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We studied the application of a deep, fully connected Neural Network (NN) to process
prompt gamma (PG) data measured by a Compton camera (CC) during the delivery of
clinical proton radiotherapy beams. The network identifies 1) recorded “bad” PG events
arising from background noise during the measurement, and 2) the correct ordering of PG
interactions in the CC to help improve the fidelity of “good” data used for image
reconstruction. PG emission from a tissue-equivalent target during irradiation with a
150 MeV proton beam delivered at clinical dose rates was measured with a prototype
CC. Images were reconstructed from both the raw measured data and the measured data
that was further processed with a neural network (NN) trained to identify “good” and “bad”
PG events and predict the ordering of individual interactions within the good PG events.
We determine if NN processing of the CC data could improve the reconstructed PG
images to a level in which they could provide clinically useful information about the in vivo
range and range shifts of the proton beams delivered at full clinical dose rates. Results
showed that a deep, fully connected NN improved the achievable contrast to noise ratio
(CNR) in our images by more than a factor of 8x. This allowed the path, range, and lateral
width of the clinical proton beamwithin a tissue equivalent target to easily be identified from
the PG images, even at the highest dose rates of a 150 MeV proton beam used for clinical
treatments. On average, shifts in the beam range as small as 3 mm could be identified.
However, when limited by the amount of PG data measured with our prototype CC during
the delivery of a single proton pencil beam (~1 × 109 protons), the uncertainty in the
reconstructed PG images limited the identification of range shift to ~5 mm. Substantial
improvements in CC images were obtained during clinical beam delivery through NN pre-
processing of the measured PG data. We believe this shows the potential of NNs to help
improve and push CC-based PG imaging toward eventual clinical application for proton RT
treatment delivery verification.
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1 INTRODUCTION

Proton radiotherapy (RT) has shown several advantages in dose
conformity, tumor control probability, and normal-tissue
complications over conventional RT such as x-ray or electron
therapy [1–3]. However, limitations in our ability to accurately
determine the position of the proton Bragg peak (BP) during
planning, and to verify that it matches the actual BP position and
range of the beam in the patient during treatment, have thus far
limited the ability of RT practitioners to take full advantage of the
high conformality and steep distal dose gradients achievable with
proton RT [4–6]. These limitations in our ability to calculate/
determine the beam range and BP position can result in an
overshoot or undershoot of the tumor. This can lead to under
dosage of the tumor or delivery of unsafe doses to healthy organs
and tissues adjacent to the tumor. To help detect and avoid such
delivery errors, many researchers have studied techniques for
range verification of proton treatment beams [7–18].

Compton cameras (CC) have been widely studied as a tool to
image secondary prompt gammas (PG) emitted along the proton
beam path as one potential method for verifying the range of the
proton beam within the patient during proton RT treatment
delivery [7]. CCs are multistage detectors that use the principles
of Compton scattering [19] to measure the energy deposition and
position for each interaction of a gamma as it scatters in the
different detection stages of the camera. From the energy
deposition and position data for each gamma scatter the
gamma’s incident energy and the angle of its initial scatter in
the detector can be determined [20–24]. The location of the first
two interactions in the CC defines the central axis, and the
calculated scatter angle defines the opening angle of the PG
“cone-of-origin” with an apex located at the point of the first
interaction. The true point of emission for the PG is restricted to
lie somewhere on the surface of its cone-of-origin. By
backprojecting the cones-of-origin for multiple PGs through
the imaging space, an image of the PG emission along the
path of the proton beam can be reconstructed.

The use of CCs for proton beam range verification is of
particular interest due to their ability to reconstruct full 3D
images of PG emission, which could, in principle, be
registered and overlaid onto the patients’ CT dataset for visual
(and analytical) comparison to the planned treatment dose [8,
11]. While 3D image reconstruction of PG emission with a CC
during proton beam delivery has been proven feasible [25, 26],
the ability to do so at full clinical proton RT dose rates and under
full clinical treatment conditions has thus far not been possible.
Several studies of prototype CCs with high energy accelerator
beams and clinical proton beams have shown rather poor
performance for detecting the “true” double-scatter (DS; a
single PG interacting twice in the CC, including
Compton—photo-absorption, Compton—Compton, and
Compton—pair production interactions) and “true” triple-
scatter (TS; a single PG interacting three times in the CC,
including two Compton interactions and a third Compton,
photo-absorption, or pair production interaction) PG events
needed for CC image reconstruction [25, 27–30]. This poor
performance is due to: 1) inherently poor efficiency of most

prototype CCs for detecting DS and TS events, 2) high detector
dead time encountered by many types of CCs caused by the
large signal environment encountered during proton RT, 3)
interactions of secondary particles other than PGs [31, 32], 4)
“mis-ordered” DS and TS events whose individual
interactions in the CC are read out and recorded in the
wrong order, 5) the detection of “false” events (sometimes
referred to as “fortuitous”, “background”, “chance”, or
“random” coincidence events), which are DS or TS events
that are due to more than one PG interacting simultaneously
in the CC [31–34] and 6) “double-to-triple” (D-to-T) events,
which occur when a true DS and single-scatter from a separate
PG are recorded together as a TS event.

Several studies [31, 35, 36] have shown that mis-ordered,
false, and D-to-T events do not contribute to the image signal
and act only to increase noise and reduce the achievable
contrast of the image. Methods to determine correct event
ordering [24, 36, 37] based on classical Compton kinematics
have been studied. However, no efficient method has been
developed to identify the correct interaction order of DS or TS
events in which the initial PG energy is not known (or
assumed) a priori. Recent studies have shown how CC
imaging can still be improved through improving data
acquisition and readout electronics [35], and that machine
learning, in particular Neural Networks, can be used to pre-
process the PG event data prior to image reconstruction. In
particular, Zoglauer et al. [38] and Basalyga et al. [39] showed
that relatively simple NNs can be used to predict the correct
ordering of TS interactions in a CC. Also, Muñoz et al. [26]
showed that simple NNs can be used to identify true and false
TS events recorded by a CC during delivery of experimental,
low intensity proton beams and that using the NN predicted
true TS events led to modest improvements in the final
images.

In this paper, we report on the use of a more complex deep,
fully connected NN [39, 40] for expanded types of pre-
processing of PG data measured with a CC during delivery
of a clinical proton RT beam to a tissue equivalent target. This
NN was trained to 1) identify true and false DS/TS events, 2)
identify the correct interaction ordering of true DS/TS events,
and 3) to identify the DS event (and its correct interaction
order) within D-to-T events. We then show how this NN can
be used to pre-process PG data measured with a CC, for the
first time, during the delivery of a clinical proton therapy
beam at full clinical dose rates. We showed that the NN pre-
processing can help to 1) improve the quality of data (by
removing false events) and 2) improve the quantity of good
events used for reconstruction (by properly ordering true
event interactions and recovering DS events from D-to-T
events), both of which help to improve images of PG
emission that occurs during clinical proton RT delivery.
We believe the previous studies and the NN studies
presented in the paper have only scratched the surface of
what is possible for PG data and image processing and that the
applications of NNs and machine learning in general is a new
Frontier in CC imaging that could ultimately expand its
capabilities and future applications.
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2 METHODS

2.1 Compton Camera
2.1.1 Compton Camera Design
The protoype PJ3 CC (H3D, Inc., Ann Arbor, MI) was used to
measure PG emission during clinical proton beam irradiation. As
shown in Figure 1, the PJ3 is composed of two detection stages,
each containing eight detection modules (16 total) with four
cadmium-zinc-telluride (CZT) crystals per module (64 total
crystals). Each crystal is attached to a pixelated anode (11 ×
11 pixels) that is directly coupled to an application specific
intergrated circuit (ASIC) for charge readout. These detectors
can provide the positions of interactions with a spatial resolution
of about 0.3 mm in 3-dimensions at 662 keV. The CZT crystals
have an energy resolution of about 0.4% full width at half max
(FWHM) at 662 keV using single pixel events, and about 0.5%
FWHM for all events, operated at room temperature [36].
Measured photopeak detection efficiency of the CZT crystals
range from 75% at 121 keV, to 1.4% at 2.6 MeV [41].

The crystals in each module are arranged in a 2 × 2 array with a
0.25 cm between the crystals and a 1.0 cm separation between the
modules. Each module in stage one (closest to the treatment couch,
Figure 1) is composed of 2.0 cm × 1.0 cm × 2.0 cm crystals, and each
module in stage two is composed of 2.0 cm×1.5 cm×2.0 cm crystals.
The distance between the modules in stage one and stage two was
2.5 cm. The detector crystals and the associated electronics of the PJ3
CC are enclosed in a 1.25mm thick aluminum case along with an
electronic interference reduction and heat management system.
Further details of the PJ3 design can be found in Maggi et al [34],
Panthi et al [32], and Polf et al [35].

2.1.2 Data Acquisition and Readout
Each module of the PJ3 CC operates independently of the other
modules, with its own triggering and data-acquisition system. Each
module has only one data acquisition (DAQ) and readout channel
per module. Therefore, if a PG event is detected in one crystal, the
module is triggered and any charge pulse (arising from an
interaction) above 50 keV detected on an anode pixel of any of
the (four) crystals in themodule during a trigger readout cycle will be
readout. Due to limitations in the charge detection stability in the
ASICs which causes the recorded interaction position to the
unreliable for large energy depositions, events that deposit more
than 2.7MeV in a single interactionwere excluded from the final data
used for imaging andNN processing. The trigger readout cycle for all
PJ3modules consists of a 1.5 μs charge collectionwindow followed by
a 4 μs reset time for each pixel that detected an interaction. The data
for each interaction that is read out and reported by each module
includes: 1) the module and crystal indices, 2) the number of
interactions occurring in the module within a trigger readout
cycle, 3) the deposited energy of each interaction event, 4) the (x,
y, z) location of each interaction event, and 5) the timestamp at which
each event was read out relative to the beginning of themeasurement.
A single timestamp is recorded when themodule is triggered and this
value is recorded as the timestamp for all interactions that occur
within the readout cycle. All interactions from a single module with
the same timestamp are grouped together in the data file are
considered to be a one “event”. For this study, only events
recorded within a single module (“intra-module events”) were
recorded.

The recorded events were grouped into four types (according
to the number of interactions recorded during the triggered

FIGURE 1 | Setup of (A) clinical proton pencil beam irradiations for CCmeasurement of PG emission. (B) schematic of the setup showing the positioning of the PJ3
with respect to the beam and including a bottom view of the PJ3 indicating size and positioning of 2 cm × 2 cmCZT crystals (dark gray squares) within the outer box (light
gray rectangle) and the outline of the HDPE target (light gray dot-dash line) location above the CZT detectors. Shown in (a) are the locations of the XZ and YZ planes (blue
rectangles) of the 2D PG images shown in this paper.
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readout cycle): 1) single-scatter events (one interaction), 2) DS
events (two interactions), 3) TS events (three interactions), and 4)
more than three events (four or more interactios). For this study
DS and TS events measured during clinical proton beam delivery
were used for the PG imaging study. Single-scatter and events
with more than three events were removed from the measured
data prior to image reconstruction and NN processing.

The individual interactions of any event are recorded in the
order that the charge pulse (created by the interaction) is detected
by the CZT crystal anode during the readout cycle. This means
that an event that occurs closest to the anode in the crystal will
most likely be readout first even though it may not be the first (or
second) interaction that occurred for that event. This leads to the
individual interactions within the event being recorded in the
wrong order, which we refer to as a “mis-ordered” (MO) event. A
DS event can be readout in two possible interaction orderings
leading to one “correctly-ordered” (CO) interaction sequence and
one possible MO interaction sequence. For a TS event, with six
possible interaction orderings, there is one CO interaction
sequence, and five possible MO interaction sequences.

Due to the relatively long length of the PJ3 readout window
(1.5 μs), the probability that more than one PG can interact
within a detection module during readout increases as PG count
rate (due to increasing proton beam dose rate in this study) in the
CC increases [35]. An event that contains interactions from more
than one PG is referred to as a “false” event in the study. False DS
events are composed of two interactions arising from two
separate PGs interacting in a detection module within a single
readout cycle. Two different types of false TS events can occur in
the CC. First three separate PGs may produce single-scatter
interactions that are readout as a TS event, and second, a
D-to-T event can occur in which a true DS occurs along with
a single-scatter interaction from a separate PG and is recorded as
a TS event.

2.2 Experimental Measurements
For this study, PG data was measured using the prototype PJ3 CC
during the delivery of a 150 MeV proton pencil beam to a 15 cm ×
30 cm × 35 cm high-density polyethylene (HDPE; C2H4, ρ =
0.97 g/cm3) target as shown in Figure 1. The data was measured
for dose rates of 20,000 Monitor Units/min (20 kMU/min; 1.22 ×
109 protons/s, minimum clinical dose rate at 150 MeV) and
180 kMU/min (1.1 × 1010 protons/s; maximum clinical dose
rate at 150 MeV), using the Varian Pro-Beam treatment
delivery system (Varian Medical Systems, Palo Alto, CA)
located at the Maryland Proton Treatment Center (MPTC) in
Baltimore, MD. The MU is defined as the clinical unit of dose
delivery for radiation therapy machines and is a measure of the
number of protons detected by the ionization chambers
(determined by its intrinsic charge collected/proton
calibration) in the treatment nozzle. For the treatment
machine at the MPTC: 1 MU = 3.668 × 10 [6] protons for the
150 MeV treatment beam. For all irradiations, 25 kMU were
delivered, equating to 9.17 × 1010 protons and delivery times
of 75 and 8.33 s at dose rates of 20 kMU/min and 180 kMU/min,
respectively. Finally, irradiations (identical setup to the 150 MeV
irradiations) were performed and PG data measured with the

initial beam energy reduced to 147 and 145.5 MeV to produce a
−3 mm and −5 mm shift in the beam range in the HDPE target.

As shown in Figure 1, the PJ3 CC (design details in Polf et al.
(2021) [35]) was mounted beneath the patient positioning couch,
with the HDPE target placed on the couch directly above the PJ3.
The beam was delivered to the center of the HDPE target, located
15 cm above the top of the couch, corresponding to 30 cm from
the top of the detector modules in the PJ3. The patient couch was
positioned so that the beam path was aligned with the center of
the PJ3, and the treatment isocenter was located at a depth of
15.6 cm in the target.

2.3 Neural Network Data Processing
2.3.1 Neural Network Desgin
A fully connected NN was constructed with Keras using
Tensorflow 2.4.043. A full, detailed description of the
construction, training/validation, and testing of the NN was
reported by Barajas et al [40]. In brief, the network contains:
1) an input layer which accepts the input data, that consists of a
list-mode dataset of all DS and TS events that contains the energy
deposited and (x,y,z) coordinates of each interaction of the
recorded events, 2) 256 hidden compute layers that use the
leaky Rectified Linear Unit activation function [43] and
residual skips to perform transformations on the data, and 3)
a single output layer which uses the Softmax [43] activation
function to return the NN predicted event type classification for
each DS and TS event in the input data file.

2.3.2 Neural Network Training and Validation
The NN was trained and validated using PG list mode datasets
generated with a Monte Carlo model of the PJ3 and clinical beam
delivery, built using the Geant4.10.3 toolkit [44]. The MC
generated PG interaction data was then processed by the
MCDE [34] model that transforms the MC data according to
the response and data acquisition characteristics of the PJ3 CC.
The MCDE training datasets included PG emission from 12C
(718 keV, 2.0 MeV, and 4.44 MeV), as well as 2.2 MeV H-n
capture gammas, and positron emission gammas from several
isotopes (11, 10, 9C, 8B, 12N, and 13 N) created in the HDPE
phantom during proton irradiation as well as modeling of the
Doppler broadening of the PG emission. This produces the final
training list-mode dataset containing DS and TS events, as well as,
a file that lists whether each event is a True, False, or D-to-T
event. Since we did not know what type of gamma interaction was
recorded by the CC during PG measurements, our MCDE data
used for training and validation included DS events composed of
all possible interaction combinations (Compton + photo-
absorption, Compton + Compton, and Compton + pair
production) and TS events composed of all possible
interaction combinations (Compton + Compton + photo-
absorption, Compton + Compton + Compton, and Compton
+ Compton + pair-production) that may occur for consideration
by the NN for training. Finally, the interaction order of the DS
and TS events are then shuffled such that 50% of the DS events are
mis-ordered (and 50% are correctly ordered) and the TS
interactions are shuffled so that 16.7% retain the correct
interaction ordering, and the remaining 83.3% are shuffled to
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produce an equal number of the remaining five possible
(incorrect) interaction orderings for the TS event. In this way,
the final processed list-mode data will provide a PG dataset that
accurately models a measured dataset for training the NN to
identify the type of each DS and TS event recorded by the PJ3.

For NN training and validation, the MCDE generated: 1) PG
interaction list-mode dataset, 2) information on each event type,
and 3) information of the correct interaction ordering of each
event which are all passed to the NN. The training dataset for this
study contained a total of 2.2 × 106 PG events (80% of events for
training, 20% of events for validation). Following training and
validation, five fully independent (MCDE generated) datasets
consisting of 5 × 105 processed PG events (MCDE generated and
interaction order shuffled) were used to test the accuracy of the
NN. Testing indicated accuracy levels of 87 and 78% for correctly
identifying DS (True/False/mis-ordered) and TS (True/False/
mis-ordered/D-to-T) event types, respectively.

Following training and validation of the NN, it was used to
process PG datasets measured with the PJ3 during the proton
beam irradiations described in Section 2.2. Measured DS and TS
events (from the CC data files) were input into the trained NN,
which then predicted the type and order of the interactions of
each event. The NN processing proceeded as follows:

1) Predict if an event is a true DS, false DS, true TS, false TS, or
D-to-T event,

2) If the event is a true DS or TS, predict the correct order that the
interactions occurred in the CC,

3) If the event is a D-to-T event, predict which two interactions
belong to the true DS and predict the correct order in which
the DS interactions occurred in the CC, remove the third
(seprate PG single-scatter) interaction,

4) If the event is a false DS or TS (three separate PG interactions)
remove it from the data.

The events from the measured data file that the NN classified
as true DS (including DS events recovered from D-to-T events)
and TS events were written to the final “NN Processed” data file
with their interactions ordered according to the NN predicted
interaction order. An event that was written to the final NN
processed data file with the same interaction order as recorded in
the raw measured data is referred to as a CO event, while an event
in which the NN predicted interaction order is different from that
in the raw measured data file is a MO event whose ordering is
correctd and therefore referred to as a “Re-ordered” event in the
NN processed data.

2.4 Image Reconstruction
Image reconstruction of the PG data was performed using the
Kernel Weighted Backprojection (KWBP) algorithm, described
by Panthi et al [32]. For this study, a full 3D image was
reconstructed with KWBP using an 18 cm × 50 cm × 50 cm
imaging space. This was processed into 60 separate two-
dimensional slices (3 mm thick), with each image slice having
256 × 256 pixels (2 mm pixel size) in the YZ-plane. These PG
images were reconstructed using both DS and TS events with a
calculated initial energy ranging from either 1)

0.6 MeV–4.5 MeV, 2) 2.0–4.5 MeV, or 3) 4.0–4.5 MeV, where
the DS initial energy is taken to be the sum of the energy
deposited in the two PG interactions, and the TS initial energy
is determined using the gamma ray tracking method described by
Schmid et al [23]. All images presented are 2D image slices in the
XZ or YZ planes extracted from the 3D dataset. The KWBP
reconstructions were performed using an NVIDIA P4000 GPU,
with reconstruction times of ~20 s for the number of PG events
measured during the delivery of 1 × 109 protons.

Images were reconstructed using the number of events that
would be recorded during a clinical treatment delivery of 1 × 109

protons, which we estimated would be the number delivered in
the deepest energy layer of a hypo-fractionated treatment field
[25, 29]. To do so, the full measured PG datasets for the 150 MeV
and −3 mm and −5 mm range shifted beam irradiations were
each divided into five independent datasets containing the
number of PG events (an event is only included in one data
file) that would have been recorded during the delivery of 1 × 109

protons based on the measured PG detection rates at 20 kMU/
min and 180 kMU/min dose rates (see Table 1). We then
produced images from the raw and NN processed data from
the five datasets for each irradiation.

2.5 Image Assessment and Range
Estimation
A 1D profile along the beam central axis (z = 0 cm), representing
the integral of three rows of pixels centered on x = 0 cm, was
extracted from the XZ plane images. Additionally, 1D crossfield
(lateral) profiles in the x-direction in the XZ plane representing
the integral of three rows of pixels centered at a depth of z =
10 cm, was extracted for comparison. The PG profiles were
compared to depth dose and crossfield profiles extracted from
a treatment plan of the 150 MeV pencil beam delivery to the
HDPE target (see Supplementary Figure S1) calculated by the
MPTC clinical treatment planning system (TPS; Raystation v8A;
Raysearch Laboratories, inc., Stockholm Sweden) that was
commissioned for clinical proton radiotherapy planning using
measured data of the proton beam at the MPTC.

The TPS dose profiles and PG image profiles for raw (prior to
NN processing) datasets were normalized to the respective
maximum values. The depth of the maximum value (PGmax)
and the distal depth (beyond the maximum) at which the profiles
fall to 80% (PG80) and 60% (PG60) of the maximum values were
determined. The resolution of the profiles is limited to the 2D
image pixel size (2 mm), and the PG80 and PG60 values were
determined by a linear interpolation between the center position
of the voxels before and after the PG profile falls below 80 and
60% of the peak value respectively.

Improvements in our ability to identify the proton beam path
in the PG images due to NN processing, were quantified using the
image contrast-to-noise ratio (CNR). This is defined as CNR = |
Speak—Sdistal|/σdistal, where Speak is the average image “signal” in
the peak intensity region of the individual profiles ranging in
depth from 2 cm proximal to 2 cm distal to the PGmax, Sdistal is
the average image “noise” in the individual reconstruction
profiles ranging from depths of 21–25 cm that are well beyond
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the depth of the proton BP. Finally, σdistal is the standard
deviation of the image noise values from 21 to 25 cm depth
beyond the BP.

1D profiles were extracted from each PG image (using the
process described above) and an “average” PG profile (see
Supplementary Figure S2) was created as the average PG
value (PG) of the five individual profiles at each depth (z) in
the target. Finally, a five-number summary analysis of the
PGmax, PG80, and PG60 from each of the five reconstructed
images was performed. The median (2nd quartile) value of each

metric was determined and the uncertainty in these values was
defined as their inter-quartile range (IQR; 3rd quartile—1st

quartile).

3 RESULTS

3.1 PG Measurement and NN Processing
Figure 2 shows the energy spectra of PG events (DS + TS)
measured by the PJ3 CC during irradiation of the HPDE
phantom with the 150 MeV proton pencil beam at 20 kMU/
min and 180 kMU/min. PG emission peaks from 12C can be seen
at 4.44 MeV, 2.0 MeV, and 718 keV in the raw CC data measured
at 20 kMU/min, along with the 2.22 MeV H-neutron capture
gamma peak and the 511 keV positron annihilation gamma peak.
At 180 kMU/min dose rate, the distinct gamma emission peaks
have almost completely disappeared in the raw measured data
spectrum with only small peaks distinguishable at 511 keV,
718 keV, and 2.22 MeV. However, after the measured data is
processed with the NN, the characteristic PG emission peaks
become more prominent due to the removal of the false events
and conversion of the D-toT events to true DS events for the NN
processed measured data at both the 20 kMU/min and 180 kMU/
min dose rates. This results in a reduction in the width of the
emission peaks for the NN cleaned data. For example, the
2.22 MeV peak at 20 kMU/min the spectra for the raw
measured data has a Full-Width-Half-Maximum (FWHM) of
~40 keV, with the FWHM being reduced to ~18 keV for the NN
cleaned data. Such improvements help to move the CC measured
data towrd being potentially applicable for PG spectrotrmoetry.
This can be further illustrated by looking at the ratio of the full
absorption (FA) peak intensity to the single escape (SE) peak
intensity [FA/SE], for the 2.2 MeV H-neutron capture gamma
measured during the 20 kMU/min irradiation. For the raw
measured data [FA/SE]raw = 1.02, while after NN processing
of the data [FA/SE]NN = 1.63. Since no SE peak can be seen in the
raw measured or NN processd data for the 180 kMU/min
irradiation, no such comparison could be made howevern the
2.22 MeV, 718 keV, and 511 keV peaks are all much more
prominent.

Table 1 shows a breakdown of the PG events measured per
proton incident on the HDPE target by the PJ3 CC during
delivery of the 150 MeV clinical proton beam. As the proton
beam dose rate increases, the total raw data detection rate (DS +
TS events) of the PJ3 decreases from a rate of 1.1 × 10−4 events/

TABLE 1 | Detected PG events per proton for raw and NN processed measured data.

Dose Rate (kMU/min) Raw
data (×10−6)

NN processed data (×10−6)

DS TS DS TS

Total Total True True False True True D-to-T False

Correct order Mis-ordered Correct order Mis-ordered

20 90.04 20.31 35.39 35.62 19.03 2.35 11.71 5.8 0.45
180 17.76 7.92 4.01 4.03 9.72 0.33 1.74 4.58 1.27

FIGURE 2 | PG energy spectra measured with PJ3 CC during irradiation
of the HPDE phantomwith a150 MeV proton beam at (A) 20 kMU/min and (B)
180 kMU/min dose rates for the raw measured data (blue) and following NN
processing (red) of the measured data. 1, 1′, 1″ indicate the full
absorption (FA), single escape (SE), and double escape (DE) peaks of the
4.44 MeV PG from 12C, respectively. 2 and 2″ indicate FA and SE peak of the
2.22 MeV H-neutron capture gamma, respectively. 3 and 3″ indicate the FA
and DE peaks of the 2.0 MeV PG from 12C, respectively. 4 indicates the
718 keV gamma peak from 12C to 5 indicates the 511 keV positron
annihilation gamma peak.
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proton at 20 kMU/min, to 2.57 × 10−5 events/proton at 180 kMU/
min, a factor of 4.3x. The detection rates include the
measurement of all types of DS and TS events, and are in
good agreement with previously reported PG detection rates
with the PJ3 CC35. When this raw measured data is processed
by the NN, the detection rate of “usable events” for reconstruction
(True DS + True TS + DS events recovered from D-to-T events),
as identified by the NN, drops only slightly to 9.09 × 10−5 events/
proton at the 20 kMU/min dose rate, showing that most data
recorded by the CC at the lowest clinical dose rate (and below) are
still true events. However, at 20 kMU/min dose rate, only 42% of
the raw measured true events are correctly ordered DS and TS
events that contribute to the reconstructed image. The remaining
mis-ordered true and D-to-T events will only contribute noise to
the images reconstructed with the raw measured data. When the
dose rate is raised to its maximum clinical value of 180 kMU/min,
the detection rate of NN processed usable events drops sharply to
1.47 × 10−5 events/proton. Furthermore, only 16.9% of those true
events are correctly ordered events showing that not only does the
total amount of data recorded drop sharply at higher dose rates,
but the quality of the recorded data is also significantly reduced.

3.2PG Image Assessment
Figure 3 shows the PG image reconstructions from raw (DS and
TS) events and NN processed events using only the number of PG
events that would be measured during the 20 kMU/min proton
beam delivery of 1 × 109 protons (according to the detection rates
in Table 1). Images were reconstructed using only PGs with
initial energies from 0.6—4.5 MeV. Immediately visible is the
large stretching artifact in the y-direction (perpendicular to the
CC) in the YZ plane. This is due to a lack of parallax provided by
our single CC in the imaging space [33]. Also, we see a large PG

signal in the same location as the proton beam location (see
Supplementary Figure S1) in the XZ plane in the raw data image,
but a visualization of the end of the beam range is not possible due
to the high background noise throughout the image. However, in
the XZ planar image reconstructed from the NN processed data,
the path of the proton beam and its end of range can be identified
and localized as the PG image is localized to the path of the proton
beam and the noise level in the image has been drastically
reduced.

The center panel of Figure 3 shows the role that mis-ordered
true [42], D-to-T, and false events play in the reconstructed raw
image data. The correctly ordered true events are the only event
type that contribute to the PG emission signal in the image of the
raw measured data. The D-to-T events produce a large, diffuse
signal on the (left) side of the target that the proton beam
irradiates, but no clear image of the beam path is visible [43].
The mis-ordered and false events only produce a “ring” artifact
around the edges of the image that is characteristic of these event
types in Compton imaging [45]. However, by identifying the
D-to-T events and extracting (and correctly ordering) the true
DS, and by identifying the correct interaction ordering and re-
ordering the mis-ordered events, these two event types now
produce a clear image of the beam position and path.

This shows that these events can be recovered and provide
useable data that can improve the final image as shown in the
right panel of Figure 3. To further illustrate this, extracted 1D
profiles in depth (z-direction) and laterally (x-direction) are
plotted along with depth dose profiles and crossfield (lateral)
profiles of the proton beam in Figure 4. These profiles show that
the end of the PG emission range is visible in the images
reconstructed from each NN processed event type and that the
distal edge of the PG signal correlates well with the end of the

FIGURE 3 |Reconstructed 2D PG image slices in the XZ (coronal) and YZ (axial) planes using the rawmeasured CC data (measured at 20 kMU/min) overlaid onto a
CT scan of the HDPE target (left; red panel), along with a breakdown of the reconstructions of the identified true (correctly ordered and mis-ordered) and false DS and TS
events (center; blue panel), and a reconstruction of the DS and TS events after full NN processing (right; purple panel). Dashed rectangle in right panel denotes position of
PJ3. Black dashed lines in left panel show location at which 1D profiles (shown in Figure 3) are extracted for beam range analysis. Shown in the center panel are
reconstructions of each event type before and after re-ordering the mis-ordered events and before and after extracting (and correctly ordering) the identified DS from
D-to-T events to illustrate the effect of NN processing.
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beam range, and the crossfield profiles of the PG images correlate
well to the proton beam crossfield profiles for each NN processed
event type.

The improvement to the images reconstructed with the NN
processed data can be quantified by the CNR values shown in
Table 2. As can be seen, the CNR improves for the NN “All
processed” images by a factor of 5.3x and 8.1x over raw data
images for the 20 kMU/min and 180 kMU/min data, respectively.
In fact, the CNR increases from a factor of 1.7x up to a factor of
7.2x for images reconstructed with each individual type of NN
processed data over the

raw data images. Conversely, as the range of PG energies used
for reconstruction is restricted to include only 4.44 MeV PGs [9,
46] emitted from 12C, the CNR of the images decreases. This
CNR drop is due mostly to a significant drop in the number of
PGs used for reconstruction. For 0.6–4.5 MeV PGs the total raw
and NN processed events are 43,370 and 13,790 for the delivery of
1 × 109 protons at 180 kMU/min. However, as the PG energy
range is reduced to 2–4.5 MeV the total raw and NN processed
events drops to 5,823 and 2,428, respectively. For PG energies
from 4–4.5 MeV, the total raw and NN processed events further
decrease to 1,049 and 512, respectively.

The effect that the drop in PG numbers has on the images of
PGs measured at 180 kMU/min is illustrated in Figure 5. As can
be seen, the proton beam path is not discernable in the images of
the raw measured data for any of the investigated energy levels.
However, for the 0.6–4.5 MeV and 2–4.5 MeV energy windows a

clear image of the beam path in the target is visible for the NN
processed data. However, the lack of events in the energy window
from 4–4.5 MeV causes the image of the beam path to disappear
for the NN processed data. As can be seen in Figure 5B, the depth
dose and lateral 1D profiles extracted from the images
reconstructed from the NN processed data, agree well with the
dose profiles extracted from the TPS calculation (Supplementary
Figure S1) of a 150 MeV pencil beam irradiating the HDPE target
for the 0.6–4.5 MeV and 2–4.5 MeV energy windows. However,
due to the sharp drop in the number of PG events, the good
agreement between the PG and dose profiles is lost in the
4–4.5 MeV energy window.

3.3 Range Shift Detection and Uncertainty
Figure 6 shows 2D images in the XZ plane from a single (of the
five independent) NN processed PG dataset from the delivery of
1 × 109 protons at 180 kMU/min (0.6–4.5 MeV energy range).
For the full range and the −3 mm and −5 mm range shifted
beams, a shift in the PG image can be seen in correlation with the
proton beam range shift. Also, plotted are the 1D profiles from
each of the five images reconstructed (from the five independent
datasets) for each beam range along with the average of the five
independent profiles. This shows how much variation there is in
the 1D profiles extracted from images that are reconstructed from
PG emission measured during the delivery of 1 × 109 protons.

Figure 7A shows the average 1D PG depth profile for the full
range (0 cm), and the −3 mm, and −5 mm shifted beams

FIGURE 4 | 1D (A) depth and (B) crossfiled profiles from the PG images (shown in Figure 3) reconstructed with the raw and NN processed data, as well as from the
proton beam dose profiles. Raw PG data and dose profiles are normalized to their respective maximum values, and NN processed data profiles are normalized to the
maximum of the “All processed” profiles. Depth and lateral distance values of zero along the horizontal axis represent the edge of the target.

TABLE 2 | Contrast-to-Noise (CNR) values for images reconstructed with raw and NN, processed data.

Dose Rate (kMU/min) Energy range (MeV) Raw Data NN processed data

All True True D-to-T All

Correct order Re-ordered

20 0.6–4.5 56.3 160.3 99.6 281.6 300.5
180 0.6–4.5 30.1 65.5 142.1 215.5 245.4
180 2–4.5 11.6 — — — 219.2
180 4–4.5 0.5 — — — 1.8
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extracted from images reconstructed from the 180 kMU/min
datasets with a PG energy range of 0.6–4.5 MeV. A shift in the
average PG profiles can

be seen that correlates with the shift in the beam range. To
further study whether the PG profiles can be used for proton
beam range predictions, five-number summaries of the PGmax,
PG60, and PG80 values of 1D depth profiles from each of the five

images reconstructed with the raw and NN processed data are
shown in Figures 7B,C. Due to the high background in the raw
data images (similar to that seen in Figure 4 for the 20 kMU/min
data), PG60 values could not be extracted. Even though a shift can
be seen in the distal falloff of the average 1D profiles, no
correlation can be seen between the beam range shifts and the
median and mean shift of the PGmax and PG80 for the raw data.

FIGURE 5 | (A) Images reconstructed using 180 MeV MU/min raw and NN processed data measured during the delivery of 1 × 109 protons with PG initial energy
ranges restricted to 0.6–4.5 MeV, 2–4.5 MeV, and 4–4.5 MeV. (B) 1D depth and crossfield profiles (extracted from the same locations as indicated in Figure 3)
compared to the depth and crossfiled profiles for the 150 MeV proton pencil beam extracted from TPS calculated treatment plan.

FIGURE 6 | (A) An example 2D reconstruction of PG emission measured during the delivery of a 150 MeV proton beam (0 cm) and with the range shifted by
−3 mm, and −5 mm. Dashed vertical line indicates depth of distal 80% of the proton depth dose profile in the target (B) The 1D profiles extracted from five independent
PG images reconstructed from five independent measured PG datasets along with the average PG profile for the full range (top), −3 mm (middle), and −5 mm (bottom)
range shifted beams.
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Plus there is a large uncertainty in these values as seen by IQRs
ranging from 7.5 mm up to 67.6 mm. While there is still no
correlation between the median andmean shifts in the PGmax for
the NN processed data, we do see in Figure 7C that the mean and
median shifts for PG80 and PG60 do shift in the same direction as
the −3 mm and −5 mm range shifts. In fact, for PG60, the median
shift values were −2.9 mm and −4.8 mm for the −3 mm and
−5 mm shifted beams, respectively. The uncertainty (IQR) in the
PG60 shift is 4.8, 3.7, and 4.7 mm for the full range, −3 mm
shifted, and −5 mm shifted beam, respectively with a “minimum-
to-maximum” value spread (as seen by the whiskers in
Figure 7C) of up to 7.5 mm.

4 DISCUSSION

The data presented show how NN processing of measured CC
data can improve the reconstructed PG images, which agrees with
previously published studies [26, 38, 39]. In a previous study [40],
we have shown that the NN used in this study can not only detect
true and false events, but can also simultaneously predict
interaction order of the true events with an overall accuracy of
84%. As shown in Figure 3, this type of processing can be used to
remove the false DS/TS events and to recover PG events for use in
image formation that would otherwise only have contributed
noise to the image. This leads to a large reduction in image PG
background, which improves the correlation of the PG image to
the delivered dose ditributions as seen in Figure 4. Additionally,
we show for the first time (to our knowledge) that the
improvements in the PG images made possible with NN
processing of the data can also be achieved for PG data
measured during the delivery of clinical proton beams at full
clinical dose rates. As seen in Figure 5, the PG image produced

from CC data measured at the highest clinical dose rate does not
produce a clinically usable image that can be used to identify the
beam path and end of range in the phantom (patient). However,
after this measured CC data is processed with our NN, the beam
path and end of range can be easily identified in the image.

At the lowest clinical dose rate, a noisy image was reconstructed
from the raw data acquired with the PJ3 CC, but as the dose rate was
increased to its highest level, the PG image is completely lost in the
noisewithin the raw data in agreement with our previous studies [35].
In fact at the highest clinical dose rate, only ~17% of the raw data are
“usable” (correctly ordered true DS/TS) events that contribute to the
PG image with the remainder only producing noise that overwhelms
the image of the PG emission. However, after NN processing and
recovery of mis-ordered and D-to-T events, >55% of the data will
contribute to the PG image, with the remaining false events being
removed. This increase in usable events and removal of NN identified
false events work together tomake it possible to reconstruct an image
of the path, end of range, and lateral width of the proton beam in the
target even at the highest clinical dose rate. The improvement in the
image quality was best quantified by the factor of >8x increase in
CNR for the images reconstructed by NN processed data compared
to the raw data images.

NN processing of the PG data must be balanced against the
degradation of the images caused by the loss of PG events used for
reconstruction. This can be seen in Figure 5 with the loss of the well
defined image as the number of events used for reconstruction is
reduced by more than a factor of 40x and 25x for the raw measured
data and NN processed measured data, respectively as the initial
energy range of the PGs used for reconstruction is restricted from the
full energy range (0.6–4.5MeV) down to only the 4.44MeV PGs
from 12C. This sharp reduction is due to the reduction of intrinsic
efficiency of the CC as PG energy increases, as well as the limitations
in the current readout electronics which limits the upper energy

FIGURE 7 | (A) The average 1D depth profiles for five independent PG images reconstructed with the NN processed data using 0.6–4.5 MeV PGs measured
during the delivery of 1 × 109 protons for the full range (0 cm) and −3 mm and −5 mm range shifted beams. Inset shows close-up view to illustrate the shift in PG profiles
at the depth of the distal dose falloff. Box-and-whisker plots for the PGmax, PG80, and PG60 for the five independent images reconstructed with the (B) raw and (C)NN
processed data are shown. In each plot, circles (o) represent individual data points, crosshatches (×) represent the mean of the five data points, the line inside the
box represents the median (second quartile [Q2]), the box height represents the interquartile range (IQR) extending from the first quartile (Q1) to the third quartile (Q3),
while the whiskers represent the minimum and maximum values. Dashed blue lines represent the expected −3 mm and −5 mm shifts.
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deposition of any single event to below 2.7MeV. It is well known that
using only PGs with measured initial energies within ranges that
correspond to known PG emission lines will improve the correlation
of the PG images to the delivered proton beam range [31, 47, 48].
However, tightly restricting the PG energies used for reconstruction
can lead to addiational complications, such as the dependence of the
PG emission cross section on the proton energy and uncertainties in
the recorded PG energy deposited due to detector thermal instabilities
or high detector dead time. These difficutlies work to further increase
the need to measure more data during any given measurement,
especially since current methods of PG image reconstruction such as
iterative maximum likelihood or origin ensemble methods and even
simple, filtered or kernel weighted back-projection methods are very
sensitive to PG statistics [8, 31, 49, 50] and thus the first concern for
CC imaging is to detect an adequate number of events. For this study
we reconstructed images from PG emission measured during the
delivery of the upper limits of the number of protons (1 × 109) that
would be delivered for high dose, hypo-fractionated clinical
treatments. A single pencil beam delivered for a standard proton
treatment would only deliver between ~107–108 protonsmeaning the
number of PGs detected could be up to 100x lower, thus making the
reconstruction of images more difficult and further stressing the need
for high PG detection efficiency and event recovery with NN
processing of the data.

With the improvement to the number of PG events and data
quality that was made possible by our NN processing, beam range
shifts as small as 3 mm could, on average, be seen in depth profiles
extracted from images reconstructed with PG data measured
during the delivery of a single high dose clinical pencil beam.
However, the ability to predict range shifts from 1D profiles
extracted from images reconstructed with the NN processed data
was still less precise than that demonstrated with 1D imaging
methods such a slit-camera [10, 18]. From analysis of the
uncertainty in the extracted depth profiles, at the highest
clinical dose rates the smallest shift that could be detected
from any single measurement was ~5 mm based on the shift
of PG60. In fact, based on the spread in the PG60 (NN processed
data) values, as shown by the whiskers in Figure 7C, we would say
that the smallest shift that can be determined with adequate
confidence for clinical evaluation with the current PJ3 prototype
would more likely be ~7.5 mm. The uncertainty in the PG based
range determination is again driven by the low efficiency for
detecting usable DS and TS events, even after NN processing of
the data. This uncertainty could potentially be reduced by
employing noise reduction techniques similar to those used
with 1D slit cameras such as, aggregating the PG signal from
several spots, comparing measured results to high statitics Monte
Carlo simulations, or Guassian smoothing of the extracted 1D
profiles [10, 18]. Additionally, the low number of detected usable
PG events combined with the lack of parallax provided by a single
camera act together to limit CC based PG imaging to a 2D
imaging technique.

To truely make online proton (and heavier ion) beam imaging
and verification possible, it is necessary to improve the final
images we are able to construct. This will need to be done in two
primary ways: 1) by increasing the quantity of the measured

particles/signals druing treatment delivery, and 2) improving the
quality of data used for image reconstruction. Boosting the
measured signal can be accomplished by further improving
the physical detectors used for acquisition [35, 51], as well as
potentially expanding the types of secondary particles (beyond
gammas) to include others produced during proton and ion beam
therapy, such as through secondary particle tracking [52–54] or
interaction vertex imaging [51, 55, 56]. Data quality imrovements
as well as improvements to the final reconstructed images will be
driven by the advancements in machine learning and other forms
of artificial intelligence.

We believe the results presented in the work demonstrate the
potential of machine learning and NN based processing of CC
data to improve PG imaging for the purpose of proton beam
range verification. Thus, we conclude that further development
into improved detection systems for CCs and further application
of NNs and machine learning will help to move CC imaging for
PG range verification closer to clinical application.
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