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Abstract

The study of allostery, a regulatory process that occurs in complex macromolecules
such as proteins, is of particular interest as it has a key role in determining the func-
tion of these macromolecules. Allostery produces motional correlations that can be
analyzed using different statistical methods. We implement a program in the sta-
tistical programming language R that uses polynomial regression and leave-one-out
cross-validation to model relationships in data obtained from different sites in the pro-
tein, using the square root of the coefficient of determination to detect both linear and
non-linear trends. The performance of the program will be studied on a simulated data
set with linear and non-linear relationships and the effectiveness of the implemented
methods as it relates to this problem will be assessed.

1 Introduction

Researchers today are very interested in the study of complex biomolecules, such as proteins,
as they are immensely important to living organisms. Proteins are of particular interest as
they perform many functions within an organism that are integral to its survival. Within
a protein, a process called allostery can occur which produces a significant effect on the
function of that protein. As this process is not completely understood, the study of allostery
has become a focus in the field and has also brought about an interest in the study of
motional correlations that occur in proteins as a result of allostery.

Statistics can be used to assist in determining the motional correlations in proteins to
further our understanding of allostery. Various statistical methods can be applied to sim-
ulated data representing the motion at different protein sites, and one such method will
be discussed in this paper. We will discuss and also implement polynomial regression and
leave-one-out cross-validation to model relationships in data using a polynomial of optimal
degree, and then uses the square root of the coefficient of determination to detect both linear
and non-linear trends multiple linear regression to generate predictions for the data and then
calculate the correlations between the predicted and the actual data. The data set that the
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method will be tested on will be one in which the correlations between the variables are
known so that the accuracy of this method can be tested.

2 Background

2.1 Allostery

Allostery is a process that allows complex macromolecules, such as proteins, to sense and
react to changes within the environment. Different regions in a macromolecule are ther-
modynamically or structurally coupled, allowing information to be communicated between
regions that are often distant from each other. An event that occurs at a particular region in
the macromolecule can therefore create a change at the region to which it is coupled. In pro-
teins, this allows for the properties at an active site to be altered by some action that occurs
at the site that is coupled to the active site [?]. Allostery will therefore result in motional
correlations between measured properties at distant sites in a protein. As an example of
such activity, these movements can be linked with the binding and folding of proteins which
have a strong role in determining their functional roles. Allostery is important because the
properties of the macromolecules are altered, such as their structure and stability [?]. There
is an interest in finding and explaining the allosteric processes of proteins as it can help us
better understand these complex molecules. This paper will deal with finding and using
methods to identify the motional correlations of particles within proteins and biomolecules,
specifically for applications to the RNA polymerase from the Hepatitis C virus (HCV).

2.2 Measures of Correlation

To discover a relationship between the motions of different regions of macromolecules, we
desire a suitable measure of correlation. The most commonly used correlation coefficient,
the Pearson correlation coefficent, is suitable only for measuring linear trends between two
random variables. Given two random variables, x and y, Pearson’s population correlation
coefficient ρxy is defined as

ρxy =
cov(x, y)√

var(x)var(y)
(2.1)

The population correlation coefficient takes values between -1 and 1 and is a measure of
a linear relationship between x and y. The higher the magnitude of ρxy, the stronger the
relationship, where a magnitude of 1 indicates a perfect linear relationship between x and y.

It is nearly impossible to calculate the population correlation coefficient ρ, so a sample
correlation coefficient is calculated to estimate ρ. The sample correlation coefficient r is
defined as

rxy =
sxy√
s2xs

2
y

(2.2)

where sxy is defined as the sample covariance of x and y and s2x and s2y are the sample
variance of x and y respectively.
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The Pearson correlation coefficient is suitable only for measuring linear trends between
two random variables. When dealing with spatial information, however, we need a measure
of dependency that is able is able to detect evolving, nonlinear relationships between two
given random variables.

This problem can be mitigated by noting that in the case of a simple linear regression, the
absolute value of the Pearson correlation coefficient between the regressor and the true value
of the regressand will be the same as that of the predicted values generated for the regressand
and the true values. This results from the Pearson correlation coefficient being invariant up
to a sign change from scaling and invariant under the addition of a constant value to a random
variable. In general, the correlation coefficient between the predicted values from a regression
and the observed values is known as R, the square root of the commonly used coefficient
of determination. With this knowledge, one can design a correlation coefficient more adept
at detecting complex relationships by performing several multiple linear regressions where
the regressors are transformed versions of one of the random variables that are able to
approximate a larger class of functional forms. By choosing the R value from the best
combination of regressors as chosen by cross-validation and using that as our measure of
correlation, we now have a correlation coefficient robust enough to pick up linear and non-
linear trends. Note that in doing so, we now sacrifice the symmetry of the correlation
coefficient; this new measure of correlation will in general return different results when the
random variable chosen for the regressors and regressand are switched.

Having decided this, we should choose basis functions for our transformations that are
able to approximate broad classes of different functions. A natural choice is a polynomial
basis: it is well known that functions defined on a closed interval with any minor degree of
smoothness can be uniformly approximated by polynomials of increasing degree (the famed
Weierstrass approximation theorem). Thus, the regressions we perform will be polynomial
regressions, where the order of the polynomial used to calculate the correlation coefficient
will be chosen using the mean squared predictive error from k-folds cross-validation.

The data that is tested for correlations will be simulations of the movement of p molecules
within a single protein. We have p random variables, x1, x2, ..., xp that represent the random
locations of each molecule in the protein. The data contains n observations for each xi so
that our data can be represented as a (nxp) matrix. The goal of this project is to obtain a
measure of the correlation among the p molecules which will be presented in a pxp matrix
R of that correlation between each xi and xj where i 6= j.

3 Methodology

3.1 Random Vectors

Given a finite sequence of random variables x1, x2, . . . , xp, we will find it convenient to express
them in the form of a vector x, where x = (x1, x2, . . . , xp)

T . Then for such an x, define

E(x) = (E(x1),E(x2), . . . ,E(xp))
T (3.1)
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and define

cov(x) =


var(x1) cov(x1, x2) · · · cov(x1, xp)

cov(x2, x1) var(x2) · · · cov(x2, xp)
...

...
...

cov(xn, x1) cov(xn, x2) · · · var(xp)

 (3.2)

We will refer to cov(x) as the covariance matrix for the random variables, which will usually
be denoted by Σ. Note that Σ will always be symmetric as cov(xi, xj) = cov(xj, xi).

3.2 Linear Regression

Simple linear regression attempts to model a linear relationship between a dependent vari-
able y and a single independent variable x. We will frequently refer to y as the regressand
and x as a regressor. We assume the relationship between y and x is of the form

y = β0 + β1x+ ε (3.3)

where ε represents error accompanying the model due to random fluctuations or errors in
measurement and β0 and β1 are unobservable parameters. For n observations, our model
then becomes.

yi = β0 + β1x+ ε (3.4)

for i = 1, 2, ..., n.

Given data that fits the model 3.4, we will derive estimates of β0 and β1 using the method
of least squares. The following assumptions are used in the classical linear regression model
to provide favorable results about our regression estimates.

1. E(εi|x1, x2, . . . , xp) = 0

2. var(εi|x1, x2, . . . , xp) = σ2

3. cov(εi, εj|x1, x2, . . . , xp) = 0 for i 6= j

The assumptions state that given x1, x2, . . . , xp, yi is only dependent on xi, the variance of y
and ε are constant and thus not dependent on xi(homoscedasticity), and εi is not correlated
with εj if i 6= j.

Multiple linear regression extends simple linear regression and attempts to model a depen-
dent variable y on the assumption that it has a linear relationship with p independent vari-
ables x1, x2, ..., xp. Again, y will commonly be referred to as the regressand and x1, x2, ..., xp
as regressors. We assume the relationship between y and x1, x2, ..., xp takes the form

y = β0 + β1x1 + β2x2 + ...+ βpxp + ε (3.5)

Given n observations, we represent our model as

yi = β0 + β1x1i + β2x2i + ...+ βpxpi + εi (3.6)

Simple linear regression is now seen to be a case of multiple linear regression when only one
regressor is included in the model. The multiple linear regression equations for n observations
may be expressed in matrix form thusly:
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y1
y2
...
yn

 =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

...
1 xn1 xn2 · · · xnp



β0
β1
...
βp

 +


ε0
ε1
...
εn


or, more compactly,

y = Xβ + ε (3.7)

where X is an n× (p+ 1) matrix known as the design matrix. When generalized to multiple
linear regression, the classical assumptions become

1. E(ε|X) = 0

2. cov(ε|X) = σ2I

Our goal is derive estimates for the unobserved parameters β. The estimator we will
used will be based on minimizing the sum of squares of the prediction errors derived from
our estimates. We must additionally assume that X has full column rank to carry out our
calculations. If β̂ = (β1, β2, . . . , βp)

T is an estimator of β, then the value of β̂ that minimizes

(y −Xβ̂)T (y −Xβ̂) is given by

β̂ = (XTX)−1Xy (3.8)

This specific estimator β̂ is referred to as the ordinary least squares estimator for β. As long
as the classical assumptions hold, β̂ has the minimum variance of all unbiased estimators
for β.

There is a special type of multiple linear regression known as polynomial regression where
we consider a model of the form

y = β0 + β1xi + β2x
2
i + ...+ βpx

p
i + εi (3.9)

All of the standard results about multiple linear regression hold with polynomial regression;
the models that we use to generate predictions and calculates measures of correlation will
all be of this form.

3.3 Correlation Coefficients

The multiple correlation coefficient R is a generalization of r. R can be defined as

R = ryŷ (3.10)

where ryŷ is the simple correlations of observed yi variables and predicted ŷi variables. The
multiple correlation coefficient R can also be expressed geometrically as the cosine of θ, the
angle between y − ȳj and ŷ − ȳj which are the centered forms for y and ŷ, where j is the
vector containing all 1’s in its entries. The cosine of θ can be written as

cos θ =

√
(ŷ − ȳj)′(ŷ − ȳj)√
(y − ȳj)′(y − ȳj)

= R (3.11)
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3.4 Leave-One-Out Cross-Validation

Cross-validation divides data into two categories in order to compare the accuracy of different
models. One category is used to train the model while the other category tests the model
created from the training category. K-fold cross-validation is one of the most common used
forms of cross-validation and it requires the data to be divided into k bins with equal amounts
of data. There are k iterations that occur in k-fold cross-validation. For each iteration, one
bin of data is taken to be the testing category while the other k − 1 bins are part of the
training category [?]. The leave-one-out cross-validation (LOOCV) is a type of k-fold cross-
validation where k equals the number of observations of the data set.

In this paper, k-fold cross-validation is used to determine the optimal degree of a linear
regression model. Using the data from the k − 1 bins of the training category, a linear
regression model is created. The linear regression model is then used to predict the de-
pendent variables associated with the independent variables in the testing category. After
the cross-validation is performed, the predicted dependent variables are used along with the
true dependent variables to find the prediction error of that linear regression model. The
prediction error is determined by

pe =
n∑

i=1

(yi − ŷi)2

n
(3.12)

The optimal degree can be found by finding the linear regression model with the minimal
prediction error.

3.5 Implementation of the Algorithm in R

We use the statistical programming language R in order to calculate the optimal degree of
the linear models and to produce the matrix of correlations between all random variables to
be tested. In order for the code to run properly, we use the libraries ”MPV” for the cross
validation, ”Rmpi” and ”snow” to enable the code to run on a parallel computing system,
and ”gplots” to create heatmaps. The code is split up into functions that all work together
within one function called “cor.mat”. The subfunctions that work together within “cor.mat”
are named as follows:

1. polyreg

2. polyreg.kfolds.pe

3. optimal.degree

4. unicor

All of the functions listed above are called within each other, with “cor.mat” calling “uni-
cor”, “unicor” calling “optimal.degree”, etc. The first function that performs the calculations
is “polyreg”. Given a regressor, regressand, and degree, a linear model and the degree of
the polynomial are calculated and combined into a list. The code then proceeds to find the
optimal degree for which the polynomial models are fitted to the data by “optimal.degree”.
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This function calls “polyreg.kfolds.pe” to calculate the prediction error. “polyreg.kfolds.pe”
obtains this result by calculating the PRESS (prediction residual sum of squares) and divid-
ing PRESS by the total number of observations. The PRESS score is the sum of squares that
are a result of LOOCV. After the PRESS scores for each model are found, the model of with
the degree that generates the lowest prediction error is returned. With this degree, “unicor”,
calculates the correlations between this optimal model with the actual values obtained and
returns this correlation.

The code’s inner workings are all contained in the “cor.mat” function. The first task
that R must perform is to create two matricies that hold the values of interest, which are
the correlations between the set of random variables and the optimal degree of polynomials
that would best correspond to their linear regression models.

A random variable’s correlation between itself is always 1, and it is trivial to perform a
regression of a random variable on itself. Because of this the entries along the diagonals of
the matrix for the regression scores, named “scores”, and the matrix for the optimal degrees,
named “opt.deg”, are all 1 and NA, respectively. After both the matrix for correlation scores
and optimal degree have been calculated, the results are printed to the screen for users to
see.

4 Results

5 Conclusions
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