
Throughput Studies on the InfiniBand Interconnect
via All-to-All Communications

REU Site: Interdisciplinary Program in High Performance Computing

Nil Mistry1, Jordan Ramsey2, Benjamin Wiley3, and Jackie Yanchuck4,
Graduate RA: Xuan Huang5, Faculty Mentor: Matthias K. Gobbert5,

Clients: Christopher Mineo6 and David Mountain6

1Department of Mathematics and Statistics, University of Connecticut
2Department of Computer Science and Electrical Engineering, UMBC
3Department of Mathematics and Statistics, University of New Mexico

4Department of Mathematics, Seton Hill University
5Department of Mathematics and Statistics, UMBC
6Advanced Computing Systems Research Program

Abstract

Distributed-memory clusters are the most important type of parallel computer, and
they dominate the TOP500 list. The InfiniBand interconnect is the most popular net-
work for distributed-memory compute clusters. Contention of communications across a
switched network that connects multiple compute nodes in a distributed-memory clus-
ter may seriously degrade performance of parallel code. This contention is maximized
when communicating large blocks of data among all parallel processes simultaneously.
This communication pattern arises in many important algorithms such as parallel sort-
ing. The cluster tara in the UMBC High Performance Computing Facility (HPCF) with
a quad-data rate InfiniBand interconnect provides an opportunity to test if the capac-
ity of a switched network is a limiting factor in algorithmic performance. We find that
we can design a test case involving increasing usage of memory that does not scale any
more on the InifiniBand interconnect, thus becoming a limiting factor.

1 Introduction

The TOP500 list at www.top500.org of the world’s most powerful supercomputers is up-
dated every June and November. For many years by now, the list has been dominated
by distributed-memory clusters. The high-performance InfiniBand interconnect is the most
popular network for distributed-memory compute clusters. It connects the parallel processes
that are run on several nodes in the cluster. Information transferred among nodes may stress
communication across the network, both in relation to the size of the data being sent and
the number of nodes being considered. As communication increases, contention along the
system will stress the network due to the massive transfer of data among compute nodes. At
significantly high levels of contention, the network will eventually fail to process inter-node
communication efficiently. This work studies this effect by creating the maximum possible
contention by simultaneous communication among all processes, created by All-to-All com-
munication commands. These commands are integral to many parallel algorithms and thus
a relevant test case.

1



To accomplish sufficient inter-node stress within the network in an algorithmically real-
istic way, our team implemented a parallel sorting function which transfers the local portion
of a user-defined number of n pieces of data among the p processes. Before the commu-
nications, each node holds a portion of an array of data that is sorted locally, but may
contain portions that should reside on other processes. Using All-to-All commands, each
individual node sends the appropriate portions of data to all other nodes in the network
simultaneously, thus maximizing inter-node communication stress. Our results show that,
for constant global memory, as the number of processes increase, speed improves as the net-
work contention decreases under All-to-All communication. Alternately, for constant local
memory, as the number of processes increase, speed deteriorates as the network contention
increases under All-to-All communication. This test case demonstrates that stress on the
InfiniBand network can be created and will limit the scalability of parallel algorithms that
use All-to-All communications as building blocks.

Section 2 specifies the details of the computational hardware, in particular of the In-
finiBand interconnect, used in the studies. Section 3 explains the design of the sorting
algorithm as algorithmic motivation for the All-to-All communications as well as the design
of the sample data that results in the maximum contention of the communications. Then,
Section 4 collects all results for the experiments with constant global memory and constant
local memory, and Section 5 summarizes the conclusions.

2 Background

2.1 Computational Environment and InfiniBand Interconnect

The studies were performed on the cluster tara in the UMBC High Performance Comput-
ing Facility (HPCF). All details of the cluster tara and in particular about its InfiniBand
interconnect are posted on the webpage www.umbc.edu/hpcf. Various performance studies
using tara are available as technical reports, for instance [3] that compares performance by
two implementations of MPI. Following [3], we use the MPI implementation MVAPICH2.

The cluster tara has 86 nodes, comprising 82 compute nodes, 2 develop nodes, 1 user
node, and 1 management node. Each node has two quad-core Intel Nehalem X5550 processors
(2.66 GHz, 8192kB cache) and 24 GB of local memory. All components of tara are connected
by a quad-data rate InfiniBand interconnect.

InfiniBand is a connection that allows for high-speed data transfers from computers to
input/output devices [4]. It is a switched fabric communication link, meaning that it connects
the nodes to each other via switches. In computer networks, switches receive data sent from
one device and direct the data to only the device(s) which is (are) meant to receive the
data [4]. This allows for more secure and potentially faster data transfers between multiple
devices. Using the InfiniBand communication network, there is very low latency (1.2 µs
to transfer a message between two nodes), and wide bandwidth up to 3.5 GB (28 Gb) per
second.

It is intuitive to hypothesize that as the number of processes on which a parallel job is
run increases, the communication between processes will become slower and may bottleneck

2



Figure 2.1: Schematic of leaf module with 18 ports.

because more processes need to communicate with each other than when the number of
processes is small. However, many times, commercial manufacturers attempt to avoid this
occurrence by using methods such as virtual channels and adaptive routing. Adaptive rout-
ing, as apposed to merely routing, allows nodes to reroute the path that data is sent based
on network fluctuations, such as congestion at one node. When a problem is encountered
while transferring data, information is sent to the appropriate nodes, and new paths to send
data that avoid problem areas are created [4]. Virtual channels were created in order to alle-
viate the deadlock issue, and also decrease network latency and throughput. Though these
methods are commonly used in parallel computing technology to solve many communication
issues that arise, their effects on performance have not been rigorously studied. Therefore,
it is difficult to determine when inter-job communication will become a performance issue.
Our experiments study this issue. In order to study the effects of inter-job communication
on job performance, our team implemented a sort algorithm which requires communication
between all parallel processes.

2.2 Leaf Modules

The InfiniBand switch in the cluster tara has six leaf modules, each with 18 ports. Two leaf
modules currently have complete sets of 18 compute nodes attached to them. Specifically,
one leaf module connects the nodes n37 through n54, while another leaf module connects
nodes n55 through n72. We can control the choice of leaf module by explicitly requesting
nodes for our jobs by name. The remaining leaf modules contain other nodes that are
not part of the partition of compute nodes (such as the develop nodes or components of the
storage system) or have a defective node among its connections. Therefore, in this study, our
team focuses on how contention is effected both within one leaf module and contention over
two leaf modules. Considering this network contention provides insight into whether parallel
algorithms that send large blocks of data via All-to-All communications result in contention
first over two leaf modules or whether there is contention using nodes located within just
one leaf module. More importantly, our conclusions answer the question regarding whether
implementation of parallel code requiring All-to-All communications of large data seriously
degrades performance.

The 18 ports in one leaf module are arranged evenly in two rows of ports; that is, nine
ports are located in the first row and nine nodes are located in a second row. Each of the
nine ports are separated in three groups of three ports, as shown in the schematic picture

3



N = 9 N = 18 N = 36

Figure 3.1: Network schematics for All-to-All communication between N = 9, 18, 36 nodes.

in Figure 2.1. Our team studied contention by running several tests by requesting specific
nodes, starting with three nodes that form one group on the leaf module, then testing nine
nodes or one row in the leaf module, and finally extending this process to the whole leaf
module with 18 nodes, and then across two leaf modules with 36 nodes. This setup allows
us to see if contention problems can be linked to communication within the leaf module or
communication between leaf modules of parallel code.

3 Methodology

3.1 All-to-All Communications

An All-to-All communication simultaneously sends and receives data between all parallel
processes in one call. Since is it eventually not possible to have physical cable connections
between all possible pairs of ports in the InfiniBand switch and its leaf modules, All-to-
All commands necessarily lead to contention between all required pairwise communications.
The network schematics in Figure 3.1 gives a visual impression of how many cables would be
needed to connect N = 9, 18, 36 nodes, respectively. An All-to-All communication command
sends the jth block of its input array from Process i to Process j and receives it into the ith

block of the output array on Process j. MPI has two All-to-All communication commands:
MPI_Alltoall and MPI_Alltoallv. The former command sends the same amount of data
between all processes, while the latter one can send variable (hence the letter “v” at the end
of the command name) amounts of data between all processes [2]. To test the InfiniBand
network, we will maximize the contention by communicating the largest block sizes possible.
Thus, in our studies, also the variable version MPI_Alltoallv will send (by choosing an
appropriate example data set) the same amount of data between all processes, since that
maximizes contention between messages.

4



3.2 Experimental Design

In order to effectively stress inter-job communication, our team implemented a sorting func-
tion which transfers data among all nodes within the InfiniBand network utilizing the MPI
commands MPI_Alltoall and MPI_Alltoallv. The idea of the algorithm follows [2, Chap-
ter 10] that uses it to introduce these MPI commands. The data structure is given by n
numbers, which are distributed onto the p parallel processes. Only local arrays of length
ln := n/p are stored, never a global array of length n. Only the minimum number of arrays
are used in the algorithm, namely one vector unsorted that holds the unsorted data origi-
nally and one vector sorted that holds the sorted data at the end of the algorithm. These
two vectors have length ln on each parallel MPI process. In [2], the algorithm has four steps:
(i) The data in unsorted is sorted locally on each process (by any serial method of choice);
while the numbers in unsorted are now sorted, they may contain components that need to
be sent to the other process, thus creating the need for All-to-All communications. (ii) An
MPI_Alltoall call communicates a single integer among all process pairs that informs the
process pairs, how many pieces of data need to be sent and received among them in the
next step. (iii) An MPI_Alltoallv call communicates the appropriate portions of the local
unsorted vector on each process to the appropriate portions of the local sorted vector on
each process. (iv) The numbers in the received sorted vector then still need local sorting (by
any serial method) to obtain the final result of the algorithm, in which the sorted vectors —
if concatenated from all processes — are globally sorted.

To focus entirely on the effect of the communications on the timings, we choose a sample
dataset, in which neither of the local sort algorithms in steps (i) or (iv) above are needed.
Moreover, since the goal is to stress the network by having as much simultaneous parallel
communication as possible, we design the dataset in the initial unsorted vector to have an
equal number of components that need to be sent to all other processes. That is concretely,
out of the ln = n/p numbers in unsorted on one parallel process, the same block length of
ln/p components needs to be sent to each of the p processes.

The idea is best understood by the concrete example of n = 48 numbers, given as numbers
1, 2, . . . , 48, distributed to p = 4 processes, with ID numbers 0, 1, 2, 3 in MPI counting,
displayed in the matrix

unsorted =


1, 2, 3, 13, 14, 15, 25, 26, 27, 37, 38, 39
4, 5, 6, 16, 17, 18, 28, 29, 30, 40, 41, 42
7, 8, 9, 19, 20, 21, 31, 32, 33, 43, 44, 45

10, 11, 12, 22, 23, 24, 34, 35, 36, 46, 47, 48

 .

Each of the p = 4 rows in this matrix lists the ln = n/p = 48/4 = 12 numbers that are
initially on the Processes 0, 1, 2, 3, respectively. We note that the numbers in each row
above are already locally sorted, thus not requiring step (i) of the algorithm. To achieve a
globally sorted vector, stored in local vector sorted on each process, requires for this sample
dataset the communication of a block length ln/p = 12/4 = 3 of numbers among all pairs of
processes. For example for Process 0 (data in first row of the matrix), the group of numbers
13, 14, 15 needs to be sent to Process 1, which — coming from Process 0 — will show up as
the first numbers in vector sorted on Process 1. This communication gives the result that

5



can be summarized in the matrix

sorted =


1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48

 ,

which lists in each row the numbers in sorted on the Processes 0, 1, 2, 3, respectively; notice
the group 13, 14, 15 at the start of the second row for Process 1. We observe that the numbers
in each row of this matrix are sorted and no local sort of the vectors sorted on each process
in step (iv) of the algorithm is needed.

3.3 Memory Predictions

To stress the network as much as possible, we need to make the amount of data communicated
between each pair of parallel processes as large as possible. In the example dataset designed
so far, this amount of data is simply a block length ln/p of numbers, which is thus given
indirectly by choosing n and p. We introduce now another independent variable m that
allows to control the amount of this data independently from n and p. Namely, in place of
each number in the example for the arrays unsorted and sorted we use a struct that contains
an array of m double-precision numbers. We can now think of the numbers in unsorted and
sorted as indices into an array of structs, and communicating each struct requires the sending
and receiving of m doubles. In other words, in place of communicating ln/p numbers between
process pairs, we communicate ln/p many vectors of m double-precision numbers, called a
block size ln/p of m-vectors for short.

An additional benefit of introducing m is that we can now explicitly control the memory
requirement of the arrays by choosing m. The two local vectors, unsorted and sorted, are
the overwhelming variables in memory. Since each node on the cluster tara has 24 GB
of memory, total local memory must be less than 24 GB per node. To comfortably stay
within this memory also on one node, the vectors are chosen as less than 10 GB each to
insure that memory does not become a problem. In Table 3.1, we specialize our memory
calculations to use the maximum possible number of 8 parallel processes on each compute
node, which maximizes contention on each node for the All-to-All communications among
its local processes and contention when all local processes access the InfiniBand cable at
the same time. Table 3.1 provides the formulas for memory predictions for a global array
of length n consisting of vectors of m doubles. The global vector is then divided into p
local arrays of block length ln = n/p of m-vectors, such that the size of the local vectors is
constant per number of processes p. The block size of the portions in the arrays unsorted
and sorted that need to be communicated between process pairs is then the block size ln/p
of m doubles.

As explained in Section 2, we wish to use N = 1, 3, 9, 18, 36 nodes, which we choose
by name so as to ensure their optimal connectivity in the leaf modules in the InfiniBand
interconnect. Running then 8 processes on each node with two quad-core CPUs for most
contention of network traffic, we have p = 8 N = 8, 24, 72, 144, 288 parallel processes in a
job. These numbers are listed in the first two rows of Table 3.1.

6



Table 3.1: Formulas for memory predictions.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
Dimension m m m m m m

Length n of global array of m-vectors and their size in elements:
Length n n n n n n
Size m n m n m n m n m n

Length ln = n/p of local arrays of m-vectors and their size in elements:
Length ln

n
p

n
p

n
p

n
p

n
p

Size m n
p

m n
p

m n
p

m n
p

m n
p

Length ln/p of block size of m-vectors in All-to-All and their size in elements:
Length ln/p

n
p2

n
p2

n
p2

n
p2

n
p2

Size m n
p2 m n

p2 m n
p2 m n

p2 m n
p2

In all following experiments, we fix the length of the global array at n = 2 ·(8 ·18 ·2 ·3)2 =
1,492,992. This number is designed to ensure that all desired values of the block length ln/p
divide n without remainder. That is, n needs to be divisible without remainder not just by p,
but by p2, since ln/p = n/p2. We had originally planned to consider also some other values
of p, hence some additional factors are contained in the choice of n that are not strictly
needed going forward.

4 Results

4.1 Experiment with Constant Global Memory

To effectively test the contention of the InfiniBand network, our team conducted a perfor-
mance study with a constant global memory value, by fixing m = 512 as constant, which
makes the global memory an estimated 6 GB for each of the two arrays unsorted and sorted
in Table 4.1 for n = 1,492,992. The local memory of ln = n/p decreases from 729 MB
to 20 MB, as the numbers of processes p and nodes N increase. This effect of decreasing
memory is amplified for the block size ln/p, namely from process to process it decreases by
another factor of p, so that 93,312 kB decrease dramatically to 72 kB eventually.

Table 4.2 and Figure 4.1 both display the results of observed wall clock time in seconds
for the call to the MPI_Alltoallv command sending and receiving m ln/p doubles between
processes for the choices of parameters in Table 4.1. The results show that the communication
speed of the All-to-All command in fact decreases with additional nodes in the parallel job.
The plot brings out how dramatic the decrease is.

This is remarkable and demonstrates that the high-performance InfiniBand interconnect
can handle this stress successfully for constant global memory. In the context of a larger
algorithm that uses All-to-All communications, this communication will not be a bottleneck.

7



Table 4.1: Constant global memory for m = 512: predicted memory usage for one array.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 512 512 512 512 512

Length n of global array of m-vectors and their memory in GB:
Length n 1,492,992 1,492,992 1,492,992 1,492,992 1,492,992
Memory 6 GB 6 GB 6 GB 6 GB 6 GB

Length ln = n/p of local arrays of m-vectors and their memory in MB:
Length ln 186,624 62,208 20,736 10,368 5,184
Memory 729 MB 243 MB 81 MB 41 MB 20 MB

Length ln/p of block size of m-vectors in All-to-All and their memory in kB:
Length ln/p 23,328 2,592 288 72 18
Memory 93,312 kB 10,368 kB 1,152 kB 288 kB 72 kB

Table 4.2: Constant global memory for m = 512: wall clock time in seconds.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 1.14 0.57 0.25 0.15 0.11

4.2 Experiment with Constant Local Memory

The results up to this point used a constant global memory with m constant for all p, which
leads to a rapidly decreasing block size ln/p between pairs of processes. In order to keep the
block size in the All-to-All communications as large as possible, the vector length m will now
be designed to increase with increasing p = 8N , as reported in Table 4.3. The goal is to keep
the block size ln/p as large as possible, while p increases. This is limited by the requirement
that the arrays unsorted and sorted need to fit in memory on each node. This implies that
we cannot keep the block size ln/p constant, but only the local memory controlled by ln;
thus we pick the function m = 512 N , so that the local memory of each array unsorted and
sorted is 729 MB for all values of p; we call this the case of constant local memory. The
block size ln/p will then still decrease with increasing p, but less dramatically than before.
This is seen in Table 4.3 in a decrease from 93,312 kB to 2,592 kB, which is a much larger
final value than the 72 kB in Table 4.1. Notice the size of the global array increasing to
a total of 205 GB on 36 nodes with increasing m, showing what significant problem size is
eventually considered in this experiment.

The results displayed in Table 4.4 and Figure 4.2 present the observed wall clock times
in seconds, as we increase the number of processes p = 8 N , while holding local memory on
N nodes constant using m = 512 N . With the local memory held constant, the run times
steadily increase as we increase N . The plot in Figure 4.2 brings the increase out very well,
in particular compared to the decreasing line in Figure 4.1, which started from the same
initial data point. Thus, in this case of maximum contention on the network, it is apparent

8



Figure 4.1: Constant global memory for m = 512: wall clock time in seconds vs. number of
nodes.

Table 4.3: Constant local memory for m = 512 N : predicted memory usage for one array.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 N 512 1,536 4,608 9,216 18,432

Length n of global array of m-vectors and their memory in GB:
Length n 1,492,992 1,492,992 1,492,992 1,492,992 1,492,992
Memory 6 GB 17 GB 51 GB 103 GB 205 GB

Length ln = n/p of local arrays of m-vectors and their memory in MB:
Length ln 186,624 62,208 20,736 10,368 5,184
Memory 729 MB 729 MB 729 MB 729 MB 729 MB

Length ln/p of block size of m-vectors in All-to-All and their memory in kB:
Length ln/p 23,328 2,592 288 72 18
Memory 93,312 kB 31,104 kB 10,368 kB 5,184 kB 2,592 kB

that the run times increase with the numbers of processes, and the InfiniBand interconnect
is eventually overcome by the All-to-All contention. For the use of All-to-All communication
commands as building blocks in larger algorithms, this means that parallel scalability studies
cannot succeed, since communication time worsens as the number of processes p increases.

4.3 Remarks

The previous two subsections focused sharply on the contrast between the case of constant
global memory with m = 512 for all N and of constant local memory with m = 512 N . This

9



Table 4.4: Constant local memory for m = 512 N : wall clock time in seconds.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 N 1.14 1.64 2.09 2.28 2.30

Figure 4.2: Constant local memory for m = 512 N : wall clock time in seconds vs. number
of nodes.

subsection contains two remarks that are separated out so as to avoid distracting from the
comparison above.

Remark 1: The value 512 in m = 512 N in Section 4.2 was chosen so as to keep the memory
usage safely under the available 24 GB on one node. This gave the results in Table 4.4. We
actually conducted studies also for larger values than 512 in the formula for m = 512 N .
Table 4.5 extends Table 4.4 by results for 800, 810, and 1024, chosen by trial-and-error
progressively closer to the absolute limit of 24 GB. That is, if one array with m = 512 N
uses 6 GB of memory, as predicted in Table 4.3, then one array with m = 1024 N should use
12 GB, and thus two such arrays should still fit into 24 GB, even if barely.

This is brought out by the results in Table 4.5 that demonstrate the code to run for this
value of m. However, the dramatically increased time, as one reads down the columns for
N = 1 and N = 3, makes it clear that some swapping to hard disk is going on; this makes this
case too large to draw reliable conclusions from. In fact, for larger N > 3, memory-related
errors begin to appear, as indicated by the notation ERR in the table. These errors in fact
begin to crop up also for smaller m values already, even if at larger N than for m = 1024 N .

This explains our choice of m = 512 N to avoid any errors and safely stay within the
available memory.

10



Table 4.5: Wall clock time in seconds. The notation ERR indicates a memory error.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 N 1.14 1.64 2.09 2.28 2.30
m = 800 N 1.79 3.05 3.73 5.01 6.73
m = 810 N 1.80 2.83 3.30 5.54 ERR
m = 1024 N 85.00 170.62 ERR ERR ERR

Table 4.6: Constant global memory for m = 512: wall clock time in seconds for relative
comparison of All-to-All commands.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
A. MPI_Alltoall(int) <0.01 <0.01 <0.01 <0.01 <0.01
B. MPI_Alltoallv(int) <0.01 0.01 0.10 0.32 0.59
C. MPI_Alltoallv(double) 1.14 0.57 0.25 0.15 0.11

Remark 2: The sketch of the algorithm in Section 3 mentions two All-to-All communica-
tions. All of our main results refer to the MPI_Alltoallv command that communicates the
ln/p blocks of vectors of m doubles, since that is the significant communication command,
compared to the MPI_Alltoall command that communicates one single integer. These two
cases are labeled C. MPI_Alltoallv(double) and A. MPI_Alltoall(int), respectively, in
Table 4.6. These two lines of data confirm that our intuition is correct, since all times for
the case of A. MPI_Alltoall(int) are less than 0.01 seconds and much smaller than the
timings for C. MPI_Alltoallv(double). However, we also have — for testing purposes —
a call to MPI_Alltoallv in our code that has the same structure as the MPI_Alltoallv

of the m doubles but communicates ln/p many integers (instead of ln/p many m-vectors of
doubles). For reasons that are unclear, the communication cost of this command labeled
B. MPI_Alltoallv(int) in Table 4.6 increases dramatically with N and eventually overtakes
both other commands. We have no explanation for this behavior. This demonstrates how
much care has to be taken to write efficient and reliable parallel code.

5 Conclusions

As the results in Section 4.2 show, with local memory constant and contention on the network
maximized, the run times for MPI_Alltoallv grow with the number of processes. This test
case demonstrates that stress on the InfiniBand network can be created and will limit the
scalability of parallel algorithms that use All-to-All communications as building blocks. This
is as contrasted by the results in Section 4.1 that prove efficient behavior of the All-to-All
communications, as long as the global memory stays constant, which implies a dramatic
decrease of the block size of the pairwise communications in the MPI_Alltoallv command.

11



This is a realistic situation in many performance studies and shows that the high quality of
the InfiniBand interconnect is able to handle many situations successfully, even if not the
most extreme ones. Furthermore, two remarks in Section 4.3 show that for cases with larger
memory requirement, we encounter excessive run times and eventually memory errors, and
that care needs to be taken to implement efficient and reliable parallel code.

Acknowledgments

These results were obtained as part of the REU Site: Interdisciplinary Program in High
Performance Computing (www.umbc.edu/hpcreu) in the Department of Mathematics and
Statistics at the University of Maryland, Baltimore County (UMBC) in Summer 2013, where
they were originally reported in the tech. rep. [1]. This program is funded jointly by the Na-
tional Science Foundation and the National Security Agency (NSF grant no. DMS–1156976),
with additional support from UMBC, the Department of Mathematics and Statistics, the
Center for Interdisciplinary Research and Consulting (CIRC), and the UMBC High Per-
formance Computing Facility (HPCF). HPCF (www.umbc.edu/hpcf) is supported by the
National Science Foundation through the MRI program (grant nos. CNS–0821258 and CNS–
1228778) and the SCREMS program (grant no. DMS–0821311), with additional substantial
support from UMBC. Co-author Jordan Ramsey was supported, in part, by the UMBC Na-
tional Security Agency (NSA) Scholars Program though a contract with the NSA. Graduate
RA Xuan Huang was supported by UMBC as HPCF RA.

References

[1] N. Mistry, J. Ramsey, B. Wiley, J. Yanchuck, X. Huang, M. K. Gobbert,
C. Mineo, and D. Mountain, Contention of communications in switched networks
with applications to parallel sorting, Tech. Rep. HPCF–2013–13, UMBC High Perfor-
mance Computing Facility, University of Maryland, Baltimore County, 2013.

[2] P. S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann, 1997.

[3] A. M. Raim and M. K. Gobbert, Parallel performance studies for an elliptic test
problem on the cluster tara, Tech. Rep. HPCF–2010–2, UMBC High Performance Com-
puting Facility, University of Maryland, Baltimore County, 2010.

[4] C. M. White, Data Communications and Computer Networks: A Business User’s Ap-
proach, Course Technology, 2013.

12


