Parallelizing Computation of Expected Values in Recombinant
Binomial Trees

Sai K. Popuri*!, Andrew M. Raim'?, Nagaraj K. Neerchal!, and Matthias K. Gobbert!

1Departmem‘c of Mathematics and Statistics, University of Maryland, Baltimore County
2Center for Statistical Research & Methodology, U.S. Census Bureau

Abstract

Recombinant binomial trees are binary trees where each non-leaf node has two child nodes,
but adjacent parents share a common child node. Such trees arise in finance when pricing
an option. For example, valuation of a European option can be carried out by evaluating the
expected value of asset payoffs with respect to random paths in the tree. In many variants of the
option valuation problem, a closed form solution cannot be obtained and computational methods
are needed. The cost to exactly compute expected values over random paths grows exponentially
in the depth of the tree, rendering a serial computation of one branch at a time impractical. We
propose a parallelization method that transforms the calculation of the expected value into an
“embarrassingly parallel” problem by mapping the branches of the binomial tree to the processes
in a multiprocessor computing environment. We also propose a parallel Monte Carlo method
which takes advantage of the mapping to achieve a reduced variance over the basic Monte
Carlo estimator. Performance results from R and Julia implementations of the parallelization
method on a distributed computing cluster indicate that both the implementations are scalable,
but Julia is significantly faster than a similarly written R code. A simulation study is carried
out to verify the convergence and the variance reduction behavior in the proposed Monte Carlo
method.

Keywords: Binomial tree, Bernoulli paths, Monte Carlo estimation, Option pricing.

1 Introduction

An N-step recombinant binomial tree is a binary tree where each non-leaf node has two children,
which we will label “up” and “down”. The tree has depth N, so that any path from the root node
to a leaf node consists of N up or down steps. The tree is called recombinant because the sequence
of moves (up, down) is assumed to be equivalent to the sequence (down, up). In such a tree, there
are N + 1 distinct leaf nodes and 1+ 2+ -+ (N + 1) = (N + 1)(IN + 2)/2 nodes overall. Any
particular path from the root to a leaf can be written as a binary sequence = (z1,...,zy) where
xzj € B, B={0,1}, and 1 corresponds to an up movement while 0 corresponds to down. Given a

*For Correspondence: saikul@umbc.edu
TDisclaimer: This article is released to inform interested parties of ongoing research and to encourage discussion of
work in progress. Any views expressed are those of the authors and not necessarily those of the U.S. Census Bureau.

saiku1@umbc.edu

Su?

k@p

Su

/ 2 N,
S S
&) w
S/u
(1 ~)2

S/u?

Figure 1.1: A two-step recombinant binomial tree.

density p(x) = P(X = x), we may consider X as a random path from the root to a leaf. We will
refer to random variables X € BV as Bernoulli paths.

A primary example of recombinant binomial trees is the binomial options pricing model proposed
in Cox et al. (1979). This model accounts for uncertainty of a future stock price based on its current
market price at S. Figure 1.1 illustrates a binomial options model for the evolution of the stock in
N = 2 time periods. Starting from the root node, the stock price moves up by an amount u to Su
with probability p or moves down to S/u with probability 1 — p. After one step, each of the two
child nodes further branch to two leaf nodes where a factor of u is applied with probability p or d
is applied with probability 1 — p. Here, the sequences (up, down) and (down, up) both take the
stock price back to its starting price.

The binomial options pricing model is used in the valuation of financial contracts like options,
which derive their value from a less complicated, underlying asset such as a stock price. In order
to calculate the value of an option, one builds a recombinant binomial tree to a future time point
from the current market price of the stock S using a Bernoulli probability model at each time step.
Depending on the type of the option, the option value is either the present value of the expected
option payoff or is calculated by traversing the tree backwards and revising the option value at each
step. See Hull (2003) and Seydel (2003) for more details on options and their valuation. When
the option payoff at a leaf node depends on the path, one must consider all 2V possible paths to
calculate the expected value of the option payoff. The remainder of the paper assumes European
options, where the option can only be exercised at the time of maturity and backward traversal of
the tree is not required.

Pattern-mixture models for missing longitudinal data provide a second example involving re-
combinant binomial trees. A brief overview is given here, while the remainder of the paper focuses
on the options pricing application. In a pattern-mixture model (Little, 1993), longitudinal data
with missing values is available for each subject and the conditional distribution of the data given
the pattern of missingness is considered. Let Yj; be the response from subject ¢ at time ¢, where
i=1,...,nand t = 1,...,T. The multivariate response Y; = (Y;1,...,Y;r) may contain missing
data whose pattern is denoted by Z; = (Zj1,...,Z;ir); Zit is 0 if Yi; is observed and 1 if missing.
Hosseini et al. (2016) have recently adapted this framework to gerontological studies where care-

givers provide responses on behalf of patients on some occasions, and patients themselves respond
at other times. The joint distribution of the observed {(Y;, Z;) : i = 1,...,n} for such a model is
given by

n
[1/(yil=.0)g(=6), (1.1)
i=1
where f and g are the probability functions of y; | z; and z;, respectively. Note that the expected
value calculations with respect to z will involve summing over all Bernoulli paths z.
In applications of recombinant binomial trees, such as the two previously mentioned, it is often
required to compute the expected value of a function V(X))

EV(X) = > V(z)p(=). (1.2)

BN

The option value calculation and the pattern-mixture likelihood (1.1) both take this form. The
function V(x) may depend on the entire path x, and not only on the leaf nodes. Notice that
(1.2) is a summation over 2%V terms, so that computing by complete enumeration quickly becomes
infeasible as N increases. In this work, we propose a method to parallelize the calculation in a
multiprocessor computing environment.

Parallelization of options pricing was considered by Popuri et al. (2013), who proposed a
“master-worker” paradigm. Here, a master process partitions the set BV and allocates the subsets
to worker processes. The final answer is calculated by collecting the worker-level expected values.
This paper instead uses a Single Program Multiple Data (SPMD) approach (Pacheco, 1997), where
each of the M processes determines its assigned subset of BY without coordination from a cen-
tral master. Hence, the calculation can be transformed into an “embarrassingly parallel” problem
(Foster, 1995), in which processes need not communicate except at the end of the computation.
This avoids most of the overhead seen in Popuri et al. (2013) and allows efficient scaling to many
processes. Even with a large number of processes M, the number of paths 2V quickly becomes
exceedingly large as N increases. Therefore, we consider a Partitioned Monte Carlo method which
uses a similar parallelization to reduce approximation error relative to basic Monte Carlo.

The rest of the paper is organized as follows. Section 2 introduces the binomial tree model
to value an option using Bernoulli paths. Section 3 describes a parallel scheme to compute the
expected value exactly. Section 4 presents the Partitioned Monte Carlo method to approximately
compute the expected value. Section 5 presents results from the implementation of the methods
for put options in R and Julia. Concluding remarks are given in Section 6.

2 Valuation of a path-dependent option using the binomial tree
model

A option is a financial contract that gives the owner the right, but not the obligation, to either
buy or sell a certain number of shares at a prespecified fixed price on a prespecified future date. A
call option gives the owner the right to buy shares, while a put option gives the owner the right to
sell shares. Several factors are used to value an option. The strike price K is a prespecified fixed
price. The time T is the future date of maturity; for European options which are considered in this
paper, the option can only be exercised at time T and subsequently becomes worthless. The value
of an option is the amount a buyer is willing to pay when the option is bought. It depends on K,

T, and the characteristics of the underlying stock. More formally, let V(S;) denote the value of
the option at time t, at which time the price of the underlying stock is S;. We assume that time
starts at ¢ = 0 at which point the option is bought or sold. The objective is to calculate V' (.Sy), the
value of the option at time ¢t = 0. Although V' (S;) for ¢t < T is not known, the value V(Sr), called
the payoff, is known with certainty. The value V(S7) of a call option at the time of maturity 7" is
given by

V(ST) = maX{ST — K, O}. (2.1)

For a put option, the value at the time of maturity 7" is given by
V(Sr) = max{K — Sp,0}. (2.2)

Note that in (2.1) and (2.2), the payoffs V' (St) depend only on the price of stock at time T, Sp, and
the strike price K. In more complicated options, the payoffs often depend on additional factors.
For example, the payoffs in path-dependent options depend on the historical price of the stock in a
certain time period. For now, we will restrict our attention to simple options with payoffs in (2.1)
and (2.2).

The binomial tree method of option valuation is based on simulating an evolution of the future
price of the underlying stock between ¢ = 0 and 7' using a recombinant binomial tree. We first
discretize the interval [0, 7] into equidistant time steps. We select N to be the number of time
steps, which determines the size of the tree, and let 6t = T'/N be the size of each time step. Denote
t; =10t for : =0,..., N as the distinct time points. Imagine a two-dimensional grid with ¢ on the
horizontal axis and stock price S; on the vertical axis; by discretizing time, we slice the horizontal
axis into equidistant time steps. We next discretize S; at each t = t; resulting in values Sy, ;, where j
is the index on the vertical axis. For notational convenience, we will write St;; as S;;. The binomial
tree method makes the following assumptions.

A1 The stock price Sy, at t; can only take two possible values over time step dt¢: price goes up to
St,u or goes down to Si,d at t;41 with 0 < d < u where v is the factor of upward movement
and d is the factor of downward movement. To enforce symmetry in the simulated stock
prices, we assume ud = 1.

A2 The probability of moving up between time ¢; and t;11 is p for i =0,..., N — 1.

A3 E(S;., | Su) = Sy.e® where ¢ is the annual risk-free interest rate. For example, ¢ may be
the interest rate from a savings account at a high credit-worthy bank.

Under assumptions A1-A3, and if the stock price movements are assumed to be lognormally dis-
tributed with variance o2, it can be shown that

u=PF+ VB +1,
p= (e —d)/(u—d),
1 2
_ Lot (q+02)dt
6] 5 (e +e).
The standard deviation o is also known as the volatility of the stock. For more details on deriv-

ing v and p, see Hull (2003) or Seydel (2003). The above description follows the notations and
development in Section 1.4 of Seydel (2003) closely.

Algorithm 1 Build the grid of stock prices and calculate option payoffs for binomial method.
fori=1,2,...,N do
Sij = S()ujdifj for j=0,1,...,1
end for
for j=0,...,N do
VNj — max{SNj — K, 0}
end for

Su?
Vay = max(Su? — K,0)

/ p(l \p)
Sdu
(1 ~) P Vo1 = max(Sdu — K,0)
S

S

Sd?
Voo = max(Sd? — K,0)

Figure 2.1: A two-step recombinant binomial tree with call option payoffs.

Starting with the current stock price in the market Sy, a grid of possible future stock prices
S;j is built using v and p. Algorithm 1 shows the procedure to build a binomial tree of simulated
future stock prices and calculate the payoffs at time T for a call option, for which, V(St) is given
by (2.1) at each j at time T". Therefore, Vi; = max{Sy; — K,0},j =0,..., N, where V; is V(S;;).
Figure 2.1 shows a two-step recombinant binomial tree for a call option starting at the stock price
S with the stock price evolution and option payoffs.

In order to calculate the option value V(Sy), the probabilities of reaching each of the leaf nodes
of the tree must be calculated. These may be obtained from the probabilities of traversing each
of the Bernoulli paths of dimension N. Since we assume that p is constant from A2, all the paths
with the same number of up and down movements have the same probability of being traversed.
The option value V(Sy) is computed as the expectation of the payoffs discounted to the starting
time £ = 0 at the annual interest rate ¢ as

N N NN .
V(S)) = e S p(i) Vi = ey (Z.)pm —)N Vi, (2.3)
=0 =0

where p(i) = (]27) (1 — p)N_i is the probability of traversing paths ending at leaf node ¢, whose
payoff is Viy;.

Let X = (Xy,...,Xy) represent a Bernoulli path where each X; ~ Bernoulli(p) independently
fori=1,...,N. Figure 2.2 shows the two-step binomial tree in Figure 2.1 with Bernoulli paths to

leaf nodes shown as vectors. The probability of taking path « is given by
P(X =) =p” (1 —p)N ",

where 1 is an N-dimensional vector of ones. Since there are (]:f) ways of reaching the leaf node ¢,

- > - (2.4)

N\ . .
P{reaching terminal node i} = < >pz(1 —pN

zeBNV:z'1=i
Substituting (2.4) in (2.3), we obtain
N
V(So)=e > Vi Y. p"ta-pNTh (2.5)
i=0 z€BN :x/1=i

If the magnitudes and probabilities of up and down movements at each time step are constant,
there is little computational advantage in evaluating the option value using (2.5) as opposed to
(2.3). However, if the tree is built using time-varying up and down movements with corresponding
probability p; of an up movement at time ¢, or if the payoffs depend on the path x, the model in
(2.3) cannot be used. Let p(x) be the probability of traversing the Bernoulli path « and V() be
the corresponding payoff. Since the space of Bernoulli paths is BY, (2.5) becomes

N
V(So)=e > Y pl@Vn(@)=e Y V(@)p(@), (2.6)

1=0 geBN :x'1=; xzeBN

where p(x) = Hf\il pf(xizl)(l —p;)1®=0) and T is the indicator function. Note that (2.6) is similar
o (1.2). We seek to parallelize the computation of the option value V' (Sp) in (2.6) or in general,
the expected value in (1.2).

3 Parallel Bernoulli Path Algorithm

Computation of the expected value (2.6) quickly becomes expensive as N increases, as 2N Bernoulli
paths must be considered. For example, taking N = 24 yields 16,777,216 possible paths. The
computational burden can be efficiently shared by multiple processors by noting that the problem
is “embarrassingly parallel”. Works such as Ganesan et al. (2009) and Kolb and Pharr (2005) have
proposed parallel methods for evaluating option pricing models based on backward induction in
a binary tree. However, to the best of our knowledge, the approach to parallelize the expected
value computation using Bernoulli paths is novel. In our previous work, Popuri et al. (2013) used a
“master-worker” paradigm where the master process builds the tree, calculates the payoffs, allocates
the terminal nodes to the worker processes, and collects the calculated values from each worker
process to construct the final result. Even though the processes do not communicate with each
other during the calculation, there is substantial initial communication between the master and the
worker processes.

Our present approach is based on the SPMD paradigm where a single program is executed on
all the processes in parallel. Individual processes collaborate with each other to execute parts of

Su V7
/ 1)
s Sud; (1,0)
Sdu; (0,1
Tl e T
Sd
(1 ~)2
Sd?; (0,0)

Figure 2.2: A two-step binomial tree with Bernoulli paths.

the program. It is not necessary for a master process to coordinate the workload in this problem;
instead, each process can determine its share of the 2V paths to work on. This is possible using the
unique rank assigned to each process. Each process computes a local expected value on its partition
of the sample space, and the final expected value is computed by summing across all processes. This
summation is accomplished in the Message Passing Interface (MPI) framework through a “reduce”
operation that coordinates communication between processes in an efficient way (Pacheco, 1997).

Suppose there are M parallel processes with ranks m = 0, ..., M — 1; note that ranks tradition-
ally start at 0 in the MPI framework. We assume that M < N and that M is a power of 2. Let
r =logy(M) so that the rank m of a process can be written with the r-digit binary representation
m = z_12" " 4+ + 212" + 292, where each zj € B. Process m is assigned all paths & with prefix
(2r-1,...,21, 20); this set of 2V=" paths is denoted

N N
B, ={xeB" 121 =2_1,...,Tp-1 = 21,Tp = 20}-

Note that the sets BY form a partition of BY. Figure 3.1 shows a diagram of the mapping from
m to B%. For each Bernoulli path x € IB%% , process m computes the probability of traversing the
path p(x) and the payoff value Viy(x). The local expected value of the payoffs V,,, on process m is
calculated as
Vi = e 97 Z p(x) V(). (3.1)
xcBY
Finally, local expected values are summed to produce the final result
M-1
V(SO) = Vin; (3'2)
m=0
this is implemented by an MPI reduce operation to obtain the result on process 0. The computation
of (3.2) requires 2V~ steps on 2" parallel processes rather than 2V steps on a single process, as

required in the serial computation. The method can be extended to the case when M is not exactly
a power of 2 if we are willing to forfeit perfect load balancing. For example, we can consider a

Processes Paths

gihprocess — % (0.0,...,010,0,..,0) h b

r M-r
EN'T

(00..00114,..1) ~

EM_1}tn Process ————» [1 .1 .---:1 I 0,0,..,0}

r M-r

roaNT

M1.,1101,1,.,1) - _

Figure 3.1: Process-Bernoulli path mapping

partition BY = IB%éV U--- UB% for some K >> M. Process 0 can handle BY for m = 0, M,2M, .. .,
process 1 can handle BY for m =1, M +1,2M +1,..., and so forth.

4 Monte Carlo Estimation and Variance Reduction

Recall that the number of Bernoulli paths in the set B grows exponentially with N. When N be-
comes large, it is infeasible to compute the expected value (2.6) exactly, even with a reasonably large
number of processors. Monte Carlo (MC) estimation provides a way to approximate a complicated
expected value without enumerating the entire sample space. In this section, we propose an MC
method that uses the partitioning scheme from section 3 to approximate the result using M parallel
processes. The m™ process given the responsibility of drawing from BY, for m =0,..., M — 1, so
that we effectively enumerate the first r = logy M steps of each path, and draw the rest through
Monte Carlo. This provides a reduction in variance over a basic MC estimator that uses the same
number of draws.
Define

6=EV(X)= 3 V().

xzeBN
where the suffix V in V(z) is dropped for notational convenience. The option value in (2.6) can
be written as V = e~%79. Given an estimate 6 of 6, an estimate of V' is V = e 179, its variance
is Var(V) = e=247 Var(f), and an estimate of the variance is Var(V) = e_QQTVar(G) Therefore, we
will focus on estimating 6 for the remainder of this section.

Let ®1,...,zr be R independent and identically distributed (i.i.d.) Bernoulli paths sampled
from BY. Then the MC estimator of § is given by

1 B
9:R;wmi)

and its variance is

~ 1
Var(0) = = Var[V (X)], (4.1)
which can be estimated from the MC draws by

Varé R2Z<)

In Section 3, we partitioned the space BY of Bernoulli paths into IB(])V yenn ,IB%%. Let D,,, denote the
event [X € BY] which occurs with probability P(D,,), for m =0, ..., M — 1. Furthermore, consider
the partitioning X = (Z,Y) where Z € B" and Y € BY~". We can now write as

0=) EV(X)|Dn]P(Dn), (4.2)

where

P(Dp)= Y P(Z=2znY =y)=P(Z=2z,)

yeBN—r

and z,, is the binary representation of m corresponding to the rank of the m'™ process. Let
9™ = E[V(X) | D,,] and let acgm), . (m) be an i.i.d. sample from the distribution of paths on

BY for each m =0,..., M — 1. Suppose Zm:O m = R so that the sample size used is as in the
basic MC estimator. The estimator

is an unbiased estimator of #(™ with variance ﬁVar[V(X) | Di]. Substituting 6™ for o™ in
(4.2) yields the Partitioned MC estimator

M-1

0™ P(D (4.3)

m=0
Following Rubinstein and Kroese (2008), we choose sample sizes R,, proportional to P(D,,) as
R,, = R-P(D,,) for each m. With this choice, and ignoring that R - P(D,,) likely will not be an
exact integer, the variance of the Partitioned MC estimator can be written

M—-1
Var(d;) = Y Var(8"™)[P(D,,))?
"
= > Var[V(X) | Dy] P(Dp) (4.4)

A corresponding variance estimator is

— 1 1 e A \2
Var(dy) = = FZ(V(Q:Z(N) P(Dyn)
m=0 moi=1
M-1R
1 m m R 2
= V(™) ~bn)
m=0 =1

To verify that 0, gives a variance reduction over 6, the law of total variation gives

Var[V(X)] = Ep Var[V(X) | D] + Varp E[V(X) | D] (4.5)
M—-1
= Y Var[V(X) | D] P(Dy) + Varp E[V(X) | D]
m=0

= RVar(f,) + Varp E[V(X) | D],

—~
e~
(@)

~

where the last equality is from (4.4). Substituting the left hand side in (4.6) in terms of Var(f)
from (4.1) and dividing both sides by R we get

Var(d) = Var(d,) + VP E[VR(X)P
Note that Varp E[V(X) | D] =0 if V(X)) | D does not depend on the first r steps of the Bernoulli
paths or when r € {0, N}, that is, when the number of processes M € {1,2¥}. When M = 1, the
Partitioned MC method is same as the basic MC method and when M = NV, it is same as the exact
expected value in (2.6). Since the payoff V(X)) is assumed to depend on the entire path X, the
second term in the right hand side of (4.7) is greater than 0 when 0 < r < N and, therefore, the
Partitioned MC estimator in (4.3) typically yields strict reduction in the variance. We note that
the variance reduction would be more pronounced when V(X)) are heterogeneous across the D,,
and homogeneous within each D,,.

(4.7)

Remark 1. An interesting variation of the Partitioned MC method is to reuse the same sample of

R draws from BY~" on all processes. Consider again the partitioning X = (Z,Y), and suppose Z
(m)
i

of Y and 2(™) = (zﬁr_ni, e ng)’ z(()m)) is the binary representation of m corresponding to the rank

and Y are independent. Let ;' = (2, ¥y;), where y1, ..., yr are i.i.d. draws from the distribution

of the m'™ process. Then an estimate for 0™ is given by

R

~ 1 m

fim) = =D V(™) (4.8)
=1

and 6 in (4.2) can be estimated unbiasedly by

The variance of this estimator is Var(f) = + Vary Exy[V(X)] and an estimate of the variance
from the MC sample is

We refer to § as the Shared Sample MC estimator. Now, the variance of V(X)) can be written as

Var[V(X)] = Vary E[V(X) | Y]+ Ey Var[V(X) | Y]
= RVar(f) + Ey Var[V(X) | Y]. (4.10)

Substituting the left hand side in (4.10) in terms of Var(f) from (4.1) and dividing both sides by
R we get
Ey Var[V(X) | Y]
7 .
Again, the second term in the right hand side of the (4.11) is zero if and only if V(X)) | Y does
not depend on the first r steps of the Bernoulli paths, for 0 < r < N. Since we assume V(X))
depends on the entire path X, Var(f) is strictly less than Var(f). The following result summarizes
the relationship among the variances of 6, 8, and 6.

Var(f) = Var(0) + (4.11)

Theorem 4.1. Suppose Ry, = R form =0,...,M —1,0<r <N, and V(Z,Y) and V(Z,,Y)
are positively correlated for all k,l € {0,...,M —1}. Then Var(s) < Var(0) < Var(0).

Proof. We have already shown that Var() < Var(f). Now we have Var(f,) = 5 ZM ! Var[V(X) |
Dy][P(Dy))?, and from (4.9),

~ 1 M-—1
Var(f) = Vary > V(Zm,Y)P(Dy)
1 M-1 e
= & > Vary [V(Z, Y)][P(Dn) RZZCOV< (Zy,Y), V(Zl,Y)> P(Dy,) P(Dy)
m=0 k£l
— Var(dy) chov((Z1.Y),V(Z,Y)) P(Dy) P(D))
iy

> Var(d,).

5 Application to option pricing

We implemented the method described in Section 3 to value a put option using the R 3.2.2 and
Julia 0.4.6 programming environments. Computations were run on the distributed cluster maya at
the UMBC High Performance Computing Facility (HPCF). The cluster maya has compute nodes,

each having two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) processors with 8 cores per
node, for a total of 16 cores per node. All nodes have 64 GB of main memory and are connected
by a quad-data rate InfiniBand interconnect. Open MPI 1.8.5 (Gabriel et al., 2004) was used as
the underlying implementation of the MPI framework.

R is a statistical computing environment that facilitates advanced data analysis, provides graph-
ical capabilities and an interpreted high-level programming language (R Core Team, 2012). On top
of the statistical, computational, and programmatic features available in the core R environment,
additional capabilities are available through numerous packages which have been contributed by
the user community. The Rmpi (Yu, 2002) and pbdMPI (Ostrouchov et al., 2012) packages may be
used to write MPI programs from R. Results shown in this section are based on Rmpi, but pbdMPI
performed similarly in our experience. The package Rcpp (Eddelbuettel and Frangois, 2011) facili-
tates integration of C++ code into R programs, which can substantially improve performance at the
cost of an increased programming burden. We have not yet explored Rcpp in our implementation,
but note its potential use.

Julia is a recently developed programming language that is gaining popularity in scientific
computing, data analysis, and high performance computing (Bezanson et al., 2014). It is a compiled
language that uses the Low Level Virtual Machine Just-in-Time technology (Lattner and Adve,
2004) to generate an optimized version of the source code compiled to the machine level. Julia
provides a number of computational and statistical capabilities, both in the core environment and
through packages contributed by the user community. We have used the package MPI (Noack,
2016) to run MPI programs in Julia. Integration with C++ is also possible in Julia through
packages such as CxxWrap and Cpp, but we have not yet explored their use. Our implementation
uses native Julia code with the MPI package. Because Julia is compiled into machine-level code,
it is expected that a program written in Julia will perform better than an equivalent program
written in R. Performance results later in this section confirm our hunch.

Listing 1 shows a snippet of our Julia implementation of the proposed parallelization method.
Since the structure of our R and Julia implementations are similar, we do not show a similar
listing of our R code. In line 1 we load the MPI package. Since our implementation follows the
SPMD paradigm, the same code runs on all the processes. The rank of the process on which the
code is being run is requested on line 5 and on line 6 the total number of processes in the MPI
communicator is requested. As the while loop at line 11 shows, each process works on 2V~ out
of the total 2 Bernoulli paths. Note the construction of the full Bernoulli path in line 13 by
prepending the binary representation of the rank of the specific process on which the code is being
run to the current (N —r)-dimensional Bernoulli path. The function call to calc_path_prob on line
14 calculates the probability of traversing the Bernoulli path constructed in line 13. The function
call to calc_payoff on line 15 calculates the option payoff; their function definitions are not shown
because they are independent of the parallelization method. Finally, on line 21, expected values
from individual processes are summed together to obtain the final answer at process 0.

We take a put option as an example to illustrate our methodology. We set a strike price of
K = 10. Current price and volatility of the asset are S = 5 and ¢ = 0.30, respectively. Risk-free
interest rate is ¢ = 6% and time to maturity 7" is one year. Tables 5.1(a) and 5.2(a) show the wall
clock runtimes of our R and Julia implementations, respectively, for problem sizes N = 20, 24, 28,
and 32. While both the implementations scale well with the number of processes M, the Julia
implementation is roughly 10 times faster than R. Our program for N = 32 on a single process
(M = 1) resulted in an overflow in our loop that computes the expected value since 23! — 1 is the

20

import MPI

MPI.Init ()

comm = MPI.COMM_WORLD

id = MPI.Comm_rank (comm)
M = MPI.Comm_size (comm)

r log2 (M)
1l_n = convert(Int64, 2~ (N-r))
while i < 1_n
node = i
path cat (2, integer_base_b(id, 2, r), integer_base_b(node, 2, N-r))
p_-vt = calc_path_prob(path, probs)
vt = calc_payoff(S, K, u, d, opt_type, path)
Vv += p_vt*vt
i += 1
end

v = exp(-gq*T)x*v
reduced_v = MPI.Reduce(v, MPI.SUM, O, comm)

Listing 1: A Julia implementation of the parallel Bernoulli path algorithm.

maximum integer value that can be stored in R. As a result, the runtime for this particular case
is recorded as N/A in Table 5.1(a). If T/ is the runtime taken for M number of processes, the
speedup Sys and efficiency Ejs for M are defined as T1 /Ty and Sy /M respectively. If the program
scales up perfectly to M processes, ideal values Sy; = M and Ej; = 1 are obtained. These numbers
indicate the scalability of the program. Since our R program did not run on a single process for
N = 32, we take the speedup for this case to be 2-T5 /Ty, M = 2,...,64 and for M = 1 and M = 2,
the speedups are taken to be 1 and 2 respectively. Tables 5.1(b) and 5.2(b) show the speedups
and Tables 5.1(c) and 5.2(c) show the efficiency numbers of our R and Julia implementations,
respectively. The plots in Figure 5.1 visualize the speedup and efficiency numbers in Tables 5.1(b)
and 5.1(c), respectively, and Figure 5.2 shows the corresponding plots from Table 5.2. These plots
visually confirm our conjecture that Julia is more efficient than R for our problem. Note that for a
fixed problem size, there is a reduced advantage in the speedup beyond a certain number of tasks.
This is because the overhead of coordinating the tasks begins to dominate the time spent doing
useful calculations; see Pacheco (1997) for more details.

We implemented the Monte Carlo estimation methods described in Section 4 for two types
of path-dependent options (Hull, 2003): Asian and Look-back options. In an Asian option, the
asset price St at the time of maturity is replaced in the option payoff function with the arithmetic
average of {Sy : t = 1,..., N}. Therefore, in the binomial tree model, the payoff for an Asian put
option is given by

V(x) = max{K — S*, 0}, (5.1)

where §* = + SN Si(x), Si(x) is the asset value at time t followed on the Bernoulli path .
In a Look-back option, either the strike price K or the asset price St at the time of maturity are
replaced in the payoff function by the maximum or minimum of {S;} respectively. Here we consider

Observed speedup S, in R Observed Efficiency E,,, in R

= w
E 9 4 FPtas E =
w © oy ul == N=20
o == =20 e = = N34
R : 5 o =
o b= S, A s S S St = -
g ¥ = A = optimal
@] L |
i =) B W) - = a
E o™ E (e]
8 [
o = 3 o 1
o o o]
a — —
e N T T T T T T
0 10 20 30 40 50 60
Mumber of parallel processes M Number of parallel processes M

(a) (b)

Figure 5.1: (a) Speedup and (b) Efficiency in R.

a Fixed Look-back put option, whose payoff is given by
V(x) = max{K — S* 0},

where S* = min{Si(x) : t = 1,..., N}. We implemented the basic MC estimate given in section
4 for the Asian and Fixed Look-back put options using the binomial tree model with size N to
study the convergence of the estimates to the exact expected value (2.6). We further implemented
Partitioned and Shared Sample MC from section 4 to study the variance reduction property. Table
5.3 shows basic MC estimates and corresponding variance estimates of an Asian put option and
a Fixed Look-back put option with parameters K = 100, S = 20, ¢ = 6%, 0 = 3.0, and T = 1,
using the binomial model with tree size N = 32. Option values calculated by exact enumeration
were 82.115 for the Asian put options and 93.196 for the Fixed Look-back put option. The sample
size used for the MC estimation is increased from 22 to 2'6, which is less than 0.01% of the total
number of paths. As can be seen from Table 5.3, MC estimates for both the options converge to
their respective exact values. Also, as expected, the variance estimates decrease with increasing
sample size R. Table 5.4 shows the Partitioned MC estimates V, for both the Asian and Fixed
Look-back put options and corresponding variance estimates, using a total sample size of R = 1024
and varying the number of processes between 1 to 64. Note that as the number of processes increase,
the sample size per process R,, decreases. The estimates shown in Table 5.4 are averaged over 1000
repetitions. As expected, Table 5.3 shows that variance estimates of the Partitioned MC estimator
are mostly smaller than the corresponding basic MC estimator for R = 1024. Table 5.5 shows
the comparison of variance estimates between the Partitioned and Shared Sample MC estimates
for the Asian put option with N = 32, R = R,, = 1024, and m = 0,...,M — 1. Shared Sample
MC estimates V and corresponding variance estimates were calculated using the expressions given
in section 4. Again, the estimates in Table 5.5 are averaged over 1000 repetitions. The results
show that if R = R,,, and m = 0,...,M — 1, the Partitioned MC method reduces the variance
of the estimator more than the Shared Sample method does, as expected from Theorem 4.1. The
condition on the covariance between V(zy,y) and V (z;,y) for all k,l € {0,..., M — 1} where k # [
is satisfied for the options considered here.

Table 5.1: Runtime for different number of time steps for R implementation. For M = 1, N = 32, since our program failed to
run because of integer overflow, runtime is shown as N/A.

(a) Wall clock time in HH:MM:SS

N M=1 2 4 8 16 32 64
20 00:00:68 00:00:37 00:00:24 00:00:14 00:00:07 00:00:04 00:00:02
24 00:19:41 00:10:39 00:07:00 00:04:02 00:02:04 00:01:05 00:00:32
28 05:45:57 03:04:34 02:08:18 01:09:07 00:36:25 00:18:17 00:09:15

32 N/A 52:16:13 36:15:16 20:26:59 11:04:18 05:21:38 02:41:57
(b) Observed speedup Sas

N M=1 2 4 8 16 32 64
20 1.00 1.81 2.79 4.92 3.38 6.61 12.80
24 1.00 1.85 2.81 4.88 9.30 18.58 37.22
28 1.00 1.87 2.69 5.00 9.49 18.90 37.38
32 N/A 2.00 2.88 5.11 9.44 19.50 38.72
(c) Observed efficiency Ejy

N M=1 2 4 8 16 32 64
20 1.00 0.90 0.70 0.62 0.21 0.21 0.20
24 1.00 0.92 0.70 0.61 0.58 0.58 0.58
28 1.00 0.94 0.67 0.62 0.60 0.60 0.58
32 N/A 1.00 0.72 0.64 0.59 0.61 0.60

Table 5.2: Runtime for different number of time steps for Julia implementation.

(a) Wall clock time in HH:MM:SS

N M=1 2 4 8 16 32 64
20 00:00:07 00:00:05 00:00:02 00:00:01 00:00:01 00:00:01 00:00:01
24 00:02:23 00:01:15 00:00:42 00:00:22 00:00:11 00:00:06 00:00:03
28 00:40:08 00:21:05 00:11:02 00:05:56 00:03:07 00:01:34 00:00:51
32 11:59:54 06:23:01 03:24:58 01:46:06 00:53:41 00:27:18 00:13:38

(b) Observed speedup Sys

N M=1 2 4 8 16 32 64
20 1.00 1.80 3.16 6.18 11.10 17.65 25.05
24 1.00 1.91 3.36 6.37 13.02 24.76 47.79
28 1.00 1.90 3.64 6.76 12.90 25.71 47.06
32 1.00 1.88 3.52 6.76 13.44 26.37 52.58
(c) Observed efficiency Ejy

N M=1 2 4 8 16 32 64
20 1.00 0.90 0.79 0.77 0.69 0.55 0.39
24 1.00 0.95 0.84 0.79 0.81 0.77 0.75
28 1.00 0.95 0.91 0.86 0.81 0.80 0.73

32 1.00 0.94 0.88 0.85 0.84 0.82 0.82

Observed speedup 3, in Julia Observed Efficiency E,, in Julia

= —
& B T —a= N=20
5 — T == N=24
3 g A N=28
2 o | S N=32
(8 . = (=] s = optimal
[_l IR B < i ittt ettt ittt ittty -
g o e — T |
2 Q- 2w | &’QE\E_
b3 2 o ——
£ 7 o]
o 5 o |
S T T T T T T e N T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Mumber of parallel processes M Number of parallel processes M
(a) (b)

Figure 5.2: (a) Speedup and (b) Efficiency in Julia.

Table 5.3: Monte Carlo estimates and corresponding variance estimates for Asian and Fixed Look-back put options with N = 32.
Exact value of the Asian option is 82.115 and the Look-back option is 93.196.

Option Estimate | R = 27 210 211 212 213 2l 215 216
Asian 1% 82.857 82.514 83.425 83.181 82.821 82.615 82.566 82.524
Var(V) 0.735 0.362 0.179 0.095 0.050 0.022 0.011 0.006
Look-back 1% 93.156 93.237 93.312 93.324 93.262 93.236 93.234 93.222
Var(V) 0.022 0.009 0.005 0.002 0.001 <0.001 <0.001 <0.001

Table 5.4: Partitioned Monte Carlo estimates and corresponding variance estimates for Asian and Fixed Look-back put options
with N = 32 and R = 210.

Option Estimate | M =1 2 4 8 16 32 64
R,, =210 29 28 27 26 25 24

Asian Vi 82.077 82.217 82.101 82.232 81.936 82.296 82.165
Var (V) 0.367 0.332 0.315 0.272 0.263 0.212 0.194

Look-back Vs 93.196 93.201 93.171 93.197 93.187 93.216 93.205
Var(V;) 0.010 0.009 0.008 0.008 0.008 0.007 0.007

Table 5.5: Comparison of the variance estimates from the Partitioned and Shared Sample Monte Carlo methods with N = 32
and R = 1024 for Asian put option.

Method Estimate | M =1 2 4 8 16 32 64
Partitioned MC Vs 82.201 82.160 82.101 82.127 82.109 82.120 82.108
@S AS) 0.367 0.220 0.062 0.027 0.005 0.005 0.002
Shared Sample MC Vv 82.113 82.112 82.120 82.093 82.102 82.124 82.108
\//aE(Y) 0.373 0.305 0.267 0.203 0.170 0.142 0.123

6 Concluding Remarks

We have proposed a novel method to transform the computation of the expected value in a recom-
binant binomial tree into an embarrassingly parallel problem by mapping the Bernoulli paths in the
tree to the processes on a multiprocessor computer. We also proposed a Monte Carlo estimation
method which takes advantage of this partitioning. The proposed methods were implemented both
in R and Julia, and were applied to value path-dependent European options. Numerical results
verify the convergence of the proposed Monte Carlo method and variance reduction with respect
to basic Monte Carlo estimation. Performance results indicate that the Julia implementation was
significantly faster and more efficient than the R implementation, likely because of the superior
handling of loops and the compilation to machine-level code.

Acknowledgments

The first author acknowledges financial support from the UMBC High Performance Computing
Facility (HPCF) at the University of Maryland, Baltimore County (UMBC). The hardware used
in the computational studies is part of HPCF. The facility is supported by the U.S. National
Science Foundation through the MRI program (grant no. CNS-0821258 and CNS-1228778) and
the SCREMS program (grant no. DMS-0821311), with additional substantial support from the
University of Maryland, Baltimore County (UMBC). See hpcf .umbc.edu for more information on
HPCF and the projects using its resources.

References

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical
computing, 2014. arXiv:1411.1607.

John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: A simplified approach. Jour-
nal of Financial Economics, 7(3):229-263, 1979. ISSN 0304-405X. doi: http://dx.doi.org/10.
1016/0304-405X(79)90015-1. URL http://www.sciencedirect.com/science/article/pii/
0304405X79900151.

Dirk Eddelbuettel and Romain Frangois. Rcpp: Seamless R and C++ integration. Journal of
Statistical Software, 40(8):1-18, 2011. URL http://www. jstatsoft.org/v40/i08/.

Tan Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software
Engineering. Addison-Wesley, 1995.

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M.
Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H.
Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals,
Concept, and Design of a Next Generation MPI Implementation. In Proceedings, 11th European
PVM/MPI Users Group Meeting, Budapest, Hungary, Sept 2004.

Narayan Ganesan, Roger D. Chamberlain, and Jeremy Buhler. Acceleration of binomial options
pricing via parallelizing along time-axis on a GPU. Proc. of Symp. on Application Accelerators
in High Performance Computing, 2009.

hpcf.umbc.edu
arXiv:1411.1607
http://www.sciencedirect.com/science/article/pii/0304405X79900151
http://www.sciencedirect.com/science/article/pii/0304405X79900151
http://www.jstatsoft.org/v40/i08/

Mina Hosseini, Nagaraj K. Neerchal, and Ann L. Gruber-Baldini. Statistical modeling of sub-
ject and proxy observations using weighted GEE. In JSM Proceedings, Section on Statistics in
Epidemiology. Alexandria, VA: American Statistical Association, pages 1101-1111, 2016.

John C. Hull. Options, Futures, And Other Derivatives. Prentice Hall, 2003.
C. Kolb and M. Pharr. Option pricing on the GPU in GPU Gems 2. Addison-Wesley, 2005.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In Proceedings of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar 2004.

Roderick J. A. Little. Pattern-mixture models for multivariate incomplete data. Journal of the
American Statistical Association, 88(421):125-134, 1993.

Andreas Noack. Julia - MPI package. https://github.com/JuliaParallel/MPI. j1, 2016.

G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. Programming with big data in R, 2012.
URL http://r-pbd.org/.

Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

Sai K. Popuri, Andrew M. Raim, Nagaraj K Neerchal, and Matthias K. Gobbert. An implementa-
tion of binomial method of option pricing using parallel computing. Technical Report Technical
Report HPCF-2013-1, UMBC High Performance Computing Facility, University of Maryland,
Baltimore County, 2013. URL http://userpages.umbc.edu/~gobbert/papers/PopuriEtAl _
Binomial.pdf.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2012. URL http://www.r-project.org. ISBN 3-
900051-07-0.

Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and the Monte Carlo Method. John Wiley
and Sons, 2008.

Riidiger Seydel. Tools for Computational Finance. Springer, 2003.

Hao Yu. Rmpi: Parallel statistical computing in R. R News, 2(2):10-14, 2002. URL http:
//cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf.

https://github.com/JuliaParallel/MPI.jl
http://r-pbd.org/
http://userpages.umbc.edu/~gobbert/papers/PopuriEtAl_Binomial.pdf
http://userpages.umbc.edu/~gobbert/papers/PopuriEtAl_Binomial.pdf
http://www.r-project.org
http://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf

	Introduction
	Valuation of a path-dependent option using the binomial tree model
	Parallel Bernoulli Path Algorithm
	Monte Carlo Estimation and Variance Reduction
	Application to option pricing
	Concluding Remarks

