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Abstract

The Intel Corporation is developing a new parallel software and compiler called Concur-
rent Collections (CnC) to make programming in parallel easier for the user. CnC provides
a system of collections comprised of steps, items, and tags. A CnC user specifies their al-
gorithm in a graph representation using these constructs. Using this graph of dependencies,
CnC automatically identifies parallelizable code segments and executes code in parallel.

The present work focuses on the distributed version of CnC, where parallel code is run
across multiple compute nodes. Specific accomplishments included getting distributed CnC
working on the cluster tara in the UMBC High Performance Computing Facility, running
timing tests, analyzing the data, and creating a generalized portable version of the distributed
CnC code. This work allows a user in the distributed mode to have independent control over
the number of threads, cores, and nodes to be used by a program. Several performance
studies were ran in order to analyze the efficiency of the parallelism. Results for a parameter
study show that Distributed CnC achieves a near-ideal speed-up for an increasing number
of nodes.

1 Introduction

To better explain how parallel programming works and why CnC is a good software choice for
it, it can be compared to the current standard for parallel coding, Message Passing Interface
(MPI). MPI requires the programmer to explicitly declare what data gets sent and received by
what process. MPI also provides methods to determine how many processes the code will run on
and a designating number of the current process that is executing code. When coding, one must
identify which parts of the code to divide up between processors (parallelize) and manually
divide them up. This involves calls to very complicated C/C++/Fortran function that have
multiple arguments. This adds another unwelcome layer of complexity to parallel programming,
which already requires a significant amount of thought for algorithm design. More details on
the MPI method of parallelization can be found here [6].

Intel’s Concurrent Collections [4] is an easier way for the user to think about parallelizing
programs. Instead of explicitly sending messages to processes the way MPI does, CnC uses a
system of collections comprised of steps, items, and tags [4]. A user specifies the work to be
done and CnC automatically sends to the work out to the processes. This in theory reduces
the amount of coding the user has to do, allowing them to spend more time improving their
algorithms. Early performance studies of CnC for some numerical algorithms on multi-core
computers are provided in [2]. In this work, we investigate using CnC on multiple nodes on a
distributed memory computing cluster. We evaluate CnC from the perspective of a novice user
whose goal is to run parameter studies for a serial code in parallel. Our focus was to see if this
new software is efficient, concise, and user-friendly.

In order to automatically determine which code can run parallel, CnC uses a graph system.
This graph system is what the programmer uses to design their algorithms. Unlike MPI where
the programmer defines what data gets passed to what process, CnC users create a list of
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independent, parallelizable code segments identified by step collections. Each code segment
(step) gets assigned to an item in a tag collection, which controls when and on which process
the code gets executed at run-time. The final collection in the graph system is an item collection,
which can hold any user defined data and gets send to and from steps. In addition to defining
various collections, the user also defines the relationships between the collections in the graph.
This set of collections and relationships represents the graph for the users’ program.

After designing their algorithm using a graph, the graph must be translated into Intel’s
textual notation. A special CnC translator simply called cnc compiles this notation into a
C++ [3, 5, 8] header file which the user includes in their code. The translator also generates a
text file which contains hints for implementing the header file in code. In CnC, the place where
each task runs on is called a thread as opposed to being called a process in MPI.

Through previous research [1], I found CnC to be a useful method for parallel computing
using multi-threading on one multi-core/multi-processor compute node. By making the par-
allelization process as abstract as possible, the amount of coding a programmer has to do is
reduced and task distribution can be done as effectively as possible at run-time. While the
graph concept of how CnC works is a very different way of thinking than how parallelization is
done in MPI, it is easy to follow once understood. The nature of CnC’s parallelization makes
operations that require accessing parallel elements in order counter productive and time costly.
But CnC excels at parameter studies where multiple runs of a method each may vary in memory
and run-time in unknown ways [1].

The remainder of this report is organized as follows: Section 2 documents how to use CnC
on the cluster tara in the UMBC High Performance Computing Facility (HPCF). Section 3
describes the Poisson problem we chose to solve that shows how CnC works with parameter
studies. Section 5 explains how Distributed CnC works using the same Poisson problem as the
example. The report ends with the conclusions found in Section 6.

2 Using CnC on Tara at UMBC

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdis-
ciplinary core facility for high performance computing available to all researchers at UMBC.
Started in 2008 by more than 20 researchers from more than ten departments and research
centers from all three colleges, it is supported by faculty contributions, federal grants, and the
UMBC administration. More information on HPCF is available at www.umbc.edu/hpcf. In-
stalled in Fall 2009, HPCF has an 86-node distributed-memory cluster, consisting of 82 compute
nodes, 2 development nodes, 1 user node, and 1 management node. Each node has two quad-
core Intel Nehalem X5550 processors (2.66 GHz, 8192 kB cache) and 24 GB of memory. All
components are connected by a state-of-the-art InfiniBand (QDR) interconnect.

More information and a tutorial on how to run CnC programs on the tara cluster at UMBC
can be found in the technical report [1]. This report comes from the research done at the REU
Site: Interdisciplinary Program in High Performance Computing www.umbc.edu/hpcreu during
the Summer of 2011.
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3 Poisson Equation

This example provides a parameter study where the execute method in CnC requires a sub-
stantial amount of work which may vary from one task to the next. Parameter studies have
variables, answers, amount of work, and run times that can vary in unknown ways. Because of
this, parallelizing multiple runs of such a code can be difficult due to the fact that it is unknown
how long any task will take, making it impossible to evenly divide up the work evenly before
run-time. Fixing this requires using a master-slave system where the master process sends tasks
to the other processes after they finish the task they are currently working on. In MPI, coding
this is very involved and can lead to logical errors. In addition, the master process normally only
handles the coordination of the program, so it is not used in the actual computational work. In
contrast, this type of parameter study is easily done in CnC because CnC divides up the tasks
among the threads by itself at run-time. CnC’s advantage over MPI is that it only needs to
know what code and data are independent, and then handles the distribution itself when the
program is run. With MPI, the programmer would need to decide how to do this and do so
beforehand.

For this parameter study, the problem solved was the partial differential equation (PDE)

−∆u(x, y) + a u(x, y) = f(x, y) for (x, y) ∈ Ω

for the equation u(x, y) using several values of the parameter a ≥ 0. This problem generalizes
the Poisson equation −∆u = f solved in [7]. That report discretizes the PDE by the finite
difference method and uses the iterative conjugate gradient (CG) method to solve the resulting
linear system. This implementation uses the same methodology, with an additional variable a.
Setting a = 0 obtains the same results as the original Poisson equation described in [7]. As a
grows larger, the system matrix becomes more diagonally dominant and the CG method will
require fewer iterations to compute the results, which in turn decreases the run time.

4 CnC: Multi-Threading on One Node

This section describes the work done during Summer 2011 [1], getting CnC to parallelize multiple
threads on one tara compute node. A serial version of the above Poisson function was created
and a separate file was used to have CnC parallelize multiple calls to the function. In the code,
inside the compute step there is a call to our Poisson function and the resulting iteration count
and error calculation data is placed into two collections. The a value that gets passed into the
Poisson function was determined using a random number generator that ranged from 0 to 1000.
Timers were placed inside of the compute step to find the time for each compute step as well
as a timer for the entire program. The tests aimed to see if CnC could successfully allocate
different executions of the Poisson code to different processes and minimize running time. CnC
is fit for this because when one process finishes its Poisson calculation, it starts the next one
and does not depend on the previous one to do its work. In this way, all calculations of Poisson
are parallel and CnC can optimally distribute the work.

In the CnC file, the graph algorithm is written out with the items, tags, and steps. The
tag collection for this problem is the collection of all a values, and the compute step just calls
the serial Poisson function from the pre-existing file where it is written. There are two output
collections, one to hold the error and the other for the number of iterations, iter.
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The Poisson function being written in another file is significant because it means that the CnC
related files that the programmer has to create can remain completely separate from the code
that solves the problem. In this parameter study example, the programmer already has working
serial code that solves their problem so CnC is just a tool to run it with varying parameters
as efficiently as possible in parallel. A user can approach a code, knowing only which variables
need to be parallelized, and modify pre-existing CnC code to fit the given problem. This opens
up the idea of parallel computing to anyone who has access to the hardware. This hardware can
be a multi-core CPU or a multi-node cluster.

First shown are results from running this Poisson code with eight different a values, on an
N ×N mesh with N = 512, using a single thread. This is output captured directly from stdout
after running the program:

a error iter time

486.90 9.794116e-07 369 1.09

135.44 2.569999e-06 594 1.72

274.75 1.489192e-06 477 1.38

916.46 5.078839e-07 287 0.86

561.38 8.260621e-07 367 1.08

700.98 5.619581e-07 330 0.97

840.19 5.165500e-07 300 0.89

840.19 5.165500e-07 300 0.89

Total time = 8.88

The a column shows the value of the parameter a for each call to the Poisson function. error
represents the maximum error between the true and computed solutions on the N × N mesh
and iter represents the number of iterations required by the CG method to solve the problem
for this a. The values in the column time in each row with an a value show the wall clock time
in seconds as measured in the compute step, and the last row shows the total wall clock time
in seconds as measured in the main function. It can be seen that as a increases, the number
of iterations and time decrease. The errors are all small and within the tolerance given to the
function, showing that the output is correct. The total time for this essentially serial run is just
the addition of all of the individual Poisson calculation run times. Also, by printing directly to
the screen, it is shown that the calculations are done and printed out in a random order based
on a seed in the program, as seen by the a values.

Next, are the same eight a values (generated by the random number generator using the
same seed) on 8 threads:

a error iter time

916.46 5.078839e-07 287 1.95

840.19 5.165500e-07 300 2.02

840.19 5.165500e-07 300 2.02

700.98 5.619581e-07 330 2.20

561.38 8.260621e-07 367 2.26

486.90 9.794116e-07 369 2.35

274.75 1.489192e-06 477 2.65

135.44 2.569999e-06 594 2.97

Total time = 2.98

Upon inspection it can be seen that the error and iter for each a are identical to the corre-
sponding case in the previous output. But the values of a appear ordered now; this reflects the

4



fact that stdout printed faster from those threads that completed faster, which are those for
the largest a values, since then iteration count and wall clock time are lowest. It is noticeable
that there is an overhead associated with using CnC on several threads, since each individual
time for the Poisson function is larger than when using only one thread. But it is also apparent
that the total wall clock time is only slightly longer than the time from the longest process.
This shows that the parallelization was effective in decreasing the total run time to as small as
possible, namely controlled by the slowest thread.

5 Distributed CnC: Multi-Threading on Several Nodes

This section describes the new work I did this semester in order to to use CnC on multiple
nodes. The distributed version of CnC, called Distibuted CnC required a tuner struct to be
written in the CnC header file. The tuner is what allows for individual jobs to be sent between
nodes. The tuner used for the Poisson problem used a round-robin method for distributing jobs
among nodes. Because the CnC header file is normally auto-generated, it is best to keep the
tuner struct in a separate header file and just include it in each new CnC header file. Edits
could also be made to prevent the CnC header file from being overwritten as a solve for this.

An example of the round robin method worked for the Poisson parameter study would be the
run with 4096 jobs using 8 nodes. Each node could be viewed as a separate non-distributed CnC
parameter study with 512 jobs. That is due to the fact that while jobs were manually assigned
to each node, CnC still automatically distributed all jobs within that node to the respective
cores and threads.

For the parameter study, the Poisson function was run numerous times, under the same
conditions as in the previous section of the report. However, this time the focus was on how
Distributed CnC performed. The variables tested were the number of nodes and the number of
threads used for each run. Each run used 1, 2, 4, or 8 nodes, 1, 2, 4, or 8 threads per node, and
8, 64, 256, 512, 1024, 2048, or 4096 jobs (Poisson solves). In the following tables and graphs,
M and Number of Jobs are used interchangeably to denote the number of Poisson solves. The
number of threads per node used is written as Threads and the number of nodes used is written
as Nodes. All times are in seconds.
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(A) Job Distribution (B) Time Distribution

Figure 5.1: Poisson parameter study with M = 512, nodes = 2, and threads = 8. (A) Number
of jobs per thread. (B) Elapsed time per thread.

Figure 5.1 (A) shows how effective CnC is at sending jobs to the different threads. Because
2 nodes are being used with 8 threads running on each, the horizontal axis is each of the 16
total threads. 8 of the threads are on one node and the other 8 threads are on the other node.
The vertical axis is the total number of jobs each thread received out of a total of 512 jobs. The
distribution was done automatically by CnC and it is clear that the number of jobs per thread
is uneven. Combining this image with Figure 5.1 (B) shows why. The second graph displays the
elapsed run-time of each thread. So even though thread 7 had 35 jobs and thread 8 had 30 jobs,
they both took about 90 seconds to complete. CnC is able to distribute work among threads in
a way that is most efficient in terms of run-time.

Table 5.1 shows the raw timing data in seconds for each M size’s elapsed run-time given a
certain number of threads and nodes. The table makes it clear that there are two trends; one
between run-time and the number of threads, and the other between run-time and the number
of nodes. In general, increasing the number of threads only brings 50% of the expected speed up.
For instance, going from M = 4096, nodes = 1, threads = 1 to M = 4096, nodes = 1, threads =
2 is a change from 5499.21 seconds to 3458.57 seconds. The latter is only 1.59 times as fast as
the former, even though twice as many threads were used. This trend can be seen all over the
table and the other graphs. Thread efficiency is only around 50%. In contrast, increasing the
number of nodes brings about almost 100% of the expected speed up. Going from M = 4096,
nodes = 1, threads = 1 to M = 4096, nodes = 2, threads = 1 is a change from 5499.21 seconds
to 2806.27 seconds. The latter is 1.96 times as fast as the former, where twice as many nodes
were used. Analyzing the rest of the data shows that increasing the number of nodes approaches
100% efficiency. By combining both multiple nodes and multiple threads, Distributed CnC can
achieve impressive speedups.
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M = 8 threads=1 threads=2 threads=4 threads=8
nodes=1 9.38 6.01 4.86 2.81
nodes=2 5.02 3.56 2.77 2.07
nodes=4 3.10 2.15 2.21 1.80
nodes=8 1.78 1.56 1.55 1.58
M = 64 threads=1 threads=2 threads=4 threads=8
nodes=1 84.33 53.63 42.29 22.10
nodes=2 45.22 27.99 22.11 12.04
nodes=4 23.99 14.99 12.34 6.53
nodes=8 12.27 8.09 6.49 3.77
M = 256 threads=1 threads=2 threads=4 threads=8
nodes=1 337.19 211.97 166.99 86.28
nodes=2 173.91 108.77 84.36 43.66
nodes=4 90.20 55.47 43.97 22.83
nodes=8 45.88 29.32 23.06 12.65
M = 512 threads=1 threads=2 threads=4 threads=8
nodes=1 679.16 427.58 336.72 173.79
nodes=2 345.02 216.79 169.90 88.29
nodes=4 180.63 112.66 86.88 45.37
nodes=8 91.89 56.41 44.65 23.99
M = 1024 threads=1 threads=2 threads=4 threads=8
nodes=1 1360.61 870.49 677.47 349.64
nodes=2 689.81 436.70 343.46 178.20
nodes=4 348.02 223.41 172.44 89.79
nodes=8 182.76 114.48 88.45 46.30
M = 2048 threads=1 threads=2 threads=4 threads=8
nodes=1 2743.01 1734.68 1367.93 707.83
nodes=2 1418.20 870.98 684.77 354.02
nodes=4 708.78 445.80 345.77 183.09
nodes=8 361.05 223.83 175.77 91.32
M = 4096 threads=1 threads=2 threads=4 threads=8
nodes=1 5499.21 3458.57 2724.56 1436.37
nodes=2 2806.27 1735.74 1367.89 719.19
nodes=4 1407.09 878.34 688.84 365.53
nodes=8 719.21 440.08 345.94 181.72

Table 5.1: Total elapsed wall clock time in seconds for the Poisson problem parameter study.
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(A) Speedup (B) Efficiency

Figure 5.2: Poisson parameter study results for threads with M = 8. ‘n’ is the number of nodes.

(A) Speedup (B) Efficiency

Figure 5.3: Poisson parameter study results for threads with M = 4096. ‘n’ is the number of
nodes.

The speedup and efficiency plots Figures 5.2, 5.3, 5.4, and 5.5) are a visual representation of
Table 5.1. For any given graph, M is held constant. For the graphs with ‘Number of Nodes’ as
the horizontal axis, each position (1, 2, 4, and 8) is the corresponding number of nodes used at
that point. Then, each line is a different number of threads. So the entire red line is has threads
set to 8 and each point on the line is a different number of nodes. The graphs with ‘Number of
Threads’ as the horizontal axis are set up in the opposite manner. For the speed up plots, the
optimal value is one to one relationship between the horizontal and vertical axes, so that twice
as much hardware should produce twice as much speed up, and so on. The efficiency plots show
the efficiency on the vertical axis from 0 to 1 which translates to 0% to 100%.

6 Conclusions

Through my research, CnC has shown itself to be a viable option for parallel programming.
The graph concept is unique and easy to follow once understood. Parallelism constraints are
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(A) Speedup (B) Efficiency

Figure 5.4: Poisson parameter study results for nodes with M = 8. ‘thr’ is the number of
threads per node.

(A) Speedup (B) Efficiency

Figure 5.5: Poisson parameter study results for nodes with M = 4096. ‘thr’ is the number of
threads per node.

explicit and do not require knowledge on how a program works, only on which variables and
sections will be parallelized. The amount of parallel code needed to be written by the user is very
minimal and can be reused between programs with little to no change in structure. Distributed
CnC allows the user to have full control over the number of threads, cores, and nodes used in
a program. Distribution of parallel jobs is done automatically at run-time for all jobs within
a node. Distribution between nodes is done effectively with a manual round-robin style loop.
I found it disappointing that CnC did not automatically handle the node to node distribution
like it does with threads and cores within a node. My testing shows that while parallelization
within a single node is only around 50% to 60% effecient, parallelization across multiple nodes
is around 100% efficient. Combining the speed up produced by both nodes and threads prove
that Distributed CnC is a great improvement to the existing CnC system.
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