
Update dated July 13, 2014

Parallel Performance Studies for an Elliptic Test Problem
on the Cluster maya

Samuel Khuvis and Matthias K. Gobbert (gobbert@umbc.edu)

Department of Mathematics and Statistics, University of Maryland, Baltimore County

Technical Report HPCF–2014–6, www.umbc.edu/hpcf > Publications

Abstract

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdisciplinary core
facility for scientific computing and research on parallel algorithms at UMBC. Released in Summer 2014, the
current machine in HPCF is the 240-node distributed-memory cluster maya. The cluster is comprised of three
uniform portions, one consisting of 72 nodes based on 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs from 2013,
another consisting of 84 nodes based on 2.8 GHz Intel Nehalem X5560 CPUs from 2010, and another consisting
of 84 nodes based on 2.6 GHz Intel Nehalem X5550 CPUs from 2009. All nodes are connected via InfiniBand to
a central storage of more than 750 TB.

The performance of parallel computer code depends on an intricate interplay of the processors, the architec-
ture of the compute nodes, their interconnect network, the numerical algorithm, and its implementation. The
solution of large, sparse, highly structured systems of linear equations by an iterative linear solver that requires
communication between the parallel processes at every iteration is an instructive and classical test case of this
interplay. This note considers the classical elliptic test problem of a Poisson equation with homogeneous Dirichlet
boundary conditions in two spatial dimensions, whose approximation by the finite difference method results in
a linear system of this type. Our existing implementation of the conjugate gradient method for the iterative
solution of this system is known to have the potential to perform well up to many parallel processes, provided the
interconnect network has low latency.

We report parallel performance studies on each of the three uniform portions of the cluster maya. The results
show very good performance up to 64 compute nodes on all portions and support several key conclusions: (i) The
newer nodes are faster per core as well as per node, however, for most serial production code using one of the 2010
nodes with 2.8 GHz is a good default. (ii) The high-performance interconnect supports parallel scalability on at
least 64 nodes optimally. (iii) It is optimal to use all cores on a compute node. (iv) There is no disadvantage
to several jobs sharing a node, which justifies the default scheduling setup. (v) In concert with this, the default
behavior of assigning all processes of a job to one CPU (up to the available number of cores) is reasonable.

1 Introduction

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdisciplinary core facility
for scientific computing and research on parallel algorithms at UMBC. Started in 2008 by more than 20 researchers
from ten academic departments and research centers from all three colleges, it is supported by faculty contributions,
federal grants, and the UMBC administration. The facility is open to UMBC researchers at no charge. Researchers
can contribute funding for long-term priority access. System administration is provided by the UMBC Division
of Information Technology, and users have access to consulting support provided by dedicated full-time graduate
assistants. See www.umbc.edu/hpcf for more information on HPCF and the projects using its resources.

Released in Summer 2014, the current machine in HPCF is the 240-node distributed-memory cluster maya. The
newest components of the cluster are the 72 nodes in maya (2013) with two eight-core 2.6 GHz Intel E5-2650v2
Ivy Bridge CPUs and 64 GB memory that include 19 hybrid nodes with two state-of-the-art NVIDIA K20 GPUs
(graphics processing units) designed for scientific computing and 19 hybrid nodes with two cutting-edge 60-core Intel
Phi 5110P accelerators. These new nodes are connected along with the 84 nodes in maya (2009) with two quad-core
2.6 GHz Intel Nehalem X5550 CPUs and 24 GB memory by a high-speed quad-data rate (QDR) InfiniBand network
for research on parallel algorithms. The remaining 84 nodes in maya (2010) with two quad-core 2.8 GHz Intel
Nehalem X5560 CPUs and 24 GB memory are designed for fastest number crunching and connected by a dual-data
rate (DDR) InfiniBand network. All nodes are connected via InfiniBand to a central storage of more than 750 TB.
The studies in this report use the Intel C compiler version 14.0, Portland Group C compiler version 14.1, and GNU
C compiler version 4.8 together with MVAPICH2 version 1.9 and OpenPMI version 1.6.5. The Intel compiler suite
with MVAPICH2 is the default on maya.

This report is an update to the technical report [7], which considered the same problem on the previous cluster
tara. The problem is the numerical solution of the Poisson equation with homogeneous Dirichlet boundary conditions
on a unit square domain in two spatial dimensions. Discretizing the spatial derivatives by the finite difference method

1

www.umbc.edu/hpcf
www.umbc.edu/hpcf


Table 1.1: Wall clock time in HH:MM:SS on maya (2013) using the Intel compiler with MVAPICH2 for mesh
resolution N ×N = 32768× 32768.

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 120:33:23 56:10:03 28:21:10 14:10:21 07:07:57 03:36:02 01:49:42
2 processes per node 63:24:11 31:40:50 16:04:04 08:08:08 04:04:34 02:03:32 01:02:50
4 processes per node 43:32:36 23:48:33 11:55:17 06:01:02 03:02:32 01:32:19 00:47:05
8 processes per node 41:15:26 22:55:02 11:31:58 05:47:34 02:55:44 01:28:47 00:45:51
16 processes per node 22:56:40 11:31:18 05:49:30 02:56:45 01:30:46 00:47:33 00:25:52

yields a system of linear equations with a large, sparse, highly structured, symmetric positive definite system matrix.
This linear system is a classical test problem for iterative solvers and contained in several textbooks including
[3, 5, 6, 9]. The parallel, matrix-free implementation of the conjugate gradient method as appropriate iterative linear
solver for this linear system involves necessarily communications both collectively among all parallel processes and
between pairs of processes in every iteration. Therefore, this method provides an excellent test problem for the
overall, real-life performance of a parallel computer, and we used it in the past to analyze previous clusters [1, 4, 7, 8]
These results show that the interconnect network between the compute nodes must be high-performance, that is,
have low latency and wide bandwidth, for this numerical method to scale well to many parallel processes. The results
are not just applicable to the conjugate gradient method, which is important in its own right as a representative of
the class of Krylov subspace methods, but to all memory bound algorithms.

Table 1.1 contains an excerpt of the performance results reported in Table 4.1 of Section 4 for the studies on the
newest portion maya (2013) of the cluster. This excerpt reports the results for one mesh resolution and using the
default compiler and MPI implementation. Note that it was not possible to compute the solution for this mesh in
serial on previous clusters. Table 1.1 reports the observed wall clock time in HH:MM:SS for all possible combinations
of numbers of nodes and processes per node (that are powers of 2), that is, for 1, 2, 4, 8, 16, 32, and 64 nodes and
1, 2, 4, 8, and 16 processes per node. It is conventional to restrict studies to powers of 2, since this makes it easy
to judge if timings are halved when the number of parallel processes is doubled. We observe that by simply using
all cores on one node we can reduce the runtime from approximately 5 days to 23 hours and by using all cores on
64 nodes we can reduce the runtime to just 26 minutes. This table demonstrates the power of parallel computing,
in which by pooling the memory of several compute node to solve larger problems and to dramatically speed up the
solution time. But it also demonstrates the potential for further advances: The studies in Table 1.1 only used the
CPUs of the computer nodes; using accelerators such as the GPUs and the Intel Phi have the potential to shorten
the run times even more.

More in detail, by reading along a row of Table 1.1, we see that the high-performance QDR InfiniBand interconnect
supports parallel scalability on at least 64 nodes optimally, since each timing halves for each doubling of numbers of
nodes. In turn, reading along a column of Table 1.1, it is clear that the job runs fastst, when using all 16 cores of each
compute node. As we will discuss in greater detail in Section 4, we observe less than optimal halving of runtime by
increasing the number of processses from 4 to 8. Since each node contains two 8-core CPUs, the default behavior of
assigning all 8 processes to one CPU results in a bottleneck when these processes attempt to access memory through
the 4 memory channels. However, this behavior is a reasonable default, since it allows more than one job to be run
on a single node without competition for access to memory.

The remainder of this report is organized as follows: Section 2 details the test problem and discusses the parallel
implementation in more detail, and Section 3 summarizes the solution and method convergence data. Section 4
contains the complete parallel performance studies on maya (2013), from which Table 1.1 was excerpted. Section 5
contains the parallel performance studies on maya (2010). Finally, Section 6 provides a historical comparison of
performance of maya and the previous clusters in HPCF.

Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance Computing Facility (HPCF).
The facility is supported by the U.S. National Science Foundation through the MRI program (grant nos. CNS–0821258
and CNS–1228778) and the SCREMS program (grant no. DMS–0821311), with additional substantial support from
the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/hpcf for more information on HPCF
and the projects using its resources. The first author additionally acknowledges financial support as HPCF RA.

2



2 The Elliptic Test Problem

We consider the classical elliptic test problem of the Poisson equation with homogeneous Dirichlet boundary condi-
tions (see, e.g., [9, Chapter 8])

−4u = f in Ω,
u = 0 on ∂Ω,

(2.1)

on the unit square domain Ω = (0, 1)× (0, 1) ⊂ R2. Here, ∂Ω denotes the boundary of the domain Ω and the Laplace

operator in is defined as 4u = ∂2u
∂x2

1
+ ∂2u

∂x2
2
. Using N + 2 mesh points in each dimension, we construct a mesh with

uniform mesh spacing h = 1/(N + 1). Specifically, define the mesh points (xk1
, xk2

) ∈ Ω ⊂ R2 with xki
= h ki,

ki = 0, 1, . . . , N,N + 1, in each dimension i = 1, 2. Denote the approximations to the solution at the mesh points
by uk1,k2 ≈ u(xk1 , xk2). Then approximate the second-order derivatives in the Laplace operator at the N2 interior
mesh points by

∂2u(xk1
, xk2

)

∂x21
+
∂2u(xk1

, xk2
)

∂x22
≈ uk1−1,k2

− 2uk1,k2
+ uk1+1,k2

h2
+
uk1,k2−1 − 2uk1,k2

+ uk1,k2+1

h2
(2.2)

for ki = 1, . . . , N , i = 1, . . . , d, for the approximations at the interior points. Using this approximation together
with the homogeneous boundary conditions (2.1) gives a system of N2 linear equations for the finite difference
approximations at the N2 interior mesh points.

Collecting the N2 unknown approximations uk1,k2
in a vector u ∈ RN2

using the natural ordering of the mesh
points, we can state the problem as a system of linear equations in standard form Au = b with a system matrix
A ∈ RN2×N2

and a right-hand side vector b ∈ RN2

. The components of the right-hand side vector b are given by
the product of h2 multiplied by right-hand side function evaluations f(xk1

, xk2
) at the interior mesh points using

the same ordering as the one used for uk1,k2
. The system matrix A ∈ RN2×N2

can be defined recursively as block
tri-diagonal matrix with N ×N blocks of size N ×N each. Concretely, we have

A =


S T
T S T

. . .
. . .

. . .

T S T
T S

 ∈ RN2×N2

(2.3)

with the tri-diagonal matrix S = tridiag(−1, 4,−1) ∈ RN×N for the diagonal blocks of A and with T = −I ∈ RN×N

denoting a negative identity matrix for the off-diagonal blocks of A.
For fine meshes with large N , iterative methods such as the conjugate gradient method are appropriate for

solving this linear system. The system matrix A is known to be symmetric positive definite and thus the method is
guaranteed to converge for this problem. In a careful implementation, the conjugate gradient method requires in each
iteration exactly two inner products between vectors, three vector updates, and one matrix-vector product involving
the system matrix A. In fact, this matrix-vector product is the only way, in which A enters into the algorithm.
Therefore, a so-called matrix-free implementation of the conjugate gradient method is possible that avoids setting
up any matrix, if one provides a function that computes as its output the product vector q = Ap component-wise
directly from the components of the input vector p by using the explicit knowledge of the values and positions of the
non-zero components of A, but without assembling A as a matrix.

Thus, without storing A, a careful, efficient, matrix-free implementation of the (unpreconditioned) conjugate
gradient method only requires the storage of four vectors (commonly denoted as the solution vector x, the residual r,
the search direction p, and an auxiliary vector q). In a parallel implementation of the conjugate gradient method, each
vector is split into as many blocks as parallel processes are available and one block distributed to each process. That
is, each parallel process possesses its own block of each vector, and normally no vector is ever assembled in full on
any process. To understand what this means for parallel programming and the performance of the method, note that
an inner product between two vectors distributed in this way is computed by first forming the local inner products
between the local blocks of the vectors and second summing all local inner products across all parallel processors
to obtain the global inner product. This summation of values from all processes is known as a reduce operation
in parallel programming, which requires a communication among all parallel processes. This communication is
necessary as part of the numerical method used, and this necessity is responsible for the fact that for fixed problem
sizes eventually for very large numbers of processors the time needed for communication — increasing with the number
of processes — will unavoidably dominate over the time used for the calculations that are done simultaneously in
parallel — decreasing due to shorter local vectors for increasing number of processes. By contrast, the vector updates

3



in each iteration can be executed simultaneously on all processes on their local blocks, because they do not require
any parallel communications. However, this requires that the scalar factors that appear in the vector updates are
available on all parallel processes. This is accomplished already as part of the computation of these factors by using
a so-called Allreduce operation, that is, a reduce operation that also communicates the result to all processes. This
is implemented in the MPI function MPI_Allreduce. Finally, the matrix-vector product q = Ap also computes only
the block of the vector q that is local to each process. But since the matrix A has non-zero off-diagonal elements,
each local block needs values of p that are local to the two processes that hold the neighboring blocks of p. The
communications between parallel processes thus needed are so-called point-to-point communications, because not all
processes participate in each of them, but rather only specific pairs of processes that exchange data needed for their
local calculations. Observe now that it is only a few components of q that require data from p that is not local to
the process. Therefore, it is possible and potentially very efficient to proceed to calculate those components that can
be computed from local data only, while the communications with the neighboring processes are taking place. This
technique is known as interleaving calculations and communications and can be implemented using the non-blocking
MPI communications commands MPI_Isend and MPI_Irecv.

3 Convergence Study for the Model Problem

To test the numerical method and its implementation, we consider the elliptic problem (2.1) on the unit square
Ω = (0, 1)× (0, 1) with right-hand side function

f(x1, x2) = (−2π2)
(

cos(2πx1) sin2(πx2) + sin2(πx1) cos(2πx2)
)
, (3.1)

for which the solution u(x1, x2) = sin2(πx1) sin2(πx2) is known. On a mesh with 33 × 33 points and mesh spacing
h = 1/32 = 0.03125, the numerical solution uh(x1, x2) can be plotted vs. (x1, x2) as a mesh plot as in Figure 3.1 (a).
The shape of the solution clearly agrees with the true solution of the problem. At each mesh point, an error is incurred
compared to the true solution u(x1, x2). A mesh plot of the error u − uh vs. (x1, x2) is plotted in Figure 3.1 (b).
We see that the maximum error occurs at the center of the domain of size about 3.2e–3, which compares well to the
order of magnitude h2 ≈ 0.98e–3 of the theoretically predicted error.

To check the convergence of the finite difference method as well as to analyze the performance of the conjugate
gradient method, we solve the problem on a sequence of progressively finer meshes. The conjugate gradient method
is started with a zero vector as initial guess and the solution is accepted as converged when the Euclidean vector
norm of the residual is reduced to the fraction 10−6 of the initial residual. Table 3.1 lists the mesh resolution N of the
N ×N mesh, the number of degrees of freedom N2 (DOF; i.e., the dimension of the linear system), the norm of the
finite difference error ‖u− uh‖L∞(Ω)

, the number of conjugate gradient iterations #iter, the observed wall clock time
in HH:MM:SS and in seconds, and the predicted and observed memory usage in GB for studies performed in serial.
More precisely, the runs used the parallel code run on one process only, on a dedicated node (no other processes
running on the node), and with all parallel communication commands disabled by if-statements. The wall clock time

(a) Numerical solution uh (b) Error u− uh

Figure 3.1: Mesh plots of (a) the numerical solution uh vs. (x1, x2) and (b) the error u− uh vs. (x1, x2).

4



Table 3.1: Convergence study (using the Intel compiler with MVAPICH2) listing the mesh resolution N , the number
of degrees of freedom (DOF), the norm of the finite difference error ‖u− uh‖L∞(Ω)

, the ratio of consecutive errors, the
number of conjugate gradient iterations to convergence, the observed wall clock time in HH:MM:SS and in seconds,
and the predicted and observed memory usage in GB for a one-process run.

N DOF ‖u− uh‖L∞(Ω)
Ratio #iter wall clock time memory usage (GB)

HH:MM:SS seconds predicted observed
32 1,024 3.0128e–3 N/A 48 <00:00:01 < 0.01 < 1 < 1
64 4,096 7.7811e–4 3.87 96 <00:00:01 < 0.01 < 1 < 1

128 16,384 1.9765e–4 3.94 192 <00:00:01 0.01 < 1 < 1
256 65,536 4.9797e–5 3.97 387 <00:00:01 0.11 < 1 < 1
512 262,144 1.2494e–5 3.99 783 <00:00:01 0.81 < 1 < 1

1024 1,048,576 3.1266e–6 4.00 1,581 00:00:09 9.42 < 1 < 1
2048 4,194,304 7.8019e–7 4.01 3,192 00:01:34 94.02 < 1 < 1
4096 16,777,216 1.9366e–7 4.03 6,452 00:12:31 751.37 < 1 < 1
8192 67,108,864 4.7377e–8 4.09 13,033 01:41:43 6,103.00 2 2.00

16384 268,435,456 1.1547e–8 4.10 26,316 13:57:41 50,261.06 8 8.00
32768 1,073,741,824 1.7321e–9 6.67 53,141 120:33:23 434,003.08 32 32.00

is measured using the MPI_Wtime command (after synchronizing all processes by an MPI_Barrier command). The
memory usage of the code is predicted by noting that there are 4N2 double-precision numbers needed to store the
four vectors of significant length N2 and that each double-precision number requires 8 bytes; dividing this result
by 10243 converts its value to units of GB, as quoted in the table. The memory usage is observed in the code by
checking the VmRSS field in the the special file /proc/self/status. For the one case where multiple processes were
needed, this number is summed across all running processes to get the total usage. For the runs that take under one
second, the observed memory appears to be dominated by some system overhead, rather than reflecting the problem
size directly.

In nearly all cases, the norms of the finite difference errors in Table 3.1 decrease by a factor of about 4 each time
that the mesh is refined by a factor 2. This confirms that the finite difference method is second-order convergent,
as predicted by the numerical theory for the finite difference method [2, 6]. The fact that this convergence order is
attained also confirms that the tolerance of the iterative linear solver is tight enough to ensure a sufficiently accurate
solution of the linear system. For the two finest mesh resolutions, the reduction in error appears slightly more erratic,
which points to the tolerance not being tight enough beyond these resolutions. The increasing numbers of iterations
needed to achieve the convergence of the linear solver highlights the fundamental computational challenge with
methods in the family of Krylov subspace methods, of which the conjugate gradient method is the most important
example: Refinements of the mesh imply more mesh points, where the solution approximation needs to be found,
and makes the computation of each iteration of the linear solver more expensive. Additionally, more of these more
expensive iterations are required to achieve convergence to the desired tolerance for finer meshes. And it is not
possible to relax the solver tolerance too much, because otherwise its solution would not be accurate enough and the
norm of the finite difference error would not show a second-order convergence behavior, as required by its theory. The
good agreement between predicted and observed memory usage in the last two columns of the table indicates that the
implementation of the code does not have any unexpected memory usage and that there is little overhead memory
cost. The wall clock times and the memory usages for these serial runs indicate for which mesh resolutions this
elliptic test problem becomes challenging computationally. Notice that the very fine meshes show very significant
run times and memory usage; parallel computing clearly offers opportunities to decrease run times as well as to
decrease memory usage per process by spreading the problem over the parallel processes.

We finally note that the results for the finite difference error and the conjugate gradient iterations in Table 3.1
agree with past results for this problem; see [4] and the references therein. This ensures that the parallel performance
studies in the next section are practically relevant in that a correct solution of the test problem is computed.

5



4 Performance Studies on maya 2013

This section describes the parallel performance studies on maya (2013) for the solution of the test problem. Figure 4.1
contains a schematic of a maya (2013) node. A maya (2013) node consists of two eight-core 2.6 GHz Intel E5-2650v2
Ivy Bridge CPUs. Each CPU is connected to 32 GB of DDR3 memory through four memory channels. The two
CPUs are connected by two quick path interconnect (QPI) links. Nodes are connected by a quad-data rate Infiniband
connection.

The results in this section use the default assignment of MPI processes to the cores on the node. The default
behavior is to first allocate processes to the cores in a single CPU. Only in the case of a job that requires more 8 cores
are both CPUs used.

Table 4.1 presents the results of a performance study by numbers of nodes for the default Intel compiler with
MVAPICH2. The table summarizes the observed wall clock time (total time to execute the code) in HH:MM:SS
(hours:minutes:seconds) format. We consider the test problem for seven progressively finer meshes of N = 1024,
2048, 4096, 8192, 16384, 32768, and 65536. This results in progressively larger systems of linear equations with
system dimensions ranging from about 1 million to over 4 billion equtions. For each mesh resolution, the parallel
implementation of the test problem is run on increasing numbers of nodes from 1 to 64 by powers of 2 while varying
the number of processes per node from 1 to 16 by powers of 2. The upper-left entry of each sub-table contains the
runtime for the serial run of the code for that particular mesh. The lower-right entry of each sub-table lists the
runtime using all cores of both 8-core processors on 64 nodes for a total of 1024 parallel processes working together
to solve the problem. For the 1024× 1024 mesh we observe a serial runtime of 9 seconds and a runtime of 1 second
on all 1024 parallel processes. We observe the advantage of parallel computing for the 32768 × 32768 mesh where
the serial run of about 120 hours can be reduced to approximately 25 minutes by using all 1024 parallel processes.

Reading along each row of the table, we observe that by doubling the number of nodes used, and thus also
doubling the number of parallel process, we half the runtime. For instance, if we take 1 process per node on the
32768×32768 mesh, we observe that doubling the number of nodes from 1 node to 2 nodes results in an improvement
in runtime from 120:33:23 to 56:10:03, an improvement by a factor of 2.15. This continues along the row with factors
of improvement of 1.98, 2.00, 1.99, 1.98, 1.97 all the way to 1:49:42. This is a speedup of 65.94 from 1 node to
64 nodes. These speedups for using 1 process per node are slightly better than the optimal values, which can be

Figure 4.1: Schematic of a maya (2013) node.

6



explained by considering the large memory requirement of this fine resolution: Code such as this is memory-bound,
meaning that memory access is the limiting factor in performance. This becomes less of a problem, if the same
memory is distributed across more nodes, and therefore speedup appears better than optimal. We can also consider
the case of running all 16 processes per node. This results in an improvement from 22:56:40 to 11:31:18 or a factor of
1.99 from 1 node to 2 nodes. This behavior continues in the same fashion to 00:25:52 on 64 nodes. This is equivalent
to a speedup of 53.22 from 1 node to 64 nodes using 16 processes per node. These speedups for using 16 processes
per node are also excellent, since they are very close to their optimal values. The behavior observed for increasing
the number of nodes confirms the quality of the high-performance InfiniBand interconnect.

In order to observe the effect of running different numbers of processes per node we read along each column of a
sub-table. We observe that in most columns the runtime is approximately halved by doubling the processes per node
from 1 to 2. We also observe that the runtime is approximately halved by doubling the processes per node from 2 to
4 and from 8 to 16. However we observe only a small improvement in runtime by doubling the processes per node
from 4 to 8. This is due to the assignment of processes to the cores of the two CPUs on each node. The default
behavior on maya means that for jobs with up to 8 processes per node all of the processes are assigned to cores on
only one of the CPUs. Since our code is memory-bound, we observe a bottleneck when 8 processes attempt to access
the memory through only 4 memory channels. For most code which is not memory-bound, or if the 8 processes were
distributed among the two CPUs, we would observe a halving of runtime also when doubling the processes per node
from 4 to 8. In that case though, there would be only minimal speedup from 8 to 16 processes per node, which is
the typical characteristic of memory-bound code.

Overall, we can conclude that the default behavior of code on maya is good: For fastest runs, using all 16 cores
on a node has no disadvantage and using larger numbers of nodes shows optimal speedup up to the number of nodes
available on maya (2013). At the same time, the default behavior of concentrating up to 8 processes on one CPU is
appropriate for a multi-user system, since it allows additional users access to the second CPU.

Table 4.2 gives the wall clock time of the study for the GNU compiler with MVAPICH2. We observe that the
runtimes are longer for this compiler when compared to the default compiler of the Intel compiler with MVAPICH2.

Table 4.3 gives the wall clock time of the study for the Intel compiler with openMPI. We observe that the runtimes
are longer for this compiler when compared to the default MPI implementation of MVAPICH2.

Table 4.4 gives the wall clock time of the study for the GNU compiler with openMPI. We observe that the runtimes
are longer for this compiler when compared to the default compiler and the GNU compiler with MVAPICH2.

Parallel scalability is often visually represented by plots of observed speedup and efficiency. The ideal behavior
of code for a fixed problem size N using p parallel processes is that it be p times as fast as serial code. If Tp(N)
denotes the wall clock time for a problem of a fixed size parameterized by N using p processes, then the quantity
Sp = T1(N)/Tp(N) measures the speedup of the code from 1 to p processes, whose optimal value is Sp = p. The
efficiency Ep = Sp/p characterizes in relative terms how close a run with p parallel processes is to this optimal value,
for which Ep = 1. The behavior described here for speedup for a fixed problem size is known as strong scalability of
parallel code.

Table 4.5 organizes the results of Table 4.1 in the form of a strong scalability study, that is, there is one row for
each problem size, with columns for increasing number of parallel processes p. Table 4.5 (a) lists the raw timing
data, like Table 4.1, while Tables 4.5 (b) and (c) show the numbers for speedup and efficiency, respectively, that will
be visualized in Figures 4.2 (a) and (b), respectively. It becomes clear that there are several choices for most values
of p, such as for instance for p = 4, one could use 2 nodes with 2 processes per node or 1 node with 4 processes per
node. We use here the conclusions drawn already above from Table 4.1 that there is no disadvantage to using all
cores on a node, that is, for p ≥ 16 we use 16 processes per node, while we use one node only for p < 16 (with the
remaining cores idle). Comparing adjacent columns in the raw timing data in Table 4.5 (a) confirms our previous
observation that, with the exception of increasing the number of increasing the number of processes from 4 to 8,
using twice as many processes speeds up the code by a factor of two approximately, at least for small values of
p. However the efficiency and speedup are generally poor for most values of p. To quantify this more clearly, the
speedup in Table 4.5 (b) is computed, which shows near-optimal speedup with Sp ≈ p. This is is expressed as Ep ≈ 1
in Table 4.5 (c). This table confirms the dramatic loss efficiency that we observed in Table 4.1 which occurs by
increasing the number of processes from 4 to 8.

The plots in Figures 4.2 (a) and (b) visualize the numbers in Tables 4.5 (b) and (c), respectively. These plots do
not provide new data but simply provide a different representation of the results in Table 4.1. For instance, we observe
high variability in efficiency for small N values. In particular, we observe that performance suffers dramatically for
small p. However, the horizantal shape of the lines in the effiency plot brings out that no further degradation of
performance occurs as p increases beyond 8 for large N . Interestingly, we observe the best speedup and efficiency
for N = 8192 rather than for the largest N = 32768. For N = 8192, the speedup and efficiency actually improves as
p increases rather than staying the same or even slightly degrading as it does for all other N values.

7



Table 4.1: Wall clock time in HH:MM:SS on maya (2013) using the Intel compiler with MVAPICH2.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:09 00:00:03 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:06 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:04 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:03 00:00:01 00:00:00 00:00:00 00:00:00 00:00:01 00:00:00
16 processes per node 00:00:01 00:00:00 00:00:00 00:00:01 00:00:00 00:00:00 00:00:01

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:01:34 00:00:47 00:00:20 00:00:08 00:00:04 00:00:02 00:00:02
2 processes per node 00:00:54 00:00:28 00:00:11 00:00:04 00:00:03 00:00:01 00:00:01
4 processes per node 00:00:41 00:00:21 00:00:08 00:00:03 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:40 00:00:20 00:00:07 00:00:02 00:00:01 00:00:01 00:00:02
16 processes per node 00:00:20 00:00:07 00:00:02 00:00:01 00:00:01 00:00:01 00:00:02

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:12:31 00:06:16 00:03:11 00:01:36 00:00:41 00:00:16 00:00:09
2 processes per node 00:07:07 00:03:35 00:01:50 00:00:56 00:00:24 00:00:09 00:00:08
4 processes per node 00:05:26 00:02:46 00:01:24 00:00:44 00:00:18 00:00:11 00:00:04
8 processes per node 00:05:20 00:02:43 00:01:23 00:00:41 00:00:17 00:00:04 00:00:03
16 processes per node 00:02:42 00:01:25 00:00:43 00:00:18 00:00:05 00:00:03 00:00:02

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 01:41:43 00:50:59 00:25:42 00:12:58 00:06:38 00:03:21 00:01:27
2 processes per node 00:56:18 00:28:59 00:14:56 00:07:33 00:03:51 00:01:59 00:00:55
4 processes per node 00:43:02 00:21:58 00:11:00 00:05:39 00:02:54 00:01:31 00:00:40
8 processes per node 00:42:04 00:21:24 00:10:43 00:05:34 00:02:51 00:01:28 00:00:40
16 processes per node 00:21:30 00:10:48 00:05:32 00:02:53 00:01:31 00:00:43 00:00:13

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 13:57:41 07:01:26 03:31:38 01:46:07 00:53:29 00:27:05 00:13:57
2 processes per node 07:46:36 03:57:43 02:03:19 01:02:01 00:30:59 00:15:35 00:08:06
4 processes per node 05:49:38 02:57:03 01:29:25 00:45:18 00:22:44 00:11:48 00:06:10
8 processes per node 05:37:56 02:50:18 01:25:35 00:43:42 00:22:08 00:11:24 00:06:05
16 processes per node 02:50:04 01:26:08 00:43:50 00:22:31 00:11:41 00:06:17 00:03:26

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 120:33:23 56:10:03 28:21:10 14:10:21 07:07:57 03:36:02 01:49:42
2 processes per node 63:24:11 31:40:50 16:04:04 08:08:08 04:04:34 02:03:32 01:02:50
4 processes per node 43:32:36 23:48:33 11:55:17 06:01:02 03:02:32 01:32:19 00:47:05
8 processes per node 41:15:26 22:55:02 11:31:58 05:47:34 02:55:44 01:28:47 00:45:51
16 processes per node 22:56:40 11:31:18 05:49:30 02:56:45 01:30:46 00:47:33 00:25:52

8



Table 4.2: Wall clock time in HH:MM:SS on maya (2013) using the GNU compiler with MVAPICH2.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:11 00:00:05 00:00:02 00:00:02 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:06 00:00:03 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:04 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:01
8 processes per node 00:00:03 00:00:01 00:00:00 00:00:00 00:00:00 00:00:01 00:00:00
16 processes per node 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:01:43 00:00:52 00:00:24 00:00:10 00:00:05 00:00:03 00:00:02
2 processes per node 00:00:58 00:00:30 00:00:14 00:00:05 00:00:03 00:00:02 00:00:01
4 processes per node 00:00:42 00:00:22 00:00:10 00:00:04 00:00:02 00:00:01 00:00:02
8 processes per node 00:00:40 00:00:20 00:00:08 00:00:02 00:00:01 00:00:01 00:00:02
16 processes per node 00:00:20 00:00:08 00:00:02 00:00:01 00:00:01 00:00:02 00:00:01

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:13:51 00:06:57 00:03:31 00:01:46 00:00:50 00:00:21 00:00:12
2 processes per node 00:07:44 00:03:55 00:01:58 00:01:01 00:00:29 00:00:12 00:00:12
4 processes per node 00:05:40 00:02:54 00:01:28 00:00:46 00:00:20 00:00:13 00:00:04
8 processes per node 00:05:20 00:02:44 00:01:23 00:00:42 00:00:19 00:00:05 00:00:03
16 processes per node 00:02:40 00:01:23 00:00:43 00:00:21 00:00:05 00:00:03 00:00:03

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 01:52:17 00:56:00 00:28:11 00:14:13 00:07:12 00:03:42 00:01:44
2 processes per node 01:03:37 00:31:47 00:15:57 00:08:03 00:04:07 00:02:07 00:01:02
4 processes per node 00:45:06 00:22:50 00:11:32 00:05:54 00:02:59 00:01:33 00:00:44
8 processes per node 00:42:13 00:21:28 00:10:53 00:05:33 00:02:52 00:01:30 00:00:43
16 processes per node 00:21:15 00:10:57 00:05:38 00:02:55 00:01:34 00:00:42 00:00:15

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 15:09:44 07:38:58 03:49:38 01:54:51 00:58:06 00:29:25 00:15:07
2 processes per node 08:36:43 04:20:52 02:09:57 01:05:30 00:33:01 00:16:44 00:08:41
4 processes per node 06:06:31 03:05:32 01:33:35 00:47:25 00:23:57 00:12:15 00:06:22
8 processes per node 05:39:34 02:50:50 01:26:40 00:43:51 00:22:20 00:11:35 00:05:53
16 processes per node 02:51:12 01:26:43 00:43:57 00:22:36 00:11:54 00:06:26 00:03:44

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node ET ET 31:00:35 15:32:07 07:46:45 03:54:47 02:00:53
2 processes per node ET 34:49:36 17:27:53 08:49:40 04:24:21 02:13:13 01:08:34
4 processes per node 47:09:32 24:57:56 12:25:36 06:16:42 03:09:48 01:36:24 00:49:02
8 processes per node 42:11:47 23:03:54 11:31:50 05:48:03 02:56:52 01:29:53 00:46:12
16 processes per node 23:05:36 11:34:21 05:50:09 02:57:43 01:31:30 00:47:52 00:26:00

9



Table 4.3: Wall clock time in HH:MM:SS on maya (2013) using the Intel compiler with OpenMPI.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:09 00:00:04 00:00:02 00:00:01 00:00:01 00:00:00
2 processes per node 00:00:04 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00
4 processes per node 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00
16 processes per node 00:00:01 00:00:00 00:00:01 00:00:01 00:00:01 00:00:01

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:01:32 00:00:47 00:00:20 00:00:08 00:00:04 00:00:02
2 processes per node 00:01:05 00:00:25 00:00:08 00:00:04 00:00:02 00:00:01
4 processes per node 00:00:43 00:00:17 00:00:05 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:33 00:00:12 00:00:03 00:00:02 00:00:01 00:00:01
16 processes per node 00:00:26 00:00:11 00:00:02 00:00:02 00:00:02 00:00:03

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:12:13 00:06:16 00:04:33 00:01:35 00:00:41 00:00:16
2 processes per node 00:06:33 00:04:32 00:02:14 00:00:53 00:00:17 00:00:09
4 processes per node 00:05:51 00:02:56 00:01:29 00:00:35 00:00:11 00:00:05
8 processes per node 00:05:11 00:02:37 00:01:17 00:00:29 00:00:07 00:00:04
16 processes per node 00:04:05 00:02:25 00:01:16 00:00:29 00:00:10 00:00:06

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 01:40:42 00:50:30 00:25:24 00:16:01 00:06:32 00:03:19
2 processes per node 00:53:38 00:33:53 00:16:14 00:09:27 00:04:40 00:01:50
4 processes per node 00:42:03 00:23:36 00:12:06 00:06:07 00:03:04 00:01:15
8 processes per node 00:38:27 00:20:53 00:10:39 00:05:23 00:02:39 00:01:02
16 processes per node 00:22:48 00:16:18 00:09:47 00:05:26 00:02:42 00:01:06

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 13:42:52 06:52:41 03:26:36 02:27:28 01:13:40 00:37:55
2 processes per node 06:55:18 04:29:58 02:14:32 01:14:34 00:38:20 00:19:30
4 processes per node 04:12:50 02:49:19 01:25:25 00:49:32 00:25:16 00:12:47
8 processes per node 03:27:36 02:18:22 01:18:16 00:42:52 00:21:47 00:11:08
16 processes per node 02:58:25 01:42:29 00:47:29 00:44:37 00:18:03 00:11:27

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node ET ET 40:36:21 20:01:06 10:09:27 05:05:11
2 processes per node ET 32:04:24 20:18:39 07:58:08 04:58:52 02:35:14
4 processes per node 33:43:30 19:43:08 11:53:35 06:43:52 03:16:47 01:40:14
8 processes per node 30:04:45 17:04:10 08:38:32 04:57:15 02:52:22 01:27:08
16 processes per node 31:04:17 16:08:02 09:23:21 04:31:40 02:07:50 01:02:37

10



Table 4.4: Wall clock time in HH:MM:SS on maya (2013) using the GNU compiler with OpenMPI.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:11 00:00:05 00:00:03 00:00:01 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:05 00:00:03 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:03 00:00:01 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:01 00:00:01 00:00:01 00:00:00 00:00:00 00:00:01 00:00:01
16 processes per node 00:00:01 00:00:01 00:00:00 00:00:01 00:00:01 00:00:01 00:00:00

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:01:42 00:00:52 00:00:24 00:00:10 00:00:05 00:00:03 00:00:02
2 processes per node 00:01:09 00:00:30 00:00:11 00:00:06 00:00:03 00:00:02 00:00:01
4 processes per node 00:00:44 00:00:18 00:00:06 00:00:03 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:25 00:00:12 00:00:04 00:00:02 00:00:01 00:00:01 00:00:01
16 processes per node 00:00:20 00:00:10 00:00:02 00:00:02 00:00:02 00:00:03 00:00:03

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:13:44 00:06:55 00:03:30 00:01:45 00:00:49 00:00:21 00:00:11
2 processes per node 00:07:23 00:04:40 00:02:22 00:01:01 00:00:22 00:00:12 00:00:07
4 processes per node 00:03:55 00:03:04 00:01:32 00:00:40 00:00:13 00:00:07 00:00:04
8 processes per node 00:03:31 00:02:41 00:01:19 00:00:31 00:00:09 00:00:05 00:00:04
16 processes per node 00:02:53 00:02:05 00:01:05 00:00:29 00:00:07 00:00:05 00:00:07

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 01:51:52 00:55:58 00:28:10 00:17:37 00:07:33 00:04:59 00:02:02
2 processes per node 00:59:46 00:30:03 00:18:58 00:09:43 00:04:52 00:02:07 00:00:47
4 processes per node 00:37:37 00:23:21 00:12:22 00:06:18 00:03:11 00:01:24 00:00:28
8 processes per node 00:34:47 00:21:12 00:10:39 00:05:28 00:02:42 00:01:07 00:00:20
16 processes per node 00:22:00 00:16:29 00:10:15 00:05:18 00:02:40 00:01:07 00:00:21

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 14:59:32 07:33:34 05:11:02 02:01:48 01:21:09 00:40:03 00:20:32
2 processes per node 08:50:12 04:55:30 02:34:24 01:09:38 00:39:06 00:20:24 00:10:12
4 processes per node 05:18:40 02:21:13 01:40:43 00:50:21 00:25:48 00:13:13 00:06:40
8 processes per node 03:39:39 02:03:12 01:18:38 00:43:37 00:22:04 00:11:16 00:05:39
16 processes per node 02:54:56 00:00:06 00:55:17 00:36:28 00:22:20 00:11:23 00:06:15

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node ET ET 43:23:32 21:10:28 11:03:14 04:54:39 02:44:51
2 processes per node ET 32:22:22 21:47:28 10:51:48 05:14:45 02:38:00 01:21:35
4 processes per node 35:06:30 24:02:09 12:40:23 06:31:44 03:26:57 01:43:00 00:52:53
8 processes per node 30:45:21 17:22:17 10:03:02 05:44:15 02:46:20 01:28:35 00:44:58
16 processes per node 31:43:54 11:54:49 09:14:08 03:50:07 02:48:47 01:23:31 00:40:39

11



Table 4.5: Intel compiler with MVAPICH2 performance on maya (2013) by number of processes used with 16 processes
per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, p = 4 which uses
4 processes per node, and p = 8 which uses 8 processes per node.

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024

1024 00:00:09 00:00:06 00:00:04 00:00:03 00:00:01 00:00:00 00:00:00 00:00:01 00:00:00 00:00:00 00:00:01
2048 00:01:34 00:00:54 00:00:41 00:00:40 00:00:20 00:00:07 00:00:02 00:00:01 00:00:01 00:00:01 00:00:02
4096 00:12:31 00:07:07 00:05:26 00:05:20 00:02:42 00:01:25 00:00:43 00:00:18 00:00:05 00:00:03 00:00:02
8192 01:41:43 00:56:18 00:43:02 00:42:04 00:21:30 00:10:48 00:05:32 00:02:53 00:01:31 00:00:43 00:00:13

16384 13:57:41 07:46:36 05:49:38 05:37:56 02:50:04 01:26:08 00:43:50 00:22:31 00:11:41 00:06:17 00:03:26
32768 120:33:23 63:24:11 43:32:36 41:15:26 22:56:40 11:31:18 05:49:30 02:56:45 01:30:46 00:47:33 00:25:52

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024
1024 1.00 1.70 2.46 2.69 14.92 26.11 47.00 8.03 52.22 40.87 9.69
2048 1.00 1.73 2.28 2.34 4.70 12.83 60.66 100.02 127.05 140.33 54.98
4096 1.00 1.76 2.30 2.35 4.64 8.87 17.28 42.12 165.14 276.24 313.07
8192 1.00 1.81 2.36 2.42 4.73 9.42 18.39 35.26 67.41 143.23 459.91

16384 1.00 1.80 2.40 2.48 4.93 9.73 19.11 37.19 71.67 133.39 243.87
32768 1.00 1.90 2.77 2.92 5.25 10.46 20.70 40.92 79.70 152.11 279.61

(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512 p = 1024
1024 1.00 0.85 0.62 0.34 0.93 0.82 0.73 0.06 0.20 0.08 0.01
2048 1.00 0.87 0.57 0.29 0.29 0.40 0.95 0.78 0.50 0.27 0.05
4096 1.00 0.88 0.58 0.29 0.29 0.28 0.27 0.33 0.65 0.54 0.31
8192 1.00 0.90 0.59 0.30 0.30 0.29 0.29 0.28 0.26 0.28 0.45

16384 1.00 0.90 0.60 0.31 0.31 0.30 0.30 0.29 0.28 0.26 0.24
32768 1.00 0.95 0.69 0.37 0.33 0.33 0.32 0.32 0.31 0.30 0.27

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.2: Intel compiler with MVAPICH2 performance on maya (2013) by number of processes used with 16 pro-
cesses per node, except for p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, p = 4 which
user 4 processes per node, and p = 8 which uses 8 processes per node.

12



5 Performance Studies on maya 2010

This section describes the parallel performance studies on maya (2010) for the solution of the elliptic test problem.
A maya (2010) node consists of two quad-core 2.8 GHz Intel Nehalem X5560 CPUs. Each CPU is connected to 12
GB of DDR3 memory through three memory channels. This is analagous to Figure 4.1, but with four cores and
three memory channels. Nodes are connected to by a dual-data rate Ininiband network. The results use the default
distribution of MPI processes to the cores on the node.

We consider the test problem for six progressively finer meshes of N = 1024, 2048, 4096, 8192, 16384, and 32768.
This results in progressively larger systems of linear equations with system dimensions ranging from about 1 million
to over 1 billion equtions. The parallel implementation of conjugate gradient method is run on increasing numbers
of nodes from 1 to 64 by powers of 2 while varying the number of processes per node from 1 to 8 by powers of 2.

Table 5.1 provides the observed wall clock time for the default Intel compiler with MVAPICH2. Reading along
each column of the table, we observe that by doubling of nodes used, and thus also the number of parallel processes,
we half the runtime. This behavior was also observed in the Tables 4.1–4.4.

In order to observe the effect of running different numbers of processes per node we read along each column of
a sub-table. We observe that that in most columns the runtime is halved by doubling the processes per node from
1 to 2. We also observe that the runtime is halved from 4 to 8. However we observe only a small improvement in
runtime from 2 to 4. For these nodes the defualt behavior on maya means that for jobs with 4 processes per node all
of the processes are distributed on only one of the CPUs. Since our code is memory-bound we observe a bottleneck
when 4 processes attempt to access the 12 GB of DDR3 memory through only 3 memory channels.

There are several differences between the results for maya (2013) and maya (2010) using the default compiler.
Since the maya (2013) nodes have 64 GB of DDR3 memory while maya (2010) nodes only have 24 GB of DDR3
memory, larger problems are possible on maya (2013) nodes. For instance, we are able to run run the code for the
N = 32768 mesh on a single maya (2013) node however we run out of memory on a single maya (2010) node. We
also observe that the runtime is longer on maya (2010) when compared to the runtime on maya (2013) using the
default compiler. This is as we would expect since the maya (2013) nodes are newer and connected with a quad-data
rate Infiband network while the maya (2010) nodes are connected with a slower dual-data rate Infiniband network.
The behavior previously described is true for all available compilers on maya (2010).

Table 5.2 gives the wall clock time of the study for the GNU compiler with MVAPICH2. Just as on maya (2013),
we observe that the runtime with this compiler is longer than with the default compiler of the Intel compiler with
MVAPICH2.

Table 5.3 gives the wall clock time of the study for the Intel compiler with openMPI. We observe that the runtimes
are longer for this compiler when compared to the default compiler.

Table 5.4 gives the wall clock time of the study for the GNU compiler with openMPI. We observe that the runtimes
are longer for this compiler when compared to the default compiler and the GNU compiler with MVAPICH2.

13



Table 5.1: Wall clock time in HH:MM:SS on maya (2010) using the Intel compiler with MVAPICH2.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:16 00:00:08 00:00:03 00:00:02 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:12 00:00:05 00:00:02 00:00:01 00:00:00 00:00:00 00:00:00
4 processes per node 00:00:10 00:00:05 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:05 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:02:07 00:01:04 00:00:32 00:00:16 00:00:06 00:00:04 00:00:02
2 processes per node 00:01:28 00:00:45 00:00:24 00:00:11 00:00:04 00:00:02 00:00:01
4 processes per node 00:01:23 00:00:43 00:00:22 00:00:09 00:00:03 00:00:01 00:00:01
8 processes per node 00:00:44 00:00:23 00:00:10 00:00:03 00:00:02 00:00:01 00:00:01

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:16:54 00:08:33 00:04:17 00:02:12 00:01:07 00:00:34 00:00:13
2 processes per node 00:12:11 00:06:05 00:03:09 00:01:36 00:00:51 00:00:25 00:00:11
4 processes per node 00:11:17 00:05:34 00:02:53 00:01:29 00:00:49 00:00:20 00:00:06
8 processes per node 00:05:49 00:03:00 00:01:32 00:00:47 00:00:21 00:00:08 00:00:04

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 02:17:19 01:08:45 00:34:29 00:17:30 00:08:49 00:04:42 00:02:22
2 processes per node 01:38:28 00:49:42 00:25:03 00:12:49 00:06:31 00:03:17 00:01:48
4 processes per node 01:30:54 00:45:20 00:22:56 00:11:43 00:05:59 00:03:05 00:01:38
8 processes per node 00:47:24 00:23:48 00:12:02 00:06:10 00:03:16 00:01:44 00:00:51

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 18:27:56 09:14:53 04:37:21 02:19:21 01:10:10 00:37:07 00:19:18
2 processes per node 13:15:07 06:50:25 03:23:00 01:44:25 00:52:28 00:26:32 00:16:44
4 processes per node 12:20:40 06:12:06 03:05:45 01:33:50 00:47:05 00:24:02 00:15:15
8 processes per node 06:23:40 03:13:58 01:37:23 00:49:17 00:25:00 00:13:08 00:08:29

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node OM ET 39:24:39 18:54:55 09:54:36 05:01:07 02:33:00
2 processes per node OM ET 27:03:59 13:39:06 07:02:28 03:31:55 01:48:58
4 processes per node OM ET 25:14:15 12:41:48 06:25:01 03:13:57 01:36:37
8 processes per node OM 26:13:50 13:02:39 06:36:37 03:22:55 01:41:43 00:53:08

14



Table 5.2: Wall clock time in HH:MM:SS on maya (2010) using the GNU compiler with MVAPICH2.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:15 00:00:08 00:00:03 00:00:02 00:00:01 00:00:01 00:00:00
2 processes per node 00:00:12 00:00:06 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00
4 processes per node 00:00:10 00:00:04 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:05 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00 00:00:00

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:02:08 00:01:07 00:00:34 00:00:17 00:00:06 00:00:01 00:00:02
2 processes per node 00:01:36 00:00:48 00:00:24 00:00:11 00:00:04 00:00:02 00:00:01
4 processes per node 00:01:23 00:00:43 00:00:22 00:00:09 00:00:03 00:00:01 00:00:01
8 processes per node 00:00:45 00:00:22 00:00:10 00:00:03 00:00:01 00:00:01 00:00:01

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:17:23 00:08:43 00:04:25 00:02:14 00:01:10 00:00:01 00:00:15
2 processes per node 00:12:48 00:06:33 00:03:16 00:01:42 00:00:52 00:00:24 00:00:10
4 processes per node 00:11:12 00:05:36 00:02:51 00:01:29 00:00:46 00:00:25 00:00:07
8 processes per node 00:05:49 00:02:57 00:01:31 00:00:47 00:00:23 00:00:07 00:00:04

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 02:21:47 01:10:42 00:35:35 00:18:07 00:09:11 00:00:01 00:02:34
2 processes per node 01:45:28 00:53:02 00:26:29 00:13:16 00:06:50 00:03:34 00:02:14
4 processes per node 01:30:34 00:45:28 00:22:52 00:11:28 00:05:54 00:03:50 00:01:56
8 processes per node 00:47:10 00:23:44 00:12:00 00:06:07 00:03:14 00:01:47 00:01:02

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 18:59:49 09:30:56 05:05:16 02:36:07 01:17:38 00:39:08 00:20:27
2 processes per node 14:16:30 07:12:01 03:38:17 01:48:46 00:56:02 00:32:39 00:16:44
4 processes per node 12:17:22 06:08:55 03:05:08 01:32:54 00:59:53 00:23:51 00:15:32
8 processes per node 06:22:39 03:12:27 01:36:47 00:48:54 00:24:58 00:15:35 00:08:23

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node OM ET 40:28:58 19:30:19 10:20:18 05:16:52 02:46:05
2 processes per node OM ET 28:54:35 14:31:57 08:44:37 04:17:17 02:14:42
4 processes per node OM ET 24:59:46 12:34:18 06:17:30 03:09:22 02:02:02
8 processes per node OM 25:51:16 12:57:11 06:32:00 03:17:27 02:04:06 01:02:47

15



Table 5.3: Wall clock time in HH:MM:SS on maya (2010) using the Intel compiler with OpenMPI.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:16 00:00:08 00:00:03 00:00:01 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:11 00:00:03 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00
4 processes per node 00:00:06 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:04 00:00:01 00:00:01 00:00:01 00:00:01 00:00:00 00:00:02

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:02:08 00:01:28 00:00:44 00:00:20 00:00:06 00:00:03 00:00:02
2 processes per node 00:01:06 00:00:48 00:00:22 00:00:07 00:00:03 00:00:02 00:00:01
4 processes per node 00:00:59 00:00:46 00:00:19 00:00:04 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:44 00:00:32 00:00:14 00:00:03 00:00:01 00:00:01 00:00:01

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:16:59 00:08:36 00:05:53 00:02:59 00:01:31 00:00:41 00:00:14
2 processes per node 00:09:52 00:06:26 00:03:18 00:01:43 00:00:48 00:00:18 00:00:07
4 processes per node 00:11:09 00:06:16 00:03:13 00:01:35 00:00:43 00:00:10 00:00:05
8 processes per node 00:05:52 00:05:11 00:02:22 00:01:14 00:00:41 00:00:09 00:00:05

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 02:39:05 01:33:21 00:46:53 00:23:43 00:12:15 00:06:12 00:03:09
2 processes per node 01:15:14 00:52:03 00:25:59 00:13:22 00:06:47 00:03:33 00:01:54
4 processes per node 01:07:19 00:50:04 00:25:10 00:12:56 00:06:37 00:04:16 00:01:50
8 processes per node 00:55:34 00:35:49 00:23:14 00:12:13 00:06:55 00:03:30 00:01:37

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 20:09:09 12:41:46 06:11:30 03:11:52 01:38:23 00:48:31 00:24:43
2 processes per node 11:42:34 07:00:37 03:32:10 01:46:41 01:02:52 00:27:17 00:16:51
4 processes per node 08:10:55 05:49:13 03:14:48 01:43:39 00:52:19 00:36:15 00:13:47
8 processes per node 06:49:12 05:05:46 02:01:47 01:33:20 00:53:45 00:27:09 00:13:59

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node OM ET 51:02:39 25:35:23 12:52:06 06:27:21 03:18:10
2 processes per node OM ET 28:02:05 14:13:56 07:10:22 03:36:45 01:50:31
4 processes per node OM 35:00:57 27:10:02 13:19:50 06:40:51 03:29:50 01:46:50
8 processes per node OM 36:17:21 16:58:23 10:37:59 06:04:37 02:49:46 01:47:08

16



Table 5.4: Wall clock time in HH:MM:SS on maya (2010) using the GNU compiler with OpenMPI.

(a) Mesh resolution N ×N = 1024 × 1024, system dimension 1,048,576
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:16 00:00:10 00:00:03 00:00:02 00:00:01 00:00:00 00:00:00
2 processes per node 00:00:11 00:00:04 00:00:02 00:00:01 00:00:01 00:00:00 00:00:00
4 processes per node 00:00:10 00:00:03 00:00:01 00:00:01 00:00:00 00:00:00 00:00:00
8 processes per node 00:00:09 00:00:02 00:00:01 00:00:01 00:00:00 00:00:01 00:00:01

(b) Mesh resolution N ×N = 2048 × 2048, system dimension 4,194,304
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:02:08 00:01:29 00:00:45 00:00:21 00:00:07 00:00:04 00:00:02
2 processes per node 00:01:38 00:00:49 00:00:23 00:00:09 00:00:04 00:00:02 00:00:01
4 processes per node 00:01:01 00:00:47 00:00:20 00:00:05 00:00:02 00:00:01 00:00:01
8 processes per node 00:00:59 00:00:28 00:00:16 00:00:05 00:00:01 00:00:02 00:00:02

(c) Mesh resolution N ×N = 4096 × 4096, system dimension 16,777,216
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:18:25 00:11:52 00:05:59 00:03:06 00:01:33 00:00:43 00:00:15
2 processes per node 00:13:00 00:06:35 00:03:23 00:01:42 00:00:56 00:00:17 00:00:09
4 processes per node 00:08:24 00:06:25 00:03:16 00:01:39 00:00:44 00:00:11 00:00:05
8 processes per node 00:06:35 00:06:04 00:03:17 00:01:31 00:00:39 00:00:10 00:00:06

(d) Mesh resolution N ×N = 8192 × 8192, system dimension 67,108,864
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 02:36:33 01:36:06 00:48:53 00:24:50 00:12:13 00:06:14 00:03:16
2 processes per node 01:14:10 00:52:50 00:26:47 00:13:33 00:08:22 00:03:37 00:01:58
4 processes per node 01:06:54 00:41:27 00:25:42 00:13:08 00:06:38 00:04:12 00:01:52
8 processes per node 01:44:54 00:36:06 00:19:51 00:12:01 00:06:37 00:03:28 00:01:39

(e) Mesh resolution N ×N = 16384 × 16384, system dimension 268,435,456
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 19:36:54 13:20:19 06:31:40 03:18:35 01:38:18 00:49:33 00:25:39
2 processes per node 12:04:39 06:41:13 03:27:32 01:48:39 00:55:27 00:28:04 00:14:37
4 processes per node 11:29:02 06:58:50 03:19:19 01:39:46 00:53:01 00:27:06 00:13:53
8 processes per node 06:55:30 04:22:06 02:29:18 01:18:26 00:53:03 00:26:54 00:13:52

(f) Mesh resolution N ×N = 32768 × 32768, system dimension 1,073,741,824
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node OM ET ET 27:46:40 13:20:30 06:40:48 03:23:45
2 processes per node OM ET 29:25:09 15:00:30 07:30:20 03:45:25 01:55:04
4 processes per node OM 46:37:01 24:44:01 13:43:15 07:03:48 03:32:44 01:48:38
8 processes per node OM 40:11:39 18:56:21 11:05:50 05:18:34 03:14:30 01:46:31

17



Table 6.1: Runtimes (speedup) for N = 4096 on the clusters kali, hpc, tara, maya (2010), and maya (2013).

Cluster (year) serial 1 node 32 node 32 node
(1 core) all cores 1 core per node all cores

time time (speedup) time (speedup) time (speedup)
kali (2003) [1] 02:00:49 00:04:05 (29.59) 00:04:49 (25.08)
hpc (2008) [4] 01:51:29 00:32:37 (3.42) 00:03:23 (32.95) 00:01:28 (76.01)
tara (2009) [7] 00:31:16 00:06:39 (4.70) 00:01:05 (28.86) 00:00:09 (208.44)
maya (2010) 00:16:54 00:05:49 (2.91) 00:00:34 (29.82) 00:00:08 (126.75)
maya (2013) 00:12:31 00:02:42 (4.64) 00:00:16 (46.94) 00:00:03 (250.33)

6 Comparisons and Conclusions

Table 6.1 contains a summary of the results obtained on the cluster maya as well as a comparison to previous HPCF
clusters. The table reports results for the historical mesh resolution of N = 4096, which was the largest resolution
that could be solved on kali in 2003 (using the extended memory of 4 GB on the storage node). The first row of the
table contains the results for cluster kali. This cluster was a 33-node distributed-memory cluster with 32 compute
nodes including a storage node (with extended memory of 4 GB), containing the 0.5 TB central storage, each with
two (single-core) Intel Xeon 2.0 GHz processors and 1 GB of memory, connected by a Myrinet interconnect, plus
1 combined user/management node. Note that for the case of all cores on 1 node, that is, for the case of both (single-
core) CPUs used simultaneously, the performance was worse than for 1 CPU and hence the results were not recorded
at the time. The second row of the table contains results for the cluster hpc which was a 35-node distributed-memory
cluster with 33 compute nodes plus 1 development and 1 combined user/management node, each equipped with two
dual-core AMD Opteron processors and at least 13 GB of memory, connected by a DDR InfiniBand network and
with an Infiniband-accessible 14 TB parallel file system. The third row contains results for the cluster tara which
was an 86-node distributed-memory cluster with two quad-core Intel Nehalem processors and 24 GB per node, a
QDR InfiniBand interconnect, and 160 TB central storage. This cluster is now part of the cluster maya as maya
(2009), and its QDR InfiniBand network extends to the newest portion maya (2013). The fourth row of the table
contains results for the DDR InfiniBand connected portion maya (2010), and the fifth row contains results for the
QDR InfiniBand connected portion maya (2013).

On the cluster kali, we observed a factor of approximately 30 speedup by increasing the number of nodes from
1 to 32. However by using both cores on each node we only see a factor of approximately 25 speedup. We do not
observe the expected 64 factor speedup since each CPU on the node has such a low memory bandwidth that for a
memory-bound algorithm it is actually faster to leave the second CPU idling rather than to use both [1]. Note that
there are four cores on each node of cluster hpc compared to just two on the cluster kali, since the CPUs are dual-core.
We observe approximately fourfold speedup that we would expect by running it on four cores rather than one. By
running on 32 nodes with one core per node we observe the expected speedup of approximately 32; more in detail,
the speedup is slightly better than optimal, which is explained by the smaller portions of the subdivided problem on
each node fitting better into the cache of the processors. We see this for the first time here, but it is a typical effect
in strong performance studies, in which a problem that already fits on one node is divided into smaller and smaller
pieces as the number of nodes grows. Finally, by using all cores on 32 nodes we observe a speedup of 76.01, less than
the optimal speedup of 128 [4]. On the cluster tara we observe a less than optimal speedup of approximately 5 by
running on all 8 cores rather than on one, caused by the cores of a CPU competing for memory access. By running on
32 nodes with one core per node we observe a speedup of approximately 30. Finally, by using all 8 cores on 32 nodes
we observe a speedup of 208, less than the optimal speedup of 256 [7]. On maya (2010) we observe that by running
on all 8 cores on a single node rather than one core there is a speedup of approximately 3 rather than the optimal
speedup of 8. By running on 32 nodes with one core per node we observe a speedup of approximately 30. But when
combining the use of all cores with the use of 32 nodes, the DDR InfiniBand shows its limitation by reducing the
speedup to 126.75, short of the optimal speedup of 256. On maya (2013) we observe that by running on all 16 cores
on a single node rather than on one core there is a speedup of approximately 5 rather than the expected speedup of
16. We observe a greater than optimal speedup of 46.94 by running on 32 nodes with one process per node; this is
caused by the relatively small problem fitting into cache after dividing it onto 32 nodes, together with the quality of
the QDR InfiniBand interconnect. When combining the use of all 16 cores with the 32 nodes we observe a speedup
of 250 rather than the optimal speedup of 512, indicating that even the QDR InfiniBand is becoming saturated.

Table 6.1 allows us to draw several key conclusions that affect the choice of scheduling rules on maya. The high-
performance interconnect supports parallel scalability optimally, with the QDR InfiniBand outperforming the DDR

18



InfiniBand in some cases. Even though speedup is less than optimal when using all cores in a node, it is certainly
still faster to use all cores, as opposed to idling some, on the modern multi-core nodes. Finally, it is obvious and
expected that the newer nodes are faster per core as well as per node, however, for most serial production code, that
uses only 1 core, using one of the 2010 nodes with 2.8 GHz is a good default, and its DDR InfiniBand interconnect
is no disadvantage for serial jobs.

References

[1] Kevin P. Allen. Efficient parallel computing for solving linear systems of equations. UMBC Review: Journal of
Undergraduate Research and Creative Works, vol. 5, pp. 8–17, 2004.

[2] Dietrich Braess. Finite Elements. Cambridge University Press, third edition, 2007.

[3] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[4] Matthias K. Gobbert. Parallel performance studies for an elliptic test problem. Technical Report HPCF–2008–1,
UMBC High Performance Computing Facility, University of Maryland, Baltimore County, 2008.

[5] Anne Greenbaum. Iterative Methods for Solving Linear Systems, vol. 17 of Frontiers in Applied Mathematics.
SIAM, 1997.

[6] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied
Mathematics. Cambridge University Press, second edition, 2009.

[7] Andrew M. Raim and Matthias K. Gobbert. Parallel performance studies for an elliptic test problem on the cluster
tara. Technical Report HPCF–2010–2, UMBC High Performance Computing Facility, University of Maryland,
Baltimore County, 2010.

[8] Hafez Tari and Matthias K. Gobbert. A comparative study of the parallel performance of the blocking and
non-blocking MPI communication commands on an elliptic test problem on the cluster tara. Technical Report
HPCF–2010–6, UMBC High Performance Computing Facility, University of Maryland, Baltimore County, 2010.

[9] David S. Watkins. Fundamentals of Matrix Computations. Wiley, third edition, 2010.

19


	Introduction
	The Elliptic Test Problem
	Convergence Study for the Model Problem
	Performance Studies on maya 2013
	Performance Studies on maya 2010
	Comparisons and Conclusions

