribution
in which most β-cells are next to α- and δ-cells. An additional difference between rodent and
human islets is the intercellular communication occurring in β-cell populations via electrical
coupling. In rodents the β-cells perform their electrical coupling as a syncytium. However,
in human islets electrical coupling occurs between β-cells in the same islet, but not between
β-cells located in different islets. [3].

Section 2.1 describes a general model of the paracrine interactions between the three cell
types. Section 2.2 provides the physiology and mathematical models behind each paracrine
interaction in the tri-hormonal model. Section 2.3 provides a description of the 2013 REU’s
group’s project’s relevance to ours. Section 2.4 provides the mathematical models we use to
simulate cell behavior and interaction in our computations.

2.1 Tri-Hormone Model

A Tri-Hormone Model can be efficiently used to simulate paracrine interaction. Such
a model consists of one α-, one β-, and one δ-cell. REFERENCE TABLES HERE Each
cell secretes into a closed space, and all cells are influenced by this secretion. To further
simplify the computation, scientists ignore diffusion and neglect all spatial components. As
a result, at the time a molecule is secreted, all cells in the system feel it instantaneously.
The following equation models insulin secretion:

dInscomp
dt

=
ISR

vcomp
− fcomp,bInscomp (2.1)
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Figure 2.1: Tri-Hormone Model

In the Tri-Hormone Model, there exist four main paracrine interactions: 1.) β-cell inhibiting
α-cell (glucagon) secretion. 2.) β-cell stimulating δ-cell secretion. 3.) δ-cell inhibiting β-cell
secretion. 4.) δ-cell inhibiting α-cell secretion [6]. See Figure 2.1 [5].

2.2 Physiology behind Paracrine Interactions in a Tri-Hormonal
Model

The Tri-Hormone Model is a direct representation of small-scaled interactions between
α-, β-, and δ-cells. Analyzing the tri-cell model can lead to the development of a full-scale
model. The following sections will explain how each type of cell works together and interacts
with each other thus creating the effect of a pancreatic islet.

2.2.1 The β-cell inhibition of α-cell secretion

Insulin inhibits α-cell secretion by opening K(ATP) channels. This is modeled by the
following equations:

EffIa =
0.006

1 + exp
(−Ins+100

40

) + 0.04 (2.2)

g(KATP)a = gK(ATP)a · EffI (2.3)

It is important to note that EffI is the amount of insulin in the secreted space. Also,
as K(ATP) channels increase, gK(ATP) increases as well. An increase in gK(ATP) usually
causes a decrease in glucagon secretion [6].

2.2.2 The β-cell stimulation of δ-cell secretion

To create the stimulatory effect that relates β- and δ-cell secretions, an inward GABA CL
channel is used. This can be done because GABA is secreted alongside insulin, so GABA’s
effect can be modeled based on the β-cell’s release of insulin [6]. The following equation is
used to model this effect:

EffId =
0.8

1 + exp
(−Ins+150

50

) (2.4)
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2.2.3 The δ-cell inhibition of β-cells

The way δ-cells inhibit β-cells is through G protein inwardly rectifying potassium (GIRK)
channels [6]. This is modeled as if it is a K channel.

EffId =
1

1 + exp
(−Som+10

10

) (2.5)

IGIRKb = 10EffS(V b− (−80)) (2.6)

2.2.4 The δ-cell inhibition of α-cells

The inhibition of α-cells is a bit more interesting. Along with GIRK channel inhibition,
δ-cells de-prime granules to inhibit α-cells [6]. This is modeled by the following equation,
which correlates secretion with the rate of change in granules as somatostatin increases.

r−2a =
5

1 + exp (−Som+ 20)
(2.7)

2.3 Physiology of α-cell and β-cell Secretion

With today’s diabetes research, scientists, doctors, and researchers can better understand
how our body works, the causes of type 1 and type 2 diabetes, and the inner workings of
human pancreatic functions. Through previous work the research community has found that
the endocrine part of the pancreas contains clusters of cells called islet of Langerhans [2].
Though these islets house many cells, a focus was taken by Team 4 (2013) in exploring the
β-cell’s functionality and modeling the physiology of the β-cell [2]. The β-cell’s physiology is
highly characterized by voltage and calcium oscillations that correlate with insulin secretion
[2]. Inside the islet of Langerhans, β-cells are connected to each other via gap junctions, which
are intercellular connections. Within gap junctions, small ions and products of metabolism,
called metabolites, are free to flow between the cells. Research shows that metabolites
influence the oscillations found in β-cells causing insulin secretion [2].

“Voltage and metabolites, such as glucose 6-phosphate (G6P) and fructose 1-6-bisphophate
(FBP),” undergo oscillations when glucose concentration increases in the bloodstream [2].
ADD FIGURES Glucose then enters the β-cell through glucose transporters, protein chan-
nels in the cell membrane that use diffusion as transportation. Once the cell metabolizes
it produces adenosine triphosphate (ATP). Increases in the concentration of ATP triggers
depolarization of β-cell membranes by closing channels of ATP-sensitive (KATP) channels,
which causes calcium to enter the cell [2]. Due to the heightened concentration of calcium,
the cell vesicles release insulin into the bloodstream. As insulin increases its presence in the
bloodstream, glucose levels begin to decrease, causing a β-cell reset [2].

Previous numerical models have included an individual β-cell model and a tri-cell model
of α-, β-, and δ-cells. The β-cell model was a system of seven coupled ordinary differential
equations (ODEs) [2].

As discussed in Dr. Margaret Watts’s and Dr. Arthur Sherman’s published report, Mod-
eling the Pancreatic α-Cell: Dual Mechanisms of Glucose Suppression of Glucagon Secretion,
α-cell machinery is very similar to that of β-cells. Glucose transporters, voltage-gated Ca2+
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channels, and K(ATP) channels are all present, and behave similarly in α-cell secretion.
However, looking past this basic machinery, the advanced mechanisms of glucagon secretion
are not very well understood. Currently, two major theories exist.

One theory claims that glucose directly suppresses glucagon secretion through intrin-
sic mechanisms [4]. The claim theorizes that glucose affects the α-cell through closure of
K(ATP) channels. Just like in β-cells, this would result in an increase in the ATP/ADP
ratio, and a closure of K(ATP) channels and cell depolarization [4]. However, unlike in
β-cells, this is actually theorized to cause a decrease in glucagon secretion.

The other theory claims that, instead of focusing on K(ATP), glucose affects glucagon
secretion through a store-operated current (SOC) [4]. Glucose does this by providing addi-
tional ATP to activate the sarcoenoplasmic reticulum calcium transport ATPase (SERCA).
SERCA would pump and fill calcium stores, which would as a result decrease secretion [4]. In
contrast, when glucose levels decrease, calcium stores empty, SOC is turned on, and glucagon
secretion increases. Overall, while the machinery is similar to that of insulin secretion in
β-cells, the theorized process is rather different. All α-cell models can be found in Tables
(insert label once we figure it all out).

2.4 Tables

Table 2.1: Voltage Equations

Cell Type Equation

α
dV

dt
= −

ICal + ICat + ICapq + INa + IKdr + IK(ATP) + IKaa + IL + ISoc + ISom

Cm

β
dV

dt
= −

IK + ICa + IK(Ca) + IK(ATP) + ISom

Cm

δ
dV

dt
= −

ICal + ICat + ICapq + INa + IKdr + IK(ATP) + IKa + IL + ISoc + IIns

Cm
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Table 2.2: Current Equations

Type of Current α β δ

Ik = N/A gkn(v − vk) N/A

Ica = N/A gcancam∞(v − vca) N/A

Ikca = N/A
gkca

1 + kd
c

(v − vk) N/A

Ikatp = gkatp(v − vk) (1−Dz)(gkatpkatpo(v − vk)) + (1−Dz)(gkatp(v − vk)) gkatp(v − vk)

Ical = gcalm
2
calhcal(v−vca) N/A gcalm

2
calhcal(v−vca)

Icat = gcatm
3
cathcat(v−vca) N/A gcatm

3
cathcat(v−vca)

Icapq = gcapqmcapqhcapq(v−vca) N/A gcapqmcapqhcapq(v−vca)

Ina = gnam
3
nahna(v−vna) N/A gnam

3
nahna(v−vna)

Ika = gkamkahka(v−vka) N/A gkamkahka(v−vka)

Ikdr = gkdrm
4
ka(v−vka) N/A gkdrm

4
ka(v−vka)

Il = gl(v−vl) N/A gl(v−vl)

Isoc = gsocc∞(v−vsoc) N/A gsoc(v−vsoc)

Isom = gsomsom∞(v−vsom) gsomsom∞(v − vsom) N/A

Iins = N/A N/A ginsins∞(v−vins

Table 2.3: M Gating Variable Equations

Variable Equation

m′j =
mj∞ −mj

τj

mj∞ =
1

1 + e
(−(v−vj))

sj

τj =
a

e
−(v+b)

c + e
v+b
c

+ d
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Table 2.4: Gating Variable Equations

j label α β δ

cal = a = 1 b = 23 c = 20 d = 0.05 N/A a = 1 b = 23 c = 20 c = 0.05

cal = a = tcat1 b = 50 c = 12 d = tcat2 N/A a = tcat1 b = 50 c = 12 d = tcat2

capq = a = 1 b = 50 c = 12 d = 0.05 N/A a = 1 b = 50 c = 12 c = 0.05

na = a = 6 b = 50 c = 10 d = 0.05 N/A a = 6 b = 50 c = 10 d = 0.05

ka = τka = 0.1 N/A τka = 0.1

kdr = a = 1.5 b = 10 c = 25 d = 15 N/A a = 1.5 b = 10 c = 25 d = 15

Table 2.5: H Gating Variable Equations

Variable Equation

h′j =
hj∞ − hj

τj

hj∞ =
1

1 + e
(−(v−vj))

sj

τj =
a

e
−(v+b)

c + e
v+b
c

+ d

Table 2.6: H tables

j label α β δ

cal = a = tcal1 b = 0 c = 20 d = tcal2 N/A a = tcal1 b = 0 c = 20 d = tcal2

cat = a = tcat1 b = 50 c = 15 d = tcat2 N/A a = tcat1 b = 50 c = 15 d = tcat2

capq = a = tcapq1 b = 50 c = 10 d = tcapq2 N/A a = tcapq1 b = 50 c = 10 d = tcapq2

na = a = tna1 b = 50 c = 8 d = tna2 N/A a = tna1 b = 50 c = 8 d = tna2

ka = a = tka1 b = 5 c = 20 d = tka2 N/A a = tka1 b = 5 c = 20 d = tka2
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Table 2.7: J Tables

Type of J α β δ

JL =
−αICal

vcell

−αICal

vmd

−αICal

vmdl

JPQ =
−αICapq

vmdpq

N/A
−αICapq

vmdpq

JT =
−αICat

vcell

N/A
−αICat

vcell

Jserca = ksercac kserca2 + kserca3c ksercac

Jleak = pleak(cer − c) per(cer − c) pleak(cer − c)

Jer = Jleak − Jserca
epser(Jleak − Jserca)

λer

epser(Jleak − Jserca)

λer

JR = N/A
−αICaR

vcell

N/A

Table 2.8: Jmem

Cell Type Equation

α JT + JL + fVpqB(cmdpq − c− kpmcac)

β JR + vmdcytB(cmd − c)− kpmca(c− cbas)

δ JT + JL + fVpqB(cmdpq − c− kpmcac)
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3 Methodology

We have XPP code that implements a tri-cell model of an islet. We translate the XPP
code into Matlab code. We then scale the original model in order to implement a model of
an islet with more than one α–, β–, and δ–cell each.

3.1 Extending Tri-hormonal Model

The Tri-Hormone Model consists of an islet with one of each cell type that secretes
(instantaneously) into a shared space [6]. In order to extend this model from three cells
to an accurate physiological islet, we partition each type of cell in Matlab so that each
can be run through an ordinary differential equation (ode) solver. For α-, β-, and δ-cells we
use functions of twenty-four, twenty-one, and nineteen differential equations, respectively. In
order to simulate the Tri-Hormone model, we run each of these cell functions simultaneously.
Each cells variables are solved and stored in order, from alpha to delta, into a matrix A that
is N ×M , where N = the amount of time steps and M = the sum of the cell variables.

A =


vαt1 . . . Effgt1 vβt1 . . . Effit1 vδt1 . . . Effst1

vαt2 . . . Effgt2 vβt2 . . . Effit2 vδt2 . . . Effst2
...

...
...

...
...

...
...

...
...

vαtf . . . Effgtf vβtf . . . Effitf vδtf . . . Effstf


To model various paracrine interactions, we add coupling parameters (in this case, in the

form of currents) to our voltage equations. We repeat this process at each time step, using
different parameters. This allows us to make a dynamic system of cells that are affected by
the secreted hormones, as well as the cells’ independent voltages. A key methodological im-
plementation that we made was to de-vectorize the secretion that we pass into our functions.
We observe the total amount of secretion that the cell receives, then sum all the values of a
secreted hormone creating a scalar value used by our functions.

In order to implement our scaled model for more than one cell of each type, we vectorize
our coupled islet function. Given a user input, the initial values for the differential functions
are duplicated for each new cell implemented. Due to Matlab’s compatibility with vector
algebra, we can easily exchange our initial function parameters with vector values. We are
considering three different distributions of a 3× 3× 3 cell islet with three contiguous planes
of α-, β-, and δ-cells.

The α, β, and δ functions are scaled by Na, Nb, and Nd, the number of cells per type
respectively, where Nx is the number of cells. Each cells variables are then multiplied by the
number of each cell type respectively. We can then look at the paracrine effects on a much
larger scale with different distributions of each cell type.

1 Na= Nb = Nd = 1
This case is the Tri-Hormone Model explained earlier. We have a compartmentalized
islet of 1 of each cell. We can compare this version to the XPP code provided by the
NIH to ensure accuracy.
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2 Na = Nb = Nd = 9
This case observes the effect of the sum of somatostatin and insulin secretion on each
cell in the islet at every time step.

3 Na = Nb = Nd = 9
This case observes the case 1 islet but accounts for the average amount of somatostatin
secreted by dividing the secreted sum by the number of cells secreting that value. In
other words, the summed somatostatin is divided by the number of δ-cells, and the
summed insulin secretion by the number of β-cells. (In this case: 9)

4 Na = 5, Nb = 20, Nd = 2
This case emulates the observed distribution of cells in a mouse islet(reference back-
ground of mouse islets). This case also keeps the division of the number of cells secreted,
as in case 2, to account for the changing number of β- and δ-cells.

3.1.1 Cell Coupling

In order to simulate β-cell coupling via gap junctions, we implement a matrix vector
product that models the change in voltage in each cell. We duplicate a linear index repre-
sentation of each cell [2]. We give each cell a (i, j, k) entry with i + (j − 1)N + (k − 1)N2

(show Annie’s picture) in an N3 ×N3 matrix.

Figure 3.1: Example of Cell Coupling

For our 3× 3× 3 islet our coupling function places the three-dimensional positions of our
β cells in a vector that is then transcribed into our coupling matrix. The (i, j) entry of the
matrix represents the connection value for the ith and jth cell (either 0 or 1). For the ith cell
in the matrix, our function sums the ith row, which represents the individual connections
for one cell and stores this value in the (i, i) matrix. We take the product of our coupled
matrix and our vector of β-cell voltages found at that time step via the ode solver. First,
however, we must note that The 2013 REU’s coupling matrix produces a N3 × N3 matrix
which assumes that all cells in the system are β-cells.
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Figure 3.2: Full Matrix

Given that our matrix does not consist of purely β-cells, we adjust the coupling matrix
creating a new linear index of only the positions of β-cells in our system, and call this List
B. We then index the original coupling matrix by omitting all rows and columns that are
not a value in List B. We do this because the coupling is not affected by any row or column
that represents a connection to an α- or δ-cell, since the electric coupling we are modeling
only occurs within adjacent β-cells. We define adjacency as one unit away in the i, j, or k
direction. We then get a square matrix that has dimensions of the size of List B squared.
Finally, we augment the diagonal values by assigning the value to the multiplicative inverse
of the sum of all the representative connections in each row, representing the coupling of the
remaining β-cells.

C =



−2 1 0 1 0 0 0 0 0
1 −3 1 0 1 0 0 0 0
0 1 −2 0 0 1 0 0 0
1 0 0 −3 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −3 0 0 1
0 0 0 1 0 0 −2 1 0
0 0 0 0 1 0 1 −3 1
0 0 0 0 0 1 0 1 −2


Vb =



v1

v2

v3

v4

v5

v6

v7

v8

v9


The matrix above is the coupling matrix for a 3:3:3 model, which has 9 beta cells. Thus, it
is 9x9. Our product represents a slight voltage change, which we add to our calculation of
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dbdt. We do this in a similar fashion as with the other coupling functions, concatenation of
a zero vector of placeholders with the vector of calculated β variables from the differential
equations. This is also completed at every time step. To improve efficiency, the coupling
matrix, and its indexed version, are calculated in the wrapper program before the main
function and the ode solver are called. This can be done because once the amount and
position of β cells are known, the coupling matrix stays constant, it is only the β voltage
vector that changes every time step.

3.2 Secretion

Next we simulated the secretion of insulin, glucagon, and somatostatin molecules. We
wanted to avoid doing an all-out partial differential equation (PDE) simulation, as it would
severely slow our computational time. Instead, we decided to take advantage of our already
discretized system, and treat the locations of the cells as points in space.
We considered a standard diffusion problem:

st = ∇ · (D∇s) + g(u(t))δ(x)− ks,−∞ < x, y, z <∞ (3.1)

Here, g is a function of variables u, which is a function of time (t). We will use δ(x− x1, y−
y1, z − z1) to represent a δ distribution, implying that the secretion is only produced at
(x, y, z) = (x1, y1, z1) We rewrite this using a change of variables w = ekts to get

wt = ∇ · (D∇w) +G(u(t), t)δ(x),−∞ < x, y, z <∞ (3.2)

Here, G(u, t) = ektg(u).. We can rewrite (3.2) as an analytical solution on an infinite domain:

w(x, y, z, t) =

∫ t

0

G(u(τ), τ)

4πD(t− τ)3/2
e

−((x−x1)
2+(y−y1)

2+(z−z1)
2

4D(t−τ) dτ (3.3)

We can rewrite this in terms of s (secretion) to get:

s(x, y, z, t) =

∫ t

0

g(u(τ))

4πD(t− τ)3/2
e

−((x−x1)
2+(y−y1)

2+(z−z1)
2

4D(t−τ) dτ (3.4)

We now use a simple finite central difference approximation of the second order, instead
of taking a limit derivative. In the single dimensional case Sx = ∂s(x,t)

∂(x)
. Thus we can

approximate Sx ≈ s(x+δx/2,t)−s(x−δx/2,t)
∆x

. We use the same approximation for the second
derivative, and get our diffusion equation!

Sxx =
s(x+ ∆x, t)− 2s(x, t) + s(x−∆x, t)

(∆x)2
(3.5)

We then extend this case to R3 to get
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5 · (5s) =
s(x+4x, y, z, t)− 2s(x, y, z, t) + s(x−4x, y, z, t)

4x2
+

s(x, y4+y, z, t)− 2s(x, y, z, t) + s(x, y −4y, z, t)
4x2

+

s(x, y, z +4z, t)− 2s(x, y, z, t) + s(x, y, z −4z, t)
4x2

This diffusion approximation can now be calculated by passing in the full coupling matrix
that was used by the 2013 REU, since we only care about the interaction between any
adjacent cell, rather than just beta cells. Thus we get a new diffusion equation:

Ŝt =
D

(∆x)2
Cŝ+ f̂ (3.6)

Here, C is the full coupling matrix. The f̂ represents the initial secretion in to the system.
For this example we will use δ-cell somatostatin secretion. We have

f̂ = f(s, p) = DeltaLoc ∗ Effsfun (3.7)

Effsfun is a function that calculates the amount of effective (non-decayed) somatostatin that
leaves a delta cell. It is then multiplied by Deltaloc- a binary vector of the same length as
the linear ordering of the system. Deltaloc has 1’s in the positions of δ−cells, and 0’s in the
position of α and β-cells. The multiplication of these two vectors results in a proper model
of the initial somatostatin entering the system. An equivalant process is used for α−cell
glucagon and β−cell insulin-secretion.)

3.3 Paracrine Effects Taming Heterogeneity

In order to simulate the effects of paracrine coupling on the heterogeneity of alpha cells,
we can assign two different GK(ATP ) values (26.5*Dza+0.04,32*Dza+0.04) to the alpha cells
in our islet. This GK(ATP ) value is the conductance for the K(ATP) channel in the alpha
cell, which varies depending on the amount of glucose in the blood. We simulate a high
blood glucose level with our GK(ATP ) = 26.5* Dza + 0.04. We will then run tests with and
without the effects of beta and delta cells felt on alpha cells to see if paracrine coupling can
tame the heterogeneity of alpha cells.

4 Results

All results have cell proportions (alpha:beta:delta).

4.1 Case 1: (1:1:1) Tri-Hormone Model

In order to check the accuracy of our Matlab code with the Tri-Hormone model in XPP,
we first ran simulations of a three-cell islet, which contained one of each cell type. This is
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modeled as a compartmental islet in which the secretion from each cell is felt instantaneously.
Below in fig (1) we plot the voltages for each cell type in Matlab and compare them with the
voltages for the XPP code. These voltages correspond with each cells secretion and we find
similar oscillation patterns and timings for each. For a ten-minute simulation we observe
that our alpha cell begins spiking around the 2 and 6 minute mark with a maximum and
minimum amplitudes around 10 and -50 which is comparable to the XPP values. For the
beta cell voltage in Matlab we notice oscillation spikes around the 2 and 6 minute mark,
which corresponds to the voltage spikes in the XPP code. The beta cell values for the
oscillations also correspond as we see the maximum and minimum from 10 to -40. We also
see the voltages for the delta cell in Matlab experiences oscillation spikes from 2 to 5 minutes
with maximum and minimum amplitude from about 0 to -50. These cell voltages give us
confidence in that we were able to successfully re-create the Tri-Hormone in Matlab.

Figure 4.1: Tri-Hormone Model (1:1:1)

We also plotted the voltage of the islet.ode file that was provided by the NIH alongside
our first case to show the similarities.
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Figure 4.2: XPP/Matlab Compartmentalized Case 1 Comparison

4.2 Case 2: (9:9:9 Model with Summed Secretions)

In our second case we ran simulations on a 3x3x3 cubic islet with three sequential planes
of nine cells for each cell type. For this case we applied the sum of somatostatin to each alpha
and beta cell, as well as the sum of the insulin on each alpha and delta cell. This is done
so that we can see the change in voltage when each cell is overwhelmed by the amount of
hormone they receive. For a ten-minute simulation we see that the voltage for the alpha cell
experiences large bursts for extended periods of 4 minutes (2-6 minutes) instead of 2 minute
bursts that we saw in the Tri-Hormone model. Glucagon secretion also behaves differently
in that it peaks at 77.5 at around the 2 minute mark and begans to decrease steadily until
10 minutes. This is in comparison to the Tri-Hormone simulations glucagon secretion which
shows 5 minutes oscillations that range from 40 to 75. We also see a diminishing in the period
for beta cell oscillation. The voltage oscillations exhibited in beta cells spike for less than
two minutes (2 + x to 4 y), which is in contrast to our Tri-Hormone model that displays
oscillation spikes for 2 minutes. The delta cell in this summed simulation is in stark contrast
to the delta cell of the Tri-Hormone model in that it oscillates for the entire 10 minutes
instead of experiences non-oscillating periods. The delta cell also behaves differently in
relation to somatostatin secretion. Somatostatin seems to be secreted at regular intervals of
5 minutes in comparison to the Tri-Hormone, which has periods of 2.5 minutes. The values
at which somatostatin oscillates in this simulation range from 5 to 12.5 in comparison to 0
to 12.5 in the Tri-Hormone. Somatostatin is being released at a higher value throughout this
simulation.
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Figure 4.3: Compartmentalized Case 2

4.3 Case 3: (9:9:9 Model with Normalized Secretion

In case 3 we ran simulations on the same islet as in case 2 however we varied the secretion
values over the two cases. This case summed the amount of insulin detected by the alpha
and delta cell and divided it by the number of beta cells (9). We also summed the amount
of somatostatin that is secreted and detected by alpha and beta cells and divided the sum
by the amount of delta cells. This is done so that each cell detects the average amount of
secretion. When we average the secretion, the behavior of the alpha, beta and delta cells
shifts back towards the behavior of the Tri-Hormone model. The voltage for the alpha cell
shows maximum oscillations from 2 4 and 7-9 minutes from 10 to -50, just as in the Tri-
Hormone model. The beta cell voltage also returns to the Tri-Hormone model behavior by
showing oscillation spikes around the 2 4 and 7- 9 minutes mark, with oscillations between
10 and -40. The voltage for the delta cell also exhibits maximum oscillations in the 2 5
and 7-9 minute marks, having oscillations between 0 and -50. Each of these cells behavior
emulates the behavior shown in the Tri-Hormone model.
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Figure 4.4: Compartmentalized Case 3

4.4 Case 4: 5:20:2 Mouse Islet with Normalized Secretion

This case simulates a Mouse Islet cellular distribution for a 3x3x3 cube Islet. The amount
of secretion is divided by 9 just as in case 3 in order to examine the effects that different
cell distributions have on cell behavior. In this simulation we can notice a longer period of
maximum oscillation for the voltage of alpha cells when compared to our averaged model.
The range of oscillation is comparable however the period spans from 3 minutes (2-5 minute
mark) instead of 2 minutes (2-4 minute mark). Glucagon behavior also differs slightly from
the averaged model with values ranging from 50 75 instead of 40 75. Beta cell behavior
remains constant with the averaged model. The voltages for beta cell exhibit bursts from
2- 4 minutes and 7 9 minutes just as in the averaged model. Compared with our averaged
model delta cell behavior has also changed. Delta cell voltage exhibit longer bursts from 2
minutes to just under 6 minutes (about 4 minutes) instead of about 3 minutes. There is also
an initial burst in voltage at time 0 which we do not see in any other case. The somatostatin
secretion also sees extended maximum bursts. We see somatostatin spike at 2 minutes from
0 to 12.5 for 3 minutes instead of 2 minutes as with our averaged model.
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Figure 4.5: Compartmentalized Case 4

4.4.1 Spatial Case 3

Upon the implementation of spatial coupling, we ran the equivalent cell distribution of
the compartmentalized case 3 and 4. Below is the full data for Case 3. The amplitudes of
the various values tend to be smaller than those in the compartmentalized model. This is
probably because we are no longer passing in the full hormonal secretion values to each cell
at each point. The secreted hormones are now spatial and time dependent, and with an
added delay constant, result in smaller values at each discretized point.
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Figure 4.6: Spatial Case 3

We were also able to create a visual representation of the flow of the secreted hormone
through the discretized islet.

Figure 4.7: Compartmentalized Case 4

At the exact time when the beta cell voltage spikes, the amount of insulin greatly in-
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creases, as can be confirmed by the 3D model at that point in time.

4.5 Spatial Case 4

A similar process for the Spatial analogue of the Compartmentalized Case 4. There are
some noteworthy observations here as well. The alpha voltage greatly increases after the first
beta spike. Until that point, the voltage oscillations have much smaller amplitudes. The
delta spike also only occurs after the beta spike. Another key thing to note is the spectrum
of color in our graph. We actually ended up graphing each cell a different color, to see if the
cells were acting differently.

Figure 4.8: Spatial Case 4

In the compartmentalized model, we saw very little color variation, as expected. Since
all cells received the same hormonal inputs, they were all acting the same. However, now
that the cells are in different point in space, they receive different amounts of insulin and
somatostatin, resulting in multiple cells acting heterogeneously, especially- as can be seen
from our graphs- the alpha cells. We investigate paracrine interaction’s effects on alpha cell
heterogeneity in the next subsection.
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Figure 4.9: Compartmentalized Case 4

We also did a similar visual simulation of insulin secretion. We found that the insulin
spread much more rapidly in to the cell, since the distribution contained much more beta
cells.

4.6 Paracrine Interactions Cure Alpha Cell Heterogeneity

We were able to simulate heterogeneity in alpha cells with and without paracrine cou-
pling. This was done in order to see if paracrine coupling could tame this alpha cell het-
erogeneity. These two simulations were ran on two 3x3x3 cube islets. For the averaged
9:9:9 cell distribution islet we assigned GK(ATP ) = 26.5 ∗Dza+ 0.04 to four alpha cells and
GK(ATP ) = 32Dza+ 0.04 to 5 alpha cells. The non-coupled case shows a different in oscilla-
tion frequency between the heterogeneous cells. This is shown by the lack of overlap in the
two voltage plots. However, when we account for the paracrine effects on the alpha cells they
start to exhibit a more similar behavior. We can see this by the increase in overlap of the
cell voltages. We then ran the same simulation with the mouse percentage distribution islet.
We assigned GK(ATP ) = 26.5 ∗Dza + 0.04 to 3 alpha cells and GK(ATP ) = 32 ∗Dza + 0.04
to two alpha cells. The voltage oscillations in the Non-Coupled islet also exhibit a lack of
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overlap. However, when the alpha cells are coupled with beta and delta cells there is an
increase in overlap, which means the alpha cells begin to behave more similarly. A difference
between this Mouse islet and the 9:9:9 case is that the mouse islet exhibit longer period of
maximum voltage oscillation.

Figure 4.10: Heterogeneous 9:9:9 Islet with No Coupling

Figure 4.11: Heterogeneous 9:9:9 Islet with Coupling

Figure 4.12: Heterogeneous Mouse Islet with no Coupling

Figure 4.13: Heterogeneous Mouse Islet with Coupling

5 Conclusion

In producing our computational model of a pancreatic islet we have gained a better un-
derstanding in how islet size and cell distribution can affect cell behavior. We were able to
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properly scale the Tri-Hormone model to a 3x3x3 cubic islet. We also successfully imple-
mented a model in which the user is able to determine cell arrangement. This was done in
order to simulate different cell proportions, specifically a mouse islet percentage, in which we
were able to observe a different cell behavior than the Tri-Hormone Model. Spatial aspects of
an islet were also taken into consideration by modeling secretion with with a heat secretion
equation. We were also able to run simulations testing the effects of paracrine coupling on
alpha cell heterogeneity.

When we scaled the Tri-Hormone Model from a three-cell model to a twenty-seven-cell
model we were able to replicate cell behavior. After averaging the amount of secretion
detected by each cell the voltages and secretion for each cell emulated that which was found
in the Tri-Hormone model. We then compare this result with a mouse islet cell distribution.
When more beta cells are incorporated into an islet as in the mouse islet we see a change in
behavior in the alpha and delta cells. We see an increase in the oscillation period for these
cells, which could be due to the increase in insulin in the islet.

We were also able to notice that paracrine effects have a taming quality in relation to
alpha cell heterogeneity. When we did not account for paracrine coupling and assigned
different GK(ATP ) values for our alpha cells we observed a different behavior between cells.
However, when we accounted for the effect that beta and delta cells have on alpha cells, the
alpha cells began to act more homogenously.

Moving forward in this project it would be interesting to simulate larger islets. This
would be done in order to test if scaling an islet affects cell behavior. Creating larger islet
would also allow the user to simulate more complex and realistic cell arrangements.

It would also be interesting to run simulations in which the distance between cells was
not one unit in the (i,j,k) direction. This could be done in order to observe how certain cells
behave when surrounded by a specific type of cell. For example, how an alpha cell that is
surrounded by beta cells behaves compared to an alpha cell in which its neighbors vary.
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