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Abstract

The study of pancreatic β-cells comprises a crucial part of the study of the group of
diseases known as diabetes. These cells exist in groups known as islets of Langerhans
and are responsible for storing and producing insulin. They exhibit electrical bursting
behavior during insulin production that correlates with the rate at which insulin is
secreted into the bloodstream. Coupling is a natural process within islets that enables
the cells to communicate with one another and transfer various ions and electrical
currents; coupling of both voltage and metabolites can occur. We model multicellular
islets using an existing system of seven ordinary differential equations to model beta cell
function. We first treat metabolic coupling as independent and look for combinations
of coupling strengths, initial conditions, and parameter values that lead to metabolic
oscillation loss, which has been observed in previous studies using a two-cell model. We
find examples of each of these three features that can cause β-cells to exhibit oscillation
loss at particular values. Next, we simulate cells with mutated KATP channels that
remain open indefinitely, which have been described in experimental studies but not
yet modeled. Simulations run with these mutations reveal the existence of a bursting
death threshold, described by the least percentage of cells in the islet that must be
mutated for electrical bursts to completely disappear. We determine that this threshold
is independent of coupling strengths, cell distribution, and possibly islet dimension;
however, we also determined that this threshold is not independent of the glucose
influx rate.

1 Introduction

Diabetes mellitus is a group of diseases in which the body either does not have the capa-
bilities of producing insulin or is not capable of producing sufficient amounts of insulin to
compensate for the glucose that enters the body. When blood sugar levels are increased
by the consumption of glucose, a healthy human body would naturally produce adequate
amounts of insulin to remove excess glucose that could potentially be harmful if maintained.
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(a) (b)

Figure 1.1: (a) Oscillation behavior of two coupled β-cells with an electrical coupling value
of 0.01 pS. (b) Oscillation behavior of the β-cells with an electrical coupling value of 0.1 pS.

The biological units that are responsible for the secretion of insulin are identified as β-
cells [11], which are one of four hormone-producing cells located in the pancreas. Clusters of
β-cells are known as islets of Langerhans, which depend on other islets within the pancreas
to successfully carry out the production of insulin.

Previous studies have observed that β-cells undergo series of voltage oscillations during
the course of insulin secretion. Once glucose enters the β-cell, the cell itself experiences an
increase in ATP, which leads to the depolarization of the β-cell, allowing calcium to enter and
insulin to be released into the bloodstream [8]. The frequency at which insulin is secreted
correlates to the oscillating behavior of the cells.

Coupling is a natural process that occurs between cells within the islets of Langerhans.
Gap junctions serve as pathways for the coupling that occurs between these cells, allowing for
effective communication from cell to cell, including the transfer of ionic currents and calcium
ions [1]. Previous findings have supported the notion that certain variations of coupling play
a vital role in facilitating the production of insulin [11]. This can be seen primarily in the
bursting patterns that the cells experience.

Figure 1.1 displays the oscillation behaviors of two heterogeneous β-cells when they are
electrically coupled with one another. Both plots display continuous voltage alterations
between rapid spiking behavior and stages of gradual increase. The rapid voltage oscillations
denote the bursting action of the β-cells, signifying the release of insulin. The smooth lines
following these rapid spiking phases represent the periods of rest before insulin is secreted
again.

Cases in which the cells contain stronger electrical coupling strengths eventually become
synchronized. Figure 1.1 contains the results that are obtained when the electrical coupling
strength is sufficiently strong. It can be visually seen that the oscillations between the
two cells are more harmonized, which suggests that the bursting behaviors between the
two heterogeneous cells are similar. However,as coupling is strengthened the burst pattern
can change. For example, the interburst interval is shortened in 0.1 pS coupling shown in
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Figure 1.1(b) compared to 0.01pS coupling in Figure 1.1(a).
We are particularly interested in studying the factors that contribute to oscillation death.

The term “death” is used to signify the loss in slow metabolic oscillations that the β-cells
exhibit. We run simulations that implement various combinations of electrical and metabolic
coupling by the metabolites fructose 1-6-biphosphate (FBP) and glucose 6-phosphate (G6P).
Sherman [11] describes his simulations on a model containing two heterogeneous β-cells.
Cases that were tested included coupling cells through a combination of electrical and FBP
coupling whereas another case looked at the same coupling combination with the addition
of G6P coupling [11]. The results that were obtained from these simulations suggest that
oscillation deaths could be due to the addition of G6P coupling. We aim to extend Sherman’s
research by running simulations with larger islets of cells rather than just two cells. Since an
islet of cells in the human body is generally around 1000 cells, it would be beneficial to run
simulations using more realistic values and in order to confirm [the accuracy of] Sherman’s
proposed theory in the death of oscillations.

To approach this problem, we represent a computational islet using an N ×N ×N cube.
Our model uses a stiff system of seven ordinary differential equations per cell describing rates
of change in voltage (V ), fractions of open K+ channels and concentrations of five chemical
species. These equations can be found in Section 2.2.1. Using this model, there are various
distributions that we can use to scrutinize the behaviors exhibited by the islet of cells [8].

Our research focuses primarily on the grouped and equal distribution models. Figure 1.2
provides a visual representation of the arrangement of the two cell types in each distribution.
In the grouped structure, cells of the two heterogeneous types are arranged together and one
cell type is coupled to the other type only along the middle layer of the islet. In the equally
distributed structure, cells are arranged in an alternating pattern such that no cell is coupled
to another cell of its own type. Using these particular distributions allows us to interpret
two extremes of the possible models. More details on the implementation of the system of
equations as well as an organized description on all of the different types of distributions can
be found in sections 2.2.1 and 3.1 respectively.

Besides using these models to study the factors that bring oscillation deaths, we look at
cases with distributions containing a certain proportion of mutated cells, in which the KATP

channels of the cells are always open. Similar to what we did for the first part of our research,
we observe the bursting behaviors that result from the addition of these mutated cells. We
also determine the specific proportion of mutated channels that serve as a threshold between
oscillating patterns and oscillation deaths. Specific distributions of these mutated cells can
be found in Section 3.3.

After running tests that focused on manipulating the coupling strengths and varying
the proportions of cells with mutated KATP channels, we were able to gain a clearer under-
standing on how these parameters play a role in the oscillating behavior of the cells. When
determining the types of initial conditions that caused metabolic oscillations in β-cells, we
found that certain combinations of coupling at specific ranges of coupling strengths cause
gradual reduction in metabolic oscillations. Furthermore, we noticed that having greater
than 74% mutated cells in the distribution causes metabolic oscillation death regardless of
the conditions of the other parameters. Details on specific inputs and results we obtained

3



(a) (b)

Figure 1.2: The colors, red and blue, are used to represent the two different cell types that
exist in the (a) grouped structure and (b) equally distributed structure.

can be found in Section 4. Final conclusions are made in Section 5.

2 Background

Insulin, produced by pancreatic β-cells, works by allowing muscles to absorb glucose and
causing the liver and fat cells to process glucose. Type I diabetes is a type of diabetes in
which the immune system attacks the β-cells; this results in uncontrolled glucose fluctuations
and causes death if untreated. On the other hand, Type II diabetes is caused by increasing
resistance to the effects of insulin, rather than the lack of β-cells directly. In the case that
the β-cells are capable, they will increase production of insulin; in the case that they are not,
a condition called hyperglycemia will occur, characterized by an excessive amount of glucose
in blood plasma. Both cases will result in dramatic increases in heart disease risk, and in the
later case, kidney damage, blindness, or peripheral neuropathy can occur. Currently, more
than 25.8 million people in the United States suffer from diabetes [4], generating a large
demand for relevant models of the pancreas and β-cells in particular.

The endocrine part of the pancreas contains clusters of cells called islet of Langerhans in
which β-cells reside alongside three other types of cells. The models we examine only take β-
cells into account since they are the only insulin-secreting cells. Section 2.1 provides a deeper
discussion of physiology; secion 2.2 introduces the mathematical model we implement.
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2.1 Physiology

Early studies have shown that β-cells exhibit oscillations of both voltage and calcium concen-
trations (denoted as [Ca]) [9]; these oscillations correlate with insulin secretion [5]. Oscilla-
tions are grouped in bursts of electrical activity. In addition, within the islet of Langerhans,
β-cells are connected via intercellular connections called gap junctions; two cells that are
connected through gap junctions are said to be coupled. Gap junctions allow small ions and
products of metabolism, called metabolites, to flow between cells. It has been determined
that these metabolites influence oscillations in β-cells and hence have an effect on insulin
secretion [11].

Oscillations in voltage and metabolites, such as glucose 6-phosphate (G6P) and fructose 1-
6-bisphosphate (FBP), occur when glucose enters β-cells through special protein channels in
the cell membrane called glucose transporters (e.g., GluT1 or GluT2) via facilitated diffusion.
This only occurs when the concentration of glucose outside the β-cell is high. The cell then
metabolizes the glucose in the mitochondria and produces adenosine triphosphate (ATP).
Increases in the concentration of ATP triggers depolarization of β-cell membranes by closing
channels of ATP-sensitive (KATP) channels, which causes calcium to enter the cell. The
subsequent influx of calcium and increase in [Ca] causes the release of vesicles containing
insulin into the blood stream. Glucose levels are then decreased due to the release of insulin
and the β-cell resets itself [7]. The reaction rate of glucokinase (called RGK) reflects the level
of glucose stimulation and does not change during the course of a simulation.

The KATP channels that facilitate membrane depolarization are the main regulator of
electrical activity in the islet, and glucose-stimulated insulin secretion relies on the sensitivity
of these channels to ATP-inhibition. Mutations that render KATP channels insensitive to
ATP-inhibition suppress glucose-stimulated insulin secretion and alter voltage levels in the
islet. Mutations of these channels can occur such that they remain either open or closed.

Since KATP and [Ca] both contain a charge, the previously mentioned response to glucose
will result in changes in voltage. Voltage tends to burst during the process of releasing
insulin, with differing rates and variability among cells. Within the islet of Langerhans,
the distribution of cells of differing voltage bursts is unknown. We use the distributions
described in [8] to address this. These distributions are described in Section 3.1.

Multiple mathematical models of varying complexities have been developed to describe
the dynamics between [Ca], electrical activity, and various metabolites. We utilize one of
these models in our analysis.

2.2 Numerical Model

Our individual β-cell model uses a system of seven coupled ordinary differential equations
(ODEs); a brief history of the development of the model is located in [8]. We view the islet
as a cube of side-length N ; there are N ×N ×N total cells in our simulations.
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2.2.1 Seven Variable Model Equations

We simulate β-cells using a model with glycolytic dynamics initially developed by Smolen
[10] and combined with electrical dynamics by Bertram et al. [3] and studied in by Tsaneva-
Atanasova et al. [11]. The model’s dependent variables are voltage V , fraction of open
potassium channels n, and other chemical concentrations including cyctosolic calcium Ca,
endoplasmic reticulum calcium Caer, adenosine diphsophate ADP, adenosine triphosphate
ATP, and metabolites glucose-6-phosphate G6P and fructose bisphophate FBP. The equa-
tions are

dV

dt
= −

IK + ICa + IK(Ca) + IK(ATP)

Cm

, (2.1)

dn

dt
=

n∞ − n

τn

, (2.2)

d[Ca]

dt
= fcyt(Jmem + Jer), (2.3)

d[Caer]

dt
= −σV ferJer, (2.4)

d[ADP]

dt
=

[ATP]− [ADP] exp
{

(r + γ)
(
1− [Ca]

r1

)}
τa

, (2.5)

d[G6P]

dt
= k(RGK −RPFK), (2.6)

d[FBP]

dt
= k(RPFK − 0.5RGPDH), (2.7)

where [XX] denotes the concentration of XX in the cytosol for Ca, ADP, G6P, FBP, and
ERSurCaer. Additional definitions are

IK = gKn(V − VK),

ICa = gCam∞(V )(V − VCa),

IK(Ca) = gK(Ca)(V − VK),

gK(Ca)([Ca]) =
gK(Ca)([Ca])

1 +
(

Kd

[Ca]

)2 ,

IK(ATP) = gKATP(V − VK),

gKATP = gK,ATPo∞([ADP]),

m∞(V ) =
1

1 + exp
[
−20+V

12

] ,

Jer = 0.0002([Caer]− [Ca])− 0.4[Ca],

Jmem = (4.5× 10−6)ICa − 0.2[Ca],
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where

o∞([ADP]) =
0.08(1 + 20.165[ADP]

17
) + 0.89(0.165[ADP]

17
)2

(1 + 0.165[ADP]
17

)2 ∗ (1 + 0.135[ADP])
26

+ 0.05[ATP])
, (2.8)

with constants: Cm = 5300 fF, VK = −75 mV, gK = 2700 pS, τn = 20 ms, gCa = 1000 pS,
VCa = 25 mV. The forms for consumption of G6P due to phosphofructose kinase RPFK and
dehydrogenase consumption of FBP RGPDH can be found in [3]. Note that RGK, gKCA, and
gK,ATP are parameters relating to bursting rates of electrical potential (voltage).

In order to couple the cells together, we define a matrix G that contains the coupling
strengths between each pair of cells. The matrix G will be defined such that the coupling
is diffusive (α(Vi − Vj) where α is the coupling strength, Vi is the neighboring cell and Vj is
the current cell). Thus the differential equation can be written as

dy

dt
= f(t, y) + Gy, (2.9)

where y = (V, n, [Ca], [Caer], [ADP], [G6P], [FBP])T is a vector of length 7N3 (i.e., V =
[V1, . . . , VN3 ]T , etc.) and f(t, y) is the right hand side of equations (2.1) - (2.7).

Using a similar model, the authors of [11] were able to demonstrate that oscillations in
FBP and G6P concentrations will stop if certain parameters of two heterogeneous cell types
are appropriate. We aim to be able to demonstrate that such “oscillation death” also occurs
in multicellular computational islets.

3 Methodology

We now move to modifying the existing seven variable model for our study.

3.1 Simulating Metabolic Coupling

We start by extending an existing model [11] of the β-cell, which can handle electrical
coupling already, to be able to handle G6P and FBP coupling. To implement these additions,
our simulations use three matrices CV , CG6P , and CFBP , where the (a, b) entry of each matrix
contains the coupling strength between the ath cell and the bth cell, gV , gG6P , and gFBP ,
respectively. As in [8], a and b are indexed with i + jN + kN2 being the one-dimensional
index of the (i, j, k)-th cell. We now use these three matrices to define the matrix G in (2.9)
by

G =



CV 0 · · · 0 0 0
0 0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 0 0 0
0 0 · · · 0 CG6P 0
0 0 · · · 0 0 CFBP


.
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The matrix is a 7×7 block matrix with blocks of size N3×N3. This formulation of G allows
(2.9) to simulate voltage, G6P, and FBP coupling while having no other coupling.

Since the distribution of heterogeneous cell types within the islet is unknown, we simulate
the metabolically coupled islet with several different arrangements. Following the work of
[8] on arrangements of two cell types, we use the arrangements of

1. Grouped Structure: The islet is split into two equally sized blocks of N3

2
slow cells and

N3

2
fast cells.

2. Equally Distributed Structure: The islet is split so every neighbor of a slow cell is fast
and ever neighbor of a fast cell is slow.

Since the feedback from the electrical subsystem onto the glycolytic subsystem is weak,
we can effectively isolate the glycolytic sybsystem to locate a critical transition in parameters.
In order to investigate the parameter space of where oscillation death, we vary the following
parameter space in a 5× 5× 5 islet:

1. Coupling strength: Vary the metabolic coupling strength of G6P and FBP across a
range while holding initial conditions and other parameters the same.

2. Initial Values of Metabolites: Look through the four-dimensional parameter space
of initial values in G6P and FBP for two heterogeneous cell types while holding other
parameters the same.

3. RGK values: Change the RGK values for two types of cells with different initial values.

3.2 Detecting Oscillations

We also implement a function which automatically determines if oscillation occurs in FBP
concentrations in a cell, due to the large number of studies we run to obtain our results. This
function gives time for the dynamics in the cell to stabilize and then uses a discrete derivative
to examine if the absolute value of the estimated rate of change is above a certain threshold.
If it is not, we classify the study to be non-oscillating and determine whether or not the
difference is within a threshold limit of synchronous oscillation death (see Section 4.1.1).

While this algorithm catches most cases of oscillation death, there are cases, especially
near the transition around oscillation dynamics, where this algorithm fails from large rest
periods and lack of computational time. For example, Figure 3.1 demonstrates an example
where a potential error could occur. If the simulation had only captured 10 minutes, the
late oscillation would not have been detected. Formulating a method of detecting whether
no oscillation will occur with greater accuracy can be the subject of a future study.

3.3 Simulating Mutations

In [2], Benninger experimentally studied the effects of mutated KATP channels on calcium
oscillations in islets of β-cells in mice. We extend the seven variable model so that it can
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Figure 3.1: FBP in cell with RGK = 0.05 s−1 and RGK = 0.06 s−1.

handle cases in which a specified portion of cells in the islet have mutated KATP channels that
remain fully open or fully closed (see Section 2.1). Although our code is capable of simulating
both mutation types, we only investigate the open mutation case; closed mutations are a
possible direction for further study.

From [11], we know that o∞([ADP ]) from (2.8) controls the open and closed behavior of
KATP channels; however, this number is not a fractional amount of open channels. In order
to determine appropriate values for o∞ in mutated cells, we numerically solved the ODEs
(2.1) - (2.7) under different coupling conditions and distributions and observed the values of
o∞ during the run. Based on our observations, we set o∞ to 0.0075 for the open mutation
as the largest observed values for o∞.

Given these observations, we redefine (2.8) to

o∞([ADP ]) =

{
0.0075 : Open Mutation
α([ADP ]) : Normal Cell

, (3.1)

where

α([ADP ]) =
0.08(1 + 20.165[ADP]

17
) + 0.89(0.165[ADP]

17
)2

(1 + 0.165[ADP]
17

)2 ∗ (1 + 0.135[ADP])
26

+ 0.05[ATP])
.

For our investigations of islets with cells with open mutations, we are interested in two
distributions with m ≤ N3 mutated cells and N3 −m non-mutated cells:

1. Mutated Grouped: Set cells 1 to m to be mutated cells and cells m + 1 to N3 to be
non-mutated cells.

2. Mutated Spread: Set cell 1 to be mutated. Start by calculating the the difference
between the indices of all the non-mutated cells with all the mutated cells and find the
smallest difference for each non-mutated cell. For the set of smallest differences, find
the maximum value and set the cell whose difference is that maximum value to be the
new mutated cell. Repeat until the number of mutated cells is m.
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For the case of open mutations, the burst death threshold is the number of mutated
cells in the islet required for no voltage bursts to be observed in the first 10 minutes of the
simulation. The main focus of our mutation studies is to see how this threshold value is
effected by different electrical and metabolic coupling, cell distributions, and RGK values.
The different studies we run for the 5× 5× 5 islet are as follows:

1. Electrical Coupling Study: This study varies electrical coupling strength from 25 pS
to 600 pS incrementing by 25 pS while holding G6P and FBP coupling constant at
0.0 ms−1 and RGK at 0.2 s−1 for both types of distributions.

2. FBP Coupling Study: This study varies FBP coupling strength from 0 ms−1 to
0.1 ms−1 incrementing by 0.005 ms−1 while holding G6P coupling constant at 0.0 ms−1,
voltage coupling at 100 pS, and RGK at 0.2 s−1 for both types of distributions.

3. G6P Coupling Study: This study varies G6P coupling strength from 0 ms−1 to
0.1 ms−1 in increments of 0.005 ms−1 while holding FBP coupling at 0.01 ms−1, voltage
coupling at 100 pS, and RGK at 0.2 s−1 for both distributions.

4. RGK Study: This study varies RGK from 0 s−1 to 0.6 s−1 incrementing by 0.025 s−1

while holding voltage coupling at 100 pS, FBP coupling at 0 ms−1, and G6P coupling
at 0 ms−1 for both types of distributions.

We also run a sampling of these studies for the 3× 3× 3 islet to see if and how varying islet
size affects the threshold.

3.4 Numerical Method

Given the different reaction rates of the system of differential equations (2.1) - (2.7), we
have to treat this system as a stiff system of differential equations. We use a memory-
modified version of Matlab’s ode15s with automatic differentiation developed in [6] to run
our simulations. Matlab’s standard implementation of ode15s uses a version of Numerical
Differentiation Formulas (NDFk), which is the standard method for stiff systems of differ-
ential equations. In order to solve the system, NDFk requires a Jacobian to be supplied,
which Matlab allows to be handled in multiple ways. We supply a sparse Jacobian derived
analytically using automatic differentiation, computed via the ADiMAT software developed
by C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch, and A. Vehreschild from the Institute
for Scientific Computing, RWTH Aachen University, Germany. This is the optimal choice
for our studies because it has a significant speedup compared to most other methods, as
observed in [8], as well as allowing us to make modifications to the model in our simulations
without having to recompute the Jacobian by hand.

Matlab’s standard ode15s has significant speed and memory issues in solving the seven
variable model even when supplied with a Jacobian found using automatic differentiation.
The memory-modified version developed in [6] reduces the amount of memory allocated for
each iteration of the process and removes the feature of ode15s which stores the gradient
vector for each iteration since it is not used in any of the post-processing for our model.
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Efficiency tests in [8] show that there is a significant speedup when the combination of
ADiMat and the memory-modified ode15s is used, which allows for more simulations.

In addition, usage of Matlab’s Parallel Computing Toolbox allowed for significantly higher
simulation throughput. The command parfor ran many of our simulations in parallel on 8
computing cores, effectively increasing efficiency by eight times.

3.5 Description of the Computing Environment

The computations for this study were performed using the Matlab programming language
(www.mathworks.com) under the Linux operating system on the cluster tara, located in
the UMBC High Performance Computing Facility (www.umbc.edu/hpcf). The distributed-
memory cluster tara consists of 86 nodes, with each node containing two quad-core Intel
Nehalem X5550 processors (2.66 GHz, 8 MB cache) and 24 GB memory, thus up to 8 parallel
processes can be run simultaneously per node. All nodes and the 160 TB central storage are
connected by an quad-data rate InfiniBand interconnect.

4 Results

Our modifications to previous studies allow for metabolic coupling by the two metabolites
glucose 6-phosphate (G6P) and fructose 1-6-bisphosphate (FBP) and enable us to study
the effects of metabolic and electrical coupling on the oscillation behaviors exhibited by
pancreatic β-cells. Using the extended capabilities of our model, we simulate and describe
effects of varying parameters in a multicellular islet and extend our study to simulate islets in
which some cells have mutated KATP channels. See sections 3.1 and 3.3 for further techniques
used in the objectives of our studies.

4.1 Oscillation Death

At certain combinations of electrical and metabolic coupling strengths, slow metabolic oscil-
lations have been found to reduce and disappear in simulations run with a two-cell model [11].
We extend the findings of previous studies and consider a multicellular islet to observe for
which initial conditions and coupling strengths we lose metabolic oscillations. To remain
consistent with the model supplied by the study, we extend some portions of our imple-
mentation to include Matlab translations of XPP files that produced figures in [11]. For
additional consistency, we include heterogeneity of cells by allowing for the coupling of two
types of cells with different initial conditions and RGK values. Our simulations accept values
for electrical, G6P, and FBP coupling strengths as parameters.

Figure 4.1 displays three classes of metabolic behavior that we observe in using our two
types of heterogeneous cells when we vary coupling strengths and initial conditions of FBP
and G6P; these classes are asynchronous oscillation death, synchronous oscillation death,
and oscillation. Numerics can be used to show that these three types of dynamics can be
observed within the metabolic components even in a two-cell case. In Figure 4.2, coupling
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(a) (b) (c)

Figure 4.1: Classes of metabolic behavior: (a) asynchronous oscillation death with
gV =75 pS, gG6P =0.01 ms−1, and gFBP =0.001 ms−1, (b) synchronous oscillation death
with gV =75 pS, gG6P =0.1 ms−1, and gFBP =0.001 ms−1, (c) continued oscillation with
gV =75 pS, gG6P =1 ms−1, and gFBP =0.1 ms−1.

RGK = .27 RGK = .4

Figure 4.2: G6P and FBP nullclines of a two cell system for differing RGK.

is simulated by implementing a linear term and a vertical shift into the voltage, FBP and
G6P equations. By adjusting the RGK values from 0.27 to 0.4, we change the equilibria
from a three equilibria system to a one equilibrium system, effectively displaying a pitchfork
bifurcation. This suggests that altering RGK values might have a significant impact on a
model with a larger cell count, which we examine in Section 4.1.3. For a more detailed
analysis of this bifurcation in a two-cell case, see [11].

4.1.1 Observing the Effects of Metabolic Coupling on Oscillations

Oscillation death in the 2-cell case was observed with electrical coupling of 75 pS and
metabolic coupling of 0.001 ms−1 for FBP and 0.01 ms−1 for G6P. Manipulating our model
such that only two cells are coupled to one another, we were able to reproduce this behavior
with the same parameters. However, applying the same parameters to a multicellular islet
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Figure 4.3: Scatter plot with contour lines separating regions of different oscillation behavior.
Blue signifies continued oscillation, red signifies synchronous oscillation death, and green
signifies asynchronous oscillation death.

of 5× 5× 5 β-cells with the grouped and equal distributions, as detailed in 3.1, we find that
oscillation death does not occur. In contrast, we observe metabolic oscillation death when
all parameters are kept the same except for FBP coupling strength, which we decrease by a
factor of 10. In following studies where we investigate the effect of altering initial conditions
to test for oscillation loss, we use this updated combination of coupling strengths since we
have confirmed that it can produce oscillation death in a multicellular islet.

While finding a single set of coupling strengths for which oscillation death occurs is
desirable, as it confirms that these observations in the two-cell model also occur in the mul-
ticellular islet, the boundary in parameter space between continued oscillation and oscillation
death is also of interest in our studies. By running a study in which we varied the G6P cou-
pling strength from 0 ms−1 to 0.1 ms−1 in steps of 0.005 ms−1 and the FBP coupling strength
from 0 ms−1 to 0.01 ms−1 in steps of 0.0005 ms−1, we produce Figure 4.3. We see that for the
given initial conditions and electrical coupling strength, which are held constant, all three
types of metabolic behavior occur as we vary the coupling strengths of the two metabolites.

4.1.2 Initial Conditions

We are interested in combinations of initial conditions and coupling strengths that result
in bistable solutions, particularly in asynchronous oscillation death, shown in Figure 4.1(a).
Due to the dynamics of the two metabolites, the initial values heavily influence which basin of
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Figure 4.4: Coupling strengths kept constant at gV =75 pS, gG6P =0.01 ms−1, and
gFBP =0.001 ms−1. Blue regions signify continued oscillation, green regions signify asyn-
chronous oscillation death, and red regions signify synchronous oscillation death.

attraction the behavior will demonstrate. Figure 4.4 plots slices of the four dimensional space
composed of varying the initial concentrations of FBP and G6P in two heterogeneous cell
types. Plots such as Figure 4.4 with regions showing basins of attraction can be constructed
for a chosen set of coupling strengths on a mesh of initial concentrations of G6P and FBP
in the two types of cells, allowing us to predict the class of solution of our multicellular
islet. Providing a perturbation sufficient to alter the concentrations of the two metabolites
so that they lie in a different basin of attraction, we can switch between bistable solutions;
this extends the previous result in coupled cells in [11] to the multicellular islet.

4.1.3 Varying RGK Values

Many of our simulations use values of RGK fixed at 0.2 s−1 and 0.25 s−1 for the two hetero-
geneous cell types. Preliminary runs which use coupling strengths and initial conditions as
described in previous studies but set a single RGK value shared by both cell types suggest
that oscillation death can also occur as a result of altering this parameter. Plots from these
preliminary runs with RGK values of 0.35 s−1 and 0.45 s−1 in both cell types can be seen in
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RGK = 0.35 s−1 RGK = 0.45 s−1

Figure 4.5: Parameter values and initial conditions are as described in 7(c) of [11], except
RGK which is set to the values given, in both types of cells.

Figure 4.5. Runs with both values display synchronous oscillation death in the islet.
Varying RGK and reintroducing heterogeneity of this parameter reveals that certain com-

binations of RGK values in the two cell types result in asynchronous or synchronous oscillation
death. As the rest periods between oscillations get longer and longer, we encounter a prob-
lem with the oscillation detection that we use (see Section 3.2) such that we were not able
to conclusively determine which long-term behavior the metabolites were exhibiting. This
problem is magnified greatly for small RGK values – for an example, see Figure 3.1. Thus,
though we can observe oscillation death in particular cases while varying values of RGK,
accurate contour plots summarizing our tests could not be created until a better oscillation
detection method is developed.

4.2 Observing the Effects of Open KATP Channel Mutations

Our model considers two types of KATP channel mutations: always open, which has harmful
effects, and always closed, which has protective effects. We investigate only the case of open
mutations but include simulation capabilities of both cases in our model. These mutations
alter the sensitivity of KATP channels to ATP-inhibition, which changes the value of the
current IK(ATP) and, in consequence, the cell’s voltage (see (2.1)). Based on this structure
of influence within our model, we expect that the presence of mutated cells in the islet will
affect voltage oscillations most severely. We expect the degree of influence to depend on the
percentage of cells in the islet with channel mutations.

We conduct a detailed study of electrical oscillation behavior as open KATP channel
mutations are introduced into a 5× 5× 5 computational islet with an RGK value of 0.2 s−1

in both types of cells. As the number of mutated cells increases, the number of voltage
bursts observed in cells in the islet gradually decreases. Voltage bursts continue to reduce
until they eventually disappear when 93 of the 125 cells, or 74 percent, are mutated. For
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1 Mutated Cell

40 Mutated Cells 93 Mutated Cells

Figure 4.6: Voltage bursting as mutated cells are introduced into the 5×5×5 islet. Coupling
strengths kept constant at gV =75 pS, gG6P =0 ms−1, and gFBP =0 ms−1. RGK is 0.2 s−1.

the parameters used in this run, we observe the same bursting death threshold of 74 percent
mutated cells in a 3× 3× 3 islet, suggesting that the threshold is independent of islet size.
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Figure 4.8: Voltage bursting as mutated cells are introduced into the 5×5×5 islet. Coupling
strengths kept constant at gV =100 pS, gG6P =0.035 ms−1, and gFBP =0.01 ms−1. RGK is
0.2 s−1.

Figure 4.7: Bursting death threshold vs. RGK.

RGK Threshold RGK Threshold
0.050 89 0.350 93
0.075 90 0.375 93
0.100 90 0.400 94
0.125 91 0.425 94
0.150 92 0.450 95
0.175 92 0.475 95
0.200 93 0.500 96
0.225 93 0.525 96
0.250 94 0.550 97
0.275 94 0.575 97
0.300 95 0.600 97
0.325 93

Figure 4.6 shows the gradual loss of electrical bursting as the percentage of mutated cells
in the islet increases. The behavior displayed corresponds to an islet coupled electrically
but not metabolically; however, the behavior exhibited by islets with additional coupling
parameters is analogous. Figure 4.8 gives the number of electrical bursts over 10 minutes vs.
the number of mutated cells in a 5× 5× 5 islet coupled metabolically as well as electrically.
Compare this to the top left plot in Figure 4.6; we see that the threshold is the same in both
computational islets.

We conduct a study of the effect of RGK values on oscillation death threshold in the islet
with open channel mutations by varying the value of RGK and documenting the number
of mutated cells for which electrical oscillations disappear. In this study, we hold coupling
constant at gV =100 pS, gG6P =0 ms−1, and gFBP =0 ms−1 and do not consider heterogeneity
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Table 4.1: Runtimes in HH:MM:SS for 200,000 ms with the range of islet dimensions N ×
N × N considered in our studies comparing the original ode15s and the memory-modified
ode15s code.

Original Memory-Modified
N ×N ×N ode15s ode15s
3× 3× 3 00:00:28 00:00:21
4× 4× 4 00:01:38 00:00:33
5× 5× 5 00:04:07 00:00:46
6× 6× 6 00:10:02 00:01:14
7× 7× 7 00:24:26 00:01:45
8× 8× 8 00:32:52 00:02:47
9× 9× 9 00:48:47 00:04:51

10× 10× 10 01:11:58 00:07:48

in the values of RGK in the two cell types. Figure 4.7 and the accompanying table contain
the bursting death thresholds for multiple RGK values in the 5× 5× 5 islet.

We have seen above that the bursting death threshold may be independent of islet di-
mensions. We observe through repeated runs with mutated cells with varied parameters
that the threshold depends on RGK values in the islet but is independent of electrical and
metabolic coupling strengths as well as of mutated cell arrangement within the islet. This
threshold exists in every computational islet we considered in which cells with open channel
mutations were introduced and increased.

4.3 Numerical Study

Efficiency studies were performed in [8] to show that the numerical implementation we use
is optimized. We compare the original ode15s method with the memory-modified version to
justify its continued use when we introduce metabolic coupling capabilities and associated
computations into the model. Table 4.1 gives the wall clock time in HH:MM:SS for a simu-
lation with coupling strengths of gV =75 pS, gG6P =0.01 ms−1, and gFBP =0.001 ms−1 for
200,000 ms in the grouped distribution. ADiMat software is used in both tests.

The results in Table 4.1 show significant improvement in simulation runtime, particularly
as islet dimension N increases. Islets in the human body have approximately 1,000 β-
cells, which makes the performance of simulations run at N = 10 significant for biological
applications.

5 Conclusions

Through our studies, we gained a better understanding of the effects of coupling on the oscil-
lation and bursting behaviors of pancreatic β-cells. Oscillation behaviors exhibited by β-cells
in our multicellular islet are similar but not the same as those obtained from simulations
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run with two β-cells. Manipulating coupling strengths, initial conditions, and RGK parame-
ters that corresponded to two heterogeneous cell types all led to metabolic oscillation death
within the islet for particular values. Methods we developed can predict the class of solution
of our multicellular islet – whether it displays continuous oscillation, asynchronous oscilla-
tion death, or synchronous oscillation death – when given a specific set of initial conditions
and coupling strengths.

Based on the tests we ran, we believe there is a correlation between metabolic oscillation
death and the metabolite parameter G6P. When coupled only through voltage and FBP,
the β-cells in our islets did not experience metabolic oscillation death. However, when
G6P coupling was introduced into our model, the islet exhibited oscillation loss for certain
coupling strengths. Furthermore, increasing FBP coupling appeared to restore oscillations.
These observations may have biological implications.

When we ran simulations on islets containing cells with open KATP channel mutations,
there was a clear reduction in electrical bursts as higher proportions of mutated cells were
implemented in our islet. Through simulating islets with large proportions of mutated cells,
we were able to determine a bursting death threshold describing the least number of mutated
cells necessary for electrical bursting to be lost. In the case of our 5× 5× 5 islet model ran
with one possible set of parameter values (Section 4.2), we found this threshold to be 93 of
the 125, or 74%. This percentage, though independent of coupling strengths, mutated cell
arrangement, and possibly islet dimension, is not independent of RGK values.

In further investigations, it would be of interest to perform simulations involving islets
containing cells with closed KATP channel mutations. Our model includes the structures
necessary to perform these simulations, and numerical tests have shown us that they can
be run by setting the function o∞ to have the constant value 0.007, which is its minimum
(see Section 3.3 for the details of this function). However, we did not investigate the closed
mutation case, due mainly to time constraints.

Further tests could also be conducted to try to identify the specific range of coupling
strengths that result in each one of the metabolic behaviors we describe in Figure 4.1.
Looking ahead, we hope that our studies will be beneficial to researchers in the biological
fields who can run experimental versions of our simulations to confirm the accuracy of results
we obtained through our studies.
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