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Abstract. In the 1998 paper entitled Large Cluster Results for Two Parametric Multinomial
Extra Variation Models, Nagaraj K. Neerchal and Jorge G. Morel developed an approximation
to the Fisher information matrix used in the Fisher Scoring algorithm for finding the maximum
likelihood estimates of the parameters of the Dirichlet-multinomial distribution. They performed
simulation studies comparing the results of the approximation to the results of the usual Fisher
Scoring algorithm, for varying dimensions of the parameter vector. In this study, parallel computing
in R is utilized to extend the previous simulation studies to larger dimensions. Additionally, the
Fisher Scoring algorithm and the direct numerical maximization of the maximum likelihood are
compared.
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1 Introduction

Consider the Dirichlet-multinomial distribution which is defined as

PDM (t;π, ρ) =
m!

t1!t2! · · · tk!

Γ(c)

Γ(m+ c)

∏k
i=1 Γ(ti + cπi)∏k

i=1 Γ(cπi)
, (1.1)

where c = ρ−2(1 − ρ2), 0 < ρ < 1, and Γ is the gamma function. Here t is a vector in Rk and
represents counts for k categories where tk = m−

∑k−1
i=1 ti. Additionally, π is a vector in Rk such

that πk = 1−
∑k−1

i=1 πi and πi represents the probability associated with the ith category.
As an example of its application, say that a question with k possible responses is given to a

group of m people. Then Ti represents the number of people that chose the ith response (ti is the
realization of Ti). If their responses are independent, then their response vector T is distributed
multinomial. However, when the responses are not independent, then extra variation is introduced
and multinomial is no longer valid. The Dirichlet-multinomial is widely used in the case of extra
variation. For a discussion of the Dirichlet-multinomial distribution, refer to [3].

Now suppose that a set of data is given which is known to have Dirichlet-multinomial distribu-
tion, but the parameters π and ρ are not known. We can estimate these parameters using the given
data and a number of different estimation techniques. Two such techniques are direct numerical
maximization of the likelihood equations and the Fisher scoring algorithm (FSA), both of which
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we investigate in this report. The FSA requires the calculation of the Fisher information matrix,
which in some cases can be cumbersome to compute. It turns out, however, that it is not too
complicated to calculate for Dirichlet-multinomial. Additionally, we’ll investigate the Approximate
FSA proposed in [1], which is computationally more efficient than the FSA and works well for
moderately large cluster size m.

In Section 2 we discuss the Fisher Scoring Algorithm using the Fisher information matrix and
an approximate Fisher information matrix. Then we discuss the estimation technique of direct nu-
merical maximization of the likelihood equations. In section 3, we describe a simulation that we ran
for large k extending results in [1], which compares the use of the approximate Fisher information
matrix to the exact Fisher Information matrix. Additionally, we discuss the parallelization of the
simulation, which enabled the feasibility of the simulation for large k. In section 4, we provide the
results of the simulation along with speedup and efficiency of our parallel implementation, showing
that the parallel implementation is efficient. Additionally, we perform a timing comparison of the
direct numerical maximization, Fisher Scoring algorithm, and the Fisher Scoring algorithm using
an approximate Fisher information matrix.

2 Problem

2.1 Fisher Scoring Algorithm

Using the Fisher Scoring Algorithm (FSA), the parameter estimates at the (i+ 1)st iteration are

θ(i+1) = θ(i) + [I(θ(i))]−1u(θ(i)) (2.1)

where θ is a parameter vector in Rk, I(θ) is the Fisher information matrix, and u(θ) is the score
function which is equivalent to the gradient of the log-likelihood function. In the case of the

Dirichlet-multinomial, θ =

(
π
ρ

)
∈ Rk+1.

2.2 Fisher Information Matrix

In general, the Fisher information matrix is defined as

I(θ) = E

[(
∂

∂θ
log fθ(x)

)(
∂

∂θ
log fθ(x)

)T
]

= −E
[
∂2

∂θ2
log fθ(x)

]
where fθ(x) is the likelihood function associated with the random sample x1, x2, ..., xn.

The entries of the Fisher information matrix are calculated as follows for the Dirichlet-multinomial.
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ET

(
−∂

2 logPDM (t;π, ρ)

∂π2i

)
= c2[ETi{Ψ′Ti

(cπi)}+ ETk
{Ψ′Tk

(cπk)}], i = 1, 2, ..., k − 1

ET

(
−∂

2 logPDM (t;π, ρ)

∂πi∂πi′

)
= c2ETk

{Ψ′Tk
(cπk)}, i, i′ = 1, 2, ..., k − 1, i 6= i′

ET

(
−∂

2 logPDM (t;π, ρ)

∂πi∂ρ

)
= c[πkETk

{Ψ′Tk
(cπk)} − πiETi{Ψ′Ti

(cπi)}]
(

2

ρ3

)
, i = 1, 2, ..., k − 1

ET

(
−∂

2 logPDM (t;π, ρ)

∂ρ2

)
=

[
k∑

i=1

π2iE{Ψ′Ti
(cπi)} −Ψ′m(c)

](
4

ρ6

)
, i = 1, 2, ..., k − 1

(2.2)

Here Ψ(x) and Ψ′(x) are the digamma and trigamma functions which are defined as Ψ(x) =
(∂/∂x) log Γ(x) and Ψ′(x) = (∂/∂x)Ψ(x). Also, for any nonnegative integer t and real number
x > 0, we can write Ψt(x) = Ψ(x)−Ψ(t+ x) and Ψ′t(x) = Ψ′(x)−Ψ′(t+ x).

Each of the expectations in (2.2) are calculated using a summation, which adds to the complexity
of calculating the Fisher information matrix. For example, consider the second equation in (2.2).
We can re-write the expected value as

ETk
{Ψ′Tk

(cπk)} =

m∑
tk=0

{Ψ′(tk + cπk)−Ψ′(cπk)}PDM (tk;π, ρ).

2.3 Approximate Fisher Information Matrix

In [1] Neerchal and Morel proposed the following approximation to the elements of the Fisher
information matrix for the Dirichlet-multinomial as m→∞ .

ET

(
−∂

2 logPDM (t;π, ρ)

∂π2i

)
→ c2{Ψ′(cπi) + Ψ′(cπk)}, i = 1, 2, ..., k − 1

ET

(
−∂

2 logPDM (t;π, ρ)

∂πi∂πi′

)
→ c2Ψ′(cπk), i, i′ = 1, 2, ..., k − 1, i 6= i′

ET

(
−∂

2 logPDM (t;π, ρ)

∂πi∂ρ

)
→ c{πkΨ′(cπk)− πiΨ′(cπi)}

(
2

ρ3

)
, i = 1, 2, ..., k − 1

ET

(
−∂

2 logPDM (t;π, ρ)

∂ρ2

)
→ {

k∑
i=1

π2i Ψ′(cπi)−Ψ′(c)}
(

4

ρ6

)
, i = 1, 2, ..., k − 1

(2.3)

The Fisher information matrix needs to be calculated, whether by exact calculation or approx-
imation, for each iteration of the FSA given in (2.1). If we use the approximate Fisher information
matrix, then we refer to (2.1) as the Approximate Fisher Scoring Algorithm (AFSA).

Additionally, Neerchal and Morel performed a simulation study and provided results as shown
in Tables 1 and 2, which demonstrate the error between FSA using the exact Fisher information
matrix and AFSA using the approximated Fisher information matrix. The entries of Table 1 are
the maximum over 5000 replications of

1

k − 1

k−1∑
i=1

|π̂i − π̃i|
π̂i

(2.4)
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Value of π

ρ m (.1) (.3) (.5)

(
.1
.3

) (
.1
.5

) (
.3
.5

) .1.1
.3

 .1.2
.3


.3 10 1.25 .844 .567 1.58 1.30 .700 1.58 1.30

40 .443 .285 .182 .591 .534 .277 .644 .551
.7 10 6.05 .579 .318 3.82 4.08 .637 3.44 3.13

40 1.62 .476 .207 2.91 2.87 .558 2.87 2.60

Table 1: Table as published in [1]. Monte Carlo Properties of the Error in Approximation for πi’s.
Numbers in table are in terms of 10−4.

Value of π

ρ m (.1) (.3) (.5)

(
.1
.3

) (
.1
.5

) (
.3
.5

) .1.1
.3

 .1.2
.3


.3 10 139 12.9 11.9 18.4 9.41 7.92 8.17 6.35

40 1.81 1.24 1.28 1.29 1.31 1.16 1.27 1.20
.7 10 6.92 .800 .675 .986 .932 0.917 1.12 1.06

40 1.14 .410 .319 .536 .508 0.482 .627 .589

Table 2: Table as published in [1]. Monte Carlo Properties of the Error in Approximation for ρ.
Numbers in table are in terms of 10−4.

and the entries of Table 2 are the maximum over 5000 replications of

|ρ̂− ρ̃|
ρ̂

(2.5)

where π̂i and ρ̂ are the estimates from FSA and π̃i and ρ̃ are the estimates from AFSA. The
maximum over 5000 replications gives us an idea about the worst case scenario.

Because of computing limitations, Neerchal and Morel were not able to test k > 4 as shown in
Tables 1 and 2. In this study, we use a parallel computing architecture to extend Tables 1 and 2
and include values of k up to 15. We also study the performance of our parallel implementation.

2.4 Direct Numerical Maximization of the Likelihood

An alternative to FSA for finding the maximum likelihood estimates of the parameters is the direct
numerical maximization of the likelihood equation. In general, the likelihood function of θ given n
samples is

L(x; θ) =

n∏
i=1

f(x; θ) (2.6)

where f(x; θ) is the distribution of x.
The goal is to maximize (2.6) with respect to θ. It can be difficult to maximize a product, so

alternatively we consider the log-likelihood function which is defined as
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l(x; θ) =

n∑
i=1

log(f(x; θ)). (2.7)

Since the logarithm function is a monotone increasing function, maximizing (2.7) is equivalent
to maximizing (2.6).

3 Numerical Method

With the goal of replicating Tables 1 and 2 and extending them for larger values of k, we ran
simulations using n = 250, where n is the sample size, and 5000 replications as was done in [1]. For
each replication of the simulation, we randomly generated a new set of 250 data points generated
from the Dirichlet-multinomial distribution. To do this, as described in [1], we perform the following
steps:

1. Define the parameters n, m, π, and ρ

2. Generate a probability vector from the Dirichlet distribution using rdirichlet from the R
MCMCpack package and the parameters defined in step 1 as input values.

3. Draw the vector t from the multinomial distribution using the R function rmultinom given
the probability vector generated in step 2.

In each replication we estimate the parameters of the randomly generated data by performing
FSA and AFSA and then compute the difference using (2.4) and (2.5). At the end of the simulation
we find the maximum of each over the 5000 replications. The stopping rule that we used for FSA
and AFSA was

‖θ(i) − θ(i−1)‖ < 10−6 (3.1)

where θ(i) is the parameter estimate at the ith iteration of the FSA.
In order to extend Tables 1 and 2 for larger k, it was important to parallelize the code. As part

of the process of determining the best method for parallelization, we investigated the relationship
between k and the number of iterations that the FSA requires to obtain the convergence defined in
(3.1). As shown in Figure 1, the number of iterations that are required for FSA to converge suggest
a trend that increases as k increases. The noise in the plot is due to the fact that the number of
iterations is dependent on the random sample of data and the fact that we are only considering one
FSA experiment for each k. This plot was generated using n = 250, ρ = 0.7, and m = 40. Note
the FSA iterations themselves cannot be split among multiple processes since each iteration of the
algorithm depends on the previous. The strategy that we chose for parallelization, was to split the
replications of the simulation among the multiple processes.

The High Performance Computing Facility (HPCF, www.umbc.edu/hpcf) at UMBC houses an
86 node cluster, each node having 24 GB of memory and 8 cores split among 2 quad core Intel
Nehalem X5550 processors (2.66 GHz, 8192 kB cache per core). We implemented the algorithm on
the HPCF cluster using the statistical software R in conjunction with the R package snow. “snow”
is an acronym for Simple Network Of Workstations, which is used to implement R code in a parallel
environment. There are other R packages available for parallel computing, but an advantage of snow
is that it provides a layer of abstraction so that the user does not need to define the communication
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Figure 1: Relationship between k and the number of iterations required for FSA to obtain conver-
gence

details. See http://cran.r-project.org/web/views/HighPerformanceComputing.html for the
most recent information about parallel computing with R.

snow functions that were used in our parallel code are:

• makeMPIcluster: Make a cluster composed of p processes, where p was obtained by a call to
the Rmpi function mpi.universe.size.

• clusterExport: Used to export all global variables and functions to all processes in the
cluster.

• clusterEvalQ: Used to load necessary libraries on all processes in the cluster.

• clusterSplit: Used to split 5000 simulation replications among the p processes. If p does
not evenly divide 5000, then the split is made to be as close to equal as possible.

• clusterApply: Used to run the simulation on each process.

• stopCluster: Shuts down the cluster and does cleanup.

Refer to [2] for a nice explanation of available snow functions and examples of their use.

4 Numerical Results

The results of our simulations are shown in Tables 3 and 4. The first five columns for π shown
in the tables, which are associated with k = 3 and k = 4, can be compared to the corresponding
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Value of π

ρ m

(
.1
.3

) (
.1
.5

) (
.3
.5

) .1.1
.3

 .1.2
.3

 k = 5 k = 10 k = 15

0.3 10 40.1 .0329 .2310 .0294 .0125 .1030 .6300 .1270
40 288 .0484 .0127 .0491 .0552 .0191 .2840 .0112

0.7 10 .0819 .0195 .0131 .0148 .0145 .0128 .1360 .0144
40 .1590 .0136 .0082 .0128 .0127 .0116 .0080 .0089

Table 3: Monte Carlo Properties of the Error in Approximation for πi’s. Obtained via parallel
implementation. Numbers in table are in terms of 10−4.

Value of π

ρ m

(
.1
.3

) (
.1
.5

) (
.3
.5

) .1.1
.3

 .1.2
.3

 k = 5 k = 10 k = 15

0.3 10 34.2 .2580 .4610 .2590 .3620 .5430 .6020 .2000
40 368 .0504 .0158 .0296 .0374 .0142 .0570 .0007

0.7 10 .0181 .0039 .0040 .0041 .0027 .0023 .0119 .0010
40 .0167 .0016 .0024 .0017 .0013 .0006 .0004 .0001

Table 4: Monte Carlo Properties of the Error in Approximation for ρ. Obtained via parallel
implementation. Numbers in table are in terms of 10−4.

columns in Tables 1 and 2. Additionally we have provided results for π vectors having length k = 5,
k = 10, and k = 15.

The following values of π were used for k ∈ {5, 10, 15}:

• k = 5: π =(.1, .15 , .2, .25, .3)

• k = 10: π =(.05, .1, .05, .1, .25, .15, .05, .1, .05, .1)

• k = 15: π =(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3)/30

Comparing the results for small k to Tables 1 and 2, many of the numbers are of different
magnitudes. Differences may possibly be attributed to different FSA stopping rules (we did not
verify the stopping rule used in [1]). Additionally, we are using a numerical approximation to the
score function in (2.1) which differs from the exact calculation of the score function used in [1].
Regardless, however, these results show that the differences between the two methods are small
even for k up to and including 15.

Table 5 shows the wall clock time in seconds, the observed speedup, and the observed efficiency
for three values of k for the 5000 replication simulation. As recommended in [4], 8 processes per
node were used for p > 8, and for p ≤ 8 all processes were run on one node. Notice that the
simulation for k = 5 using one process took 14.75 hours (53131.9 seconds). This was cut down to
7.8 minutes (468.2 seconds) using 256 processes.
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(a) Walltime in seconds = Tp(k)
k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

3 19652.4 9217.0 4591.5 3037.5 1796.5 937.5 454.4 271.9 127.1
4 34962.3 15828.0 8909.1 5708.5 2717.2 1487.1 764.0 489.8 170.8
5 53131.9 25672.2 13966.0 8980.6 6722.4 3620.2 1376.4 684.5 274.2

(b) Speedup: Sp(k) = T1(k)/Tp(k)
k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

3 1.0 2.1 4.3 6.5 10.9 21.0 43.2 72.3 154.6
4 1.0 2.2 3.9 6.1 12.9 23.5 45.8 71.4 204.7
5 1.0 2.1 3.8 5.9 7.9 14.7 38.6 77.6 193.8

(c) Efficiency: Ep(k) = Sp(k)/p
k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

3 1.00 1.07 1.07 0.81 0.68 0.66 0.68 0.56 0.60
4 1.00 1.10 0.98 0.77 0.80 0.73 0.72 0.56 0.80
5 1.00 1.03 0.95 0.74 0.49 0.46 0.60 0.61 0.76

Table 5: (a) Wall clock time (seconds), (b) speedup, and (c) efficiency for 5000 replications varying
k. 8 processes per node were used for p > 8, and for p ≤ 8 all processes were run on one node.

Figure 2 shows the speedup and efficiency associated with Table 5. Figure 2a shows the observed
speedup for k ∈ {3,4,5} where speedup is defined as Sp(k) = T1(k)/Tp(k) and Tp(k) is the wall
clock time for k using p processes. Figure 2b shows the observed effiency for each value of k where
efficiency is defined as Ep(k) = Sp(k)/p.

Finally, for comparison, we ran one simulation of 5000 replications using direction numerical
estimation of the likelihood equation to estimate the parameters. We also ran a simulation using
FSA only, and a simulation using AFSA only. For each experiment (i.e., simulation) we used k = 3.
Direct numerical estimation was performed by passing the log-likelihood function, defined in (2.7),
at each replication to the R function optim1, which is an optimization function. We ran these
experiments in serial mode (i.e., p = 1) and recorded the run times which are displayed in Figure 3.
We can see in this figure that the direct numerical maximization was slightly faster than both FSA
and AFSA, and AFSA was slightly faster than FSA. It is noteworthy, also that the estimation using
the direct numerical maximization required the least amount of development time.
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Figure 2: (a) Speedup and (b) Efficiency plots for various k
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Figure 3: Time comparison of 3 simulations using different estimation methods


