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Comparison of Drug Dissolution Profiles: A
Proposal Based on Tolerance Limits
Shuyan Zhai,Thomas Mathew∗ and Yi Huang

Meaningful comparison of the dissolution profiles between the reference and test formulations of a drug is critical
for assessing similarity between the two formulations, and for quality control purposes. Such a dissolution profile
comparison is required by regulatory authorities, and the criteria used for this include the widely used difference
factor f1 and a similarity factor f2, recommended by the FDA. In spite of their extensive use in practice, the two
factors have been heavily criticized on various grounds; the criticisms include ignoring sampling variability and
ignoring the correlations across time points while using the criteria in practice. The goal of this article is to put
f1 and f2 on a firm statistical footing by developing tolerance limits for the distributions of f1 and f2, so that
both the sampling variability and the correlations over time points are taken into account. Both parametric and
nonparametric approaches are explored, and a bootstrap calibration is used to improve accuracy. In particular, the
methodology in this article can be used to compute upper confidence limits for the medians of f1 and f2. Simulated
coverage probabilities show that the method leads to accurate tolerance limits. Two examples are used to illustrate
the methodology. The overall conclusion is that the tolerance limit based approach offers a statistically rigorous
procedure for in vitro dissolution testing.
Copyright c© 2015 John Wiley & Sons, Ltd.
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1. Introduction

Dissolution profile comparison is critical for both drug development and quality control purposes. Both industry and
regulatory authorities use in-vitro information provided by dissolution profiles to predict in-vivo performance, to establish
the final dissolution specification for drug dosage, and to assess the similarity of drug formulations prior to and after
moderate changes. The “moderate changes” mentioned in the U. S. FDA’s guidance documents [1, 2, 3, 4] include scale-
up, manufacturing changes, component and composition changes and equipment and process changes. To ensure the
continued quality of the drug before and after such changes, without carrying out costly bioequivalence studies, similarity
comparisons of dissolution profiles are required for the approval of such moderate changes, and are considered adequate
for determining the similarity of drug formulations.
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A dissolution profile captures the percentage of the active drug ingredient dissolved (based on one dosage unit) at
multiple pre-specified time points. A general dissolution comparison contains two or more drug formulations to be
compared, and on each formulation at least six profiles are obtained from one or more lots in a batch. The number
of sampling time points may vary from drug to drug, affected by the speed of dissolution of the active drug ingredient
[1, 2, 3, 4]. Let YR,i = (Y 1

R,i, ..., Y
K
R,i)
′, i = 1, ..., nR, and YT,j = (Y 1

T,j ; ...;Y
K
T,j)
′, j = 1, ..., nT , be the observed dissolution

profiles for the ith and jth dosage units from the reference and test formulations, respectively, whereK denotes the number
of pre-specified time points. Let ȲR = (Ȳ 1

R, Ȳ
2
R, ..., Ȳ

K
R )′ and ȲT = (Ȳ 1

T , Ȳ
2
T , ..., Ȳ

K
T )′ denote the sample mean profiles for

the reference and test drugs, respectively. The two criteria commonly used and recommended by the FDA for dissolution
profile comparison [5] are:

Difference factor: f1 =

K∑
t=1

|Ȳ tR − Ȳ tT |

K∑
t=1

Ȳ tR

× 100%

Similarity factor: f2 = 50× log10

[1 +
1

K

K∑
t=1

wt(Ȳ
t
R − Ȳ tT )2

]−0.5

× 100

 , (1)

where the wt’s are the pre-specified weights, often set to 1 (the weights are set to 1 throughout this paper). The FDA
guidance document [1] indicates that f1 values less than 15 (i.e., 0-15) and f2 values greater than 50 (i.e., 50-100) maybe
taken as evidence to conclude the equivalence of the dissolution profiles of the test and reference products. Notice that
f1 = 0 and f2 = 100 for two identical dissolution profiles [1, 2, 3, 4].

In spite of their popularity, f1 and f2 have quite a few limitations [6]. First, f1 is very sensitive to the choice of reference
lots. Simply interchanging the roles of reference and test batches will change the value of f1 in general, even though the
similarity evaluation should not be affected. As a result, f2 is more popular in practice. Secondly, both of them are sensitive
to K - total numbers of time points, especially when both dissolution profiles level off. FDA sets clear guidance on the
total number of time points for different types of drugs, in order to address such concerns. Third, f1 and f2 don’t take
into consideration the correlation among the repeated dissolution measures across times. Finally, the similarity evaluation
using f1 and f2 ignores the sampling variability in the data. A critical evaluation of the factor f2 is provided in the paper
by [7].

Both model-independent methods and model-dependent methods have been developed for dissolution comparisons to
address the last two concerns [6]. Here the term “model dependent” refers to the use of appropriate models for the mean
vectors of the dissolution profiles, modeled as a function of time. Models used for this purpose include the exponential
model, Probit model, Gompertz model, Logistic model and Weibull Model; the Weibull model has been noted to provide
a good fit for the mean vectors [8, 9, 10]. A population version of f2 is considered in [11]; the authors modified f2 by
replacing Ȳ tR and Ȳ tT in (1) with the corresponding population mean vectors, so that the criteria are unknown parametric
functions, and then discussed hypothesis testing procedures for dissolution comparison [11, 12, 13, 14].

Our purpose is to develop procedures for dissolution comparisons based on the criteria f1 and f2 in (1) by taking
into account simultaneously both the sampling variability and the correlations across multiple time points. Since drug
responses from individual subjects are of interest in practice, we shall consider criteria similar to f1 and f2 by replacing
ȲR and ȲT by the respective individual response vectors YR and YT , respectively. Indeed, [5] suggested such criteria based
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on individual responses. We shall denote the resulting criteria by g1 and g2, defined as

g1 =

K∑
t=1

|Y tR − Y tT |

K∑
t=1

Y tR

× 100%

g2 = 50log10

[1 +
1

K

K∑
t=1

wt(Y
t
R − Y tT )2

]−0.5

× 100


= 50× log10

(
[1 +X]−0.5 × 100

)
,where X =

1

K

K∑
t=1

wt(Y
t
R − Y tT )2. (2)

Note that both g1 and g2 are random variables. Furthermore, the similarity factor g2 is large if the quantity X defined
in (2) is small. Thus, in the context of the similarity factor g2 defined above, estimating a cutoff point below which a
specified percentage or more of theX distribution will fall (with a given confidence level) can be used to assess dissolution
similarity. Such an upper cutoff value (to be estimated using a random sample) is referred to as an upper tolerance limit
for the distribution of X . If X̂U is an upper tolerance limit for X , then a lower tolerance limit, say ĝ2L, for the distribution
of g2 is given by:

ĝ2L = 50× log10

(
[1 + X̂U ]−0.5 × 100

)
(3)

If ĝ2L is large (say, greater than 50 according to the FDA guideline), then the g2 distribution is mostly above 50, with
a certain confidence level. If so, we conclude that the dissolution profiles across the test and reference populations are
similar. In Section 2, our tolerance limit method is described in the context of g2. A similar approach can be adopted
for the difference factor g1 given in (2), and also for the factors f1 and f2 given in (1). It should be noted that we have
developed our methodology in a parametric set up, assuming multivariate normality, and in a non-parametric set up,
without making any distributional assumption. Section 3 presents simulation studies on the accuracy of our proposed
approaches. Simulated coverage probabilities show that our methodology is accurate in the parametric as well as non-
parametric set ups. Section 4 presents two real applications based on published dissolution profile data. Conclusions and
discussions appear in Section 5. Since the computation of a tolerance limit uses the actual population distribution, the
variability in the population distribution is taken into account, together with the correlations across different time points.
Furthermore, the sampling variability is also taken into account through the use of an associated confidence level. In other
words, our approach offers a rigorous method for assessing dissolution profile similarity, based on criteria currently in
use. In particular, our methodology can be used to compute an upper confidence limit of the median of each of the random
variables g1, g2, f1 and f2.

We conclude this introductory section with two observations. First of all, the methodologies used in our work are
not new; we have used two existing methodologies, namely, non-parametric tolerance limit computation and bootstrap
calibration, in order to develop a statistically valid approach for dissolution profile comparison based on criteria
recommended by the FDA. As already noted, such an approach has been lacking, in spite of the widespread use of the FDA
recommended criteria. Secondly, our methodology may appear somewhat cumbersome to understand and implement; see
the computational steps in Algorithm 2 and Algorithm 4 in the next section. However, this should not be a hinderance in
practical applications, since we have developed the necessary R code, available online as supporting material.

2. Tolerance limits for dissolution profile comparisons

By definition, an upper tolerance limit for the distribution of X defined in (2) is a limit computed from a random sample,
so that a proportion p or more of the distribution of X is below the limit, with a given confidence level, say 1− α. The
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quantity p is referred to as the content of the one-sided tolerance interval, whose upper limit is the upper tolerance limit.
Furthermore, the confidence level 1− α reflects the sampling variability, since the tolerance limit is computed using a
random sample. It is well known that an upper tolerance limit for X , having content p and confidence level 1− α, is
simply a 100(1− α)% upper confidence limit for the pth percentile of X (Chapter 1, [15]). An upper tolerance limit can
be computed parametrically or non-parametrically, and the latter is based on order statistics. Even though we are in a
parametric set up, we face several difficulties when it comes to computing an upper tolerance limit for the distribution of
X . First of all, neither the distribution of X , nor its percentile, is available in a closed form. Even if we are to ignore the
parametric assumption, and decide to compute a non-parametric upper tolerance limit for X , we face the difficulty that
a sample is not available from the distribution of X; samples are available from YR ∼ N(µR,ΣR) and YT ∼ N(µT ,ΣT )

and X is a function of YR and YT . In order to circumvent these difficulties, we proceed as follows. Based on samples
YRi, i = 1, 2, ...., nR, and YTi, i = 1, 2, ...., nT from N(µR,ΣR) and N(µT ,ΣT ), respectively, obtain estimates of
the unknown parameters µR, ΣR, µT , and ΣT , and denote the estimates by µ̂R, Σ̂R, µ̂T , and Σ̂T , respectively. Now
generate B parametric bootstrap samples consisting of pairs (Y ∗Rj , Y

∗
Tj) as Y ∗Rj ∼ N(µ̂R, Σ̂R) and Y ∗Tj ∼ N(µ̂T , Σ̂T ), j

= 1, 2, ...., B, where the Y ∗Rjs and the Y ∗Tjs are generated independently. However, note that we are pairing them. Now

we let X∗j = 1
K

K∑
t=1

wt(Y
∗t
Rj − Y ∗tT j)2, j = 1, 2, ...., B, where Y ∗tRj and Y ∗tT j are the tth components of the vectors Y ∗Rj

and Y ∗Tj , respectively (t = 1, 2, ...., K). In order to compute a non-parametric upper confidence limit having content
p and confidence level 1− α, we proceed using standard methodology as explained in Chapter 8 of [15]. Thus consider
W ∼ Binomial(B, 1− p), and let k be the largest integer satisfying P (W ≥ k) ≥ 1− α. We then select the (B − k + 1)th
order statistic among the X∗j as our upper tolerance limit for the distribution of X . However, we don’t expect the resulting
upper tolerance limit to be accurate, since the sample used is a parametric bootstrap sample, and is not a sample from the
distribution of X . In order to correct for this, we use a bootstrap calibration on the content p, and this finally provides
the desired upper tolerance limit. The bootstrap calibration requires an estimate of the pth percentile of the distribution
of X , which is not available in an analytic form. We shall however use an efficient approximation due to [16]; see the
Appendix. Algorithm 1 and Algorithm 2 given below provide the steps necessary to implement the process just described
for computing an upper tolerance limit. Algorithm 1 describes the computation of the non-parametric upper tolerance limit
based on a parametric bootstrap sample, and Algorithm 2 explains the bootstrap calibration. We refer to [17], Chapter 18,
for an explanation of the bootstrap calibration idea.

Algorithm 1 (Parametric bootstrap upper tolerance limit)

1. From the original samples YRi, i = 1, 2, ...., nR, and YTi, i = 1, 2, ...., nT , compute the unbiased estimates of the
mean vectors µR and µT , and the covariance matrices ΣR and ΣT as

µ̂R = ȲR, µ̂T = ȲT , Σ̂R =
1

nR − 1

nR∑
i=1

(YRi − ȲR)(YRi − ȲR)′,

and Σ̂T =
1

nT − 1

nT∑
i=1

(YTi − ȲT )(YTi − ȲT )′,

where ȲR and ȲT are the respective sample mean vectors. Then

µ̂R ∼ N(µR,
1

nR
ΣR), µ̂T ∼ N(µT ,

1

nT
ΣT ),

Σ̂R ∼WK

(
nR − 1,

1

nR − 1
ΣR

)
, and Σ̂T ∼WK

(
nT − 1,

1

nT − 1
ΣT

)
,

where Wr(m,Σ) denotes the r−dimensional Wishart distribution with df = m, and scale matrix equal to Σ.
2. Generate parametric bootstrap samples of size B each: Y ∗Rj ∼ N(µ̂R, Σ̂R), and Y ∗Tj ∼ N(µ̂T , Σ̂T ), j = 1, 2, ...., B.
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Write Y ∗Rj = (Y 1∗
Rj , Y

2∗
Rj , ...., Y

K∗
Rj )′, Y ∗Tj = (Y 1∗

Tj , Y
2∗
Tj , ...., Y

K∗
Tj )′, and compute X∗j = 1

K

K∑
t=1

(Y t∗Rj − Y t∗Tj)2, j = 1, 2,

...., B.
3. Let W ∼ Binomial(B, 1− p), and let k be the largest integer satisfying P (W ≥ k) ≥ 1− α.
4. The (B − k + 1)th order statistic among the X∗j s is then an upper tolerance limit for the distribution of X =

1
K

K∑
t=1

(Y tR − Y tT )2.

Algorithm 2 (Bootstrap calibration on the content p):

1. Let X̂p denote an estimate of the pth percentile of X; see the Appendix for its computation.
2. Generate a bootstrap sample of size B1 parametrically from the distributions of µ̂R, Σ̂R, µ̂T , Σ̂T :
µ̂∗Ri ∼ N(µ̂R,

1
nR

Σ̂R), µ̂∗Ti ∼ N(µ̂T ,
1
nT

Σ̂T ),

Σ̂∗Ri ∼WK

(
nR − 1, 1

nR−1 Σ̂R

)
and Σ̂∗Ti ∼WK

(
nT − 1, 1

nT−1 Σ̂T

)
, i = 1, 2, ...., B1.

3. For each i = 1, 2, ...., B1, generate B2 second level bootstrap samples as follows:

Y ∗∗R,ij ∼ N(µ̂∗Ri, Σ̂
∗
Ri), and Y ∗∗T,ij ∼ N(µ̂∗Ti, Σ̂

∗
Ti), j = 1, ..., B2.

Write Y ∗∗R,ij = (Y 1∗∗
R,ij , Y

2∗∗
R,ij , ....., Y

K∗∗
R,ij )′, Y ∗∗T,ij = (Y 1∗∗

T,ij , Y
2∗∗
T,ij , ....., Y

K∗∗
T,ij )′ and compute

X∗∗ij =
1

K

K∑
t=1

(Y t∗∗R,ij − Y t∗∗T,ij)
2, j = 1, ..., B2, i = 1, ..., B1.

4. Select s content values p1, p2, ...., ps. For l = 1, 2, ...., s, let Wl ∼ Binomial(B2, 1− pl), and let kl be the largest
integer satisfying P (Wl ≥ kl) ≥ 1− α. For each i = 1, 2, ...., B1, let X∗∗i,(B2−kl+1) denote the (B2 − kl + 1)th order
statistic among the X∗∗ij (j = 1 , 2, ..., B2).

5. For each pl, obtain the proportion of times (out of B1) that X̂p ≤ X∗∗i,(B2−kl+1).
6. Among all the pl’s, determine the value that makes the above proportion closest to 1− α; denote this value as p̂0.
7. Now implement Algorithm 1 using the content value p̂0.

Our method involves extensive use of the bootstrap, along with bootstrap calibration, and Algorithm 1 and Algorithm 2
provide a summary of the methodology under the multivariate normality assumption. However, the multivariate normality
assumption of YR and YT may not always hold, in which case the parametric bootstrap algorithms are not appropriate.
Instead, the bootstrap should be carried out non-parametrically for computing an upper tolerance limit for the distribution
of the quantity X in (2). It should however be noted that for implementing the bootstrap calibration, it is necessary to have
an estimate of the pth percentile of the distribution ofX . Such an estimate can also be obtained using the bootstrap applied
to the dissolution profile samples of sizes nR and nT , obtained for the reference drug and the test drug, respectively. For
this, we proceed as follows. Let Y ∗R and Y ∗T represent observations selected with replacement from the dissolution profile
samples of sizes nR and nT , and compute X∗ = 1

K

∑K
t=1(Y t∗T − Y t∗R )2. Repeat this many times, generating several values

of X∗. The pth percentile of the X∗−values so obtained is an estimate of the pth percentile of the distribution of X . We
shall once again use the notation X̂p to denote the estimate so obtained. Here are the modified versions of Algorithm 1
and Algorithm 2, when the bootstrap is implemented non-parametrically:

Algorithm 3 (Non-parametric bootstrap upper tolerance limit):

1. Select B pairs of observations Y ∗Rj and Y ∗Tj randomly with replacement from the dissolution profile samples of
sizes nR and nT for the reference drug and the test drug, respectively. Write Y ∗Rj = (Y 1∗

Rj , Y
2∗
Rj , ...., Y

K∗
Rj )′ and

Y ∗Tj = (Y 1∗
Tj , Y

2∗
Tj , ...., Y

K∗
Tj )′, and compute X∗j = 1

K

∑K
t=1(Y t∗Tj − Y t∗Rj)2, j = 1, 2, ...., B.

2. Let W ∼ Binomial(B, 1− p), and let k be the largest integer satisfying P (W ≥ k) ≥ 1− α.
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3. The (B − k + 1)th order statistic among the X∗j s is an upper tolerance limit for the distribution of X = 1
K

K∑
t=1

(Y tR −

Y tT )2.

Algorithm 4 (Calibration on the content p):

1. Let X̂p denote the non-parametric estimate of the pth percentile ofX = 1
K

∑K
t=1(Y tT − Y tR)2, computed as described

earlier.
2. Non-parametrically generate B1 bootstrap samples, each of size nR drawn with replacement from the given

dissolution profile sample of sizes nR for the reference drug. Denote these B1 samples by Y ∗Ri1, Y ∗Ri2, ...., Y ∗RinR
,

i = 1, 2, ...., B1. Similarly generate B1 bootstrap samples, each of size nT drawn with replacement from the given
dissolution profile sample of sizes nT for the test drug. Denote these by Y ∗Ti1, Y ∗Ti2, ...., Y ∗TinT

, i = 1, 2, ...., B1.
3. For each i = 1, 2, ...., B1, generate B2 pairs of observations: (Y ∗∗R,ij , Y

∗∗
T,ij), j =1, 2, ..., B2, where the Y ∗∗R,ij’s are

selected with replacement from Y ∗Ri1, Y ∗Ri2, ...., Y ∗RinR
, and the Y ∗∗T,ij’s are selected with replacement from Y ∗Ti1,

Y ∗Ti2, ...., Y ∗TinT
. Write Y ∗∗R,ij = (Y 1∗∗

R,ij , Y
2∗∗
R,ij , ....., Y

K∗∗
R,ij )′, Y ∗∗T,ij = (Y 1∗∗

T,ij , Y
2∗∗
T,ij , ....., Y

K∗∗
T,ij )′ and compute

X∗∗ij =
1

K

K∑
t=1

(Y t∗∗R,ij − Y t∗∗T,ij)
2, j = 1, ..., B2, i = 1, ..., B1.

4. Select s content values p1, p2, ...., ps. For l = 1, 2, ...., s, let Wl ∼ Binomial(B2, 1− pl), let kl be the largest integer
satisfying P (Wl ≥ kl) ≥ 1− α. For each i = 1, 2, ...., B1, let X∗∗i,(B2−kl+1) denote the (B2 − kl + 1)th order statistic
among the X∗∗ij (j = 1 , 2, ..., B2).

5. For each pl, obtain the proportion of times (out of B1) that X̂p ≤ X∗∗i,(B2−kl+1).
6. Among all the pls, determine the value that makes the above proportion closest to 1− α; denote this value as p̂0.
7. Now implement Algorithm 3 using the content value p̂0.

2.1. Models for the Mean Dissolution Profile

So far we have developed tolerance limits without assuming any structure for the mean dissolutions. The model-
dependent methods investigated in the literature on dissolution profile comparisons assume models on the population
mean dissolution profiles as an increasing function of time; in particular, the Weibull model is commonly used, [8, 9, 10]
and the model is given by

µtR = 1− exp(−αR × tβR), µtT = 1− exp(−αT × tβT ), t = 1, ...,K (4)

where we write µR = (µ1
R, µ

2
R, ...., µ

K
R )′ and µT = (µ1

T , µ
2
T , ...., µ

K
T )′, and αR, αT , βR and βT are unknown parameters.

The Weibull model could be incorporated into our parametric set up, where the unknown parameters (αR, αT , βR, βT , ΣR,
and ΣT ) can be estimated by maximum likelihood. The parametric bootstrap can then be implemented in a straightforward
manner, under the multivariate normality assumption.

A constant mean difference model is sometimes assumed for the mean vectors, which assumes that the difference
between the mean profiles µR and µT is a constant across time. That is

µR − µT = δ1K , (5)

where δ is an unknown scalar parameter, and 1K is a K × 1 vector of ones. Under multivariate normality, the dissolution
profile vectors are now distributed as

YR ∼ N(µ+ δ1K ,ΣR), YT ∼ N(µ,ΣT ),
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where µ = µT . MLEs of the parameters can be numerically obtained and the parametric bootstrap can be implemented
for computing lower tolerance limits. Assuming that ΣT = ΣR, [18] discussed testing interval hypothesis concerning the
parameter δ under the above constant mean difference model. It should be noted that when ΣT = ΣR, it is possible to
obtain explicit expressions for the maximum likelihood estimators of the parameters.

2.2. Dissolution Comparisons Using the Factors f2, g1 and f1

Note that the factor f2 defined in (1) is in terms of the difference between the sample means ȲR − ȲT , whereas the factor
g2 proposed in (2) is in terms of the difference YR − YT between the individual dissolution profiles. Since f2 appears to
be a standard criterion for deciding the similarity between dissolution profiles, it may be of interest to compute a lower
tolerance limit for f2. This is equivalent to computing an upper tolerance limit for the distribution of 1

K

∑K
t=1(Ȳ tR − Ȳ tT )2.

This can be accomplished using a parametric bootstrap under the multivariate normality assumption, or it can be done
non-parametrically. The algorithms given earlier can be modified in a straightforward manner to compute the required
tolerance limits. In particular, under multivariate normality, we will be using the distributions

ȲR ∼ N
(
µR,

1

nR
ΣR

)
and ȲT ∼ N

(
µT ,

1

nT
ΣT

)
. (6)

In case some researchers prefer doing dissolution comparisons using difference factors g1 and f1 defined in (1) and (2),
our proposed dissolution comparison approach for g2 can be adopted to these criteria as well. Recall that the difference
factor g1 is an absolute scaled difference between the dissolution profiles for the reference drug and the test drug. An upper
tolerance limit for g1 is of obvious interest; if the upper tolerance limit is small (according to some regulatory guideline),
we can conclude that the two dissolutions are similar with respect to the factor g1. The parametric and nonparametric
bootstrap approaches we have developed earlier can be applied for computing an upper (or lower) tolerance limit for
any scalar valued function of the random variables YR and YT (or, the sample means ȲR and ȲT ). However, a difficulty
while trying to implement the bootstrap calibration is that an estimate of the pth percentile of g1 is not available, even
as an approximation. Thus, this percentile has to be numerically obtained based on bootstrap samples, as noted while
implementing the non-parametric bootstrap in Algorithm 4. Once such an estimate of the pth percentile is available, the
bootstrap method (along with the bootstrap calibration) can be adapted for computing an upper tolerance limit for g1,
either parametrically (under multivariate normality) or non-parametrically. The same can also be done for the difference
factor f1.

An observation that may be of practical interest is that our methodology can be used to compute an upper confidence
limit of the median of each of the random variables g1, g2, f1 and f2; simply choose the content p to be 0.50.

3. Simulation results

In order to evaluate the performance of our proposed approach, we shall now report numerical results on the estimated
coverage probabilities associated with our tolerance limits. In our simulations, we have chosen content p = 0.9 and
confidence level 1− α = 0.95. The coverage probability calculation is quite time consuming since bootstrap calibration
is also employed. Thus we have used only 1000 simulation runs in our estimation of the coverage probabilities.

For the simulations, we have chosen two sets of values for the population means and covariance matrices: those obtained
from the data in [19], and from the data in [7]. The relevant data in [19] are given in Table 1 of their paper; the sample sizes
are nR = 36 and nT = 12, and the number of time points for the data is seven, taken as 1, 2, 3, 4, 6, 8, 10 (here the time
is in hours). The data set is reproduced in the online supporting material, along with the means and covariance matrices
computed from the data. These computed values are used as the true parameter values for the purpose of simulation. In the
first simulation set up, we shall assume the cases of both equal and unequal ΣT and ΣR. Also, we varied the sample sizes
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Table 1. Coverage of one-sided tolerance limits based on Algorithm 2 and Algorithm 4 using 1000 simulation runs for the
parameter choices given in Appendix A of the online supporting material when ΣT = ΣR, with B = B2 = 1000; EqDiff
denotes the equal difference model, Weibull denotes the Weibull model, PB denotes parametric bootstrap and NPB denotes

non-parametric bootstrap.

Target Boot- Mean (nR, nT )
Variable B1 strap Model (12, 12) (36, 12) (36, 36)

g1 1000 PB None 0.946 0.940 0.947
g2 1000 PB None 0.947 0.941 0.950
f1 1000 PB None 0.942 0.937 0.955
f2 1000 PB None 0.948 0.945 0.951
g1 500 PB EqDiff 0.958 0.959 0.963
g2 500 PB EqDiff 0.962 0.961 0.964
f1 500 PB EqDiff 0.955 0.958 0.958
f2 500 PB EqDiff 0.960 0.959 0.961
g1 1000 PB Weibull 0.960 0.961 0.961
g2 1000 PB Weibull 0.942 0.942 0.960
f1 1000 PB Weibull 0.956 0.958 0.960
f2 1000 PB Weibull 0.957 0.958 0.965
g1 1000 NPB None 0.942 0.940 0.955
g2 1000 NPB None 0.943 0.943 0.948
f1 1000 NPB None 0.948 0.942 0.951
f2 1000 NPB None 0.943 0.943 0.945

Table 2. Coverage of one-sided tolerance limits based on Algorithm 2 and Algorithm 4 using 1000 simulation runs for the
parameter choices given in Appendix A of the online supporting material when ΣT 6= ΣR, with B = B2 = 1000; EqDiff
denotes the equal difference model, Weibull denotes the Weibull model, PB denotes parametric bootstrap and NPB denotes

non-parametric bootstrap.

Target Boot- Mean (nR, nT )
Variable B1 strap Model (12, 12) (36, 12) (36, 36)

g1 1000 PB None 0.935 0.945 0.937
g2 1000 PB None 0.937 0.946 0.938
f1 1000 PB None 0.943 0.940 0.939
f2 1000 PB None 0.945 0.945 0.946
g1 500 PB EqDiff 0.963 0.962 0.965
g2 500 PB EqDiff 0.959 0.960 0.960
f1 500 PB EqDiff 0.962 0.959 0.964
f2 500 PB EqDiff 0.964 0.963 0.965
g1 1000 PB Weibull 0.959 0.962 0.961
g2 1000 PB Weibull 0.961 0.963 0.964
f1 1000 PB Weibull 0.958 0.957 0.962
f2 1000 PB Weibull 0.957 0.960 0.965
g1 1000 NPB None 0.941 0.941 0.944
g2 1000 NPB None 0.942 0.944 0.943
f1 1000 NPB None 0.936 0.938 0.940
f2 1000 NPB None 0.942 0.945 0.947

nR and nT between 36 and 12. Unstructured and structured means were both considered; these are specified in Appendix
A of the online supporting material. The estimated coverage probabilities for various scenarios are given in Table 1 and
Table 2.

Our second choice of the parameter values is obtained from the data in [7]. Here the number of time points is 8, taken as
1, 2, 3, 4, 5, 6, 7, 8. The data, along with the means and covariance matrices computed from the data are given in Appendix
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Table 3. Coverage of one-sided tolerance limits based on Algorithm 2 and Algorithm 4 using 1000 simulation runs for
the parameter choices given in Appendix B of the online supporting material when ΣT and ΣR are unequal, with B = B2

= 1000; EqDiff denotes the equal difference model, Weibull denotes the Weibull model, PB denotes parametric bootstrap
and NPB denotes non-parametric bootstrap.

Target Boot- Mean (nR, nT )
Variable B1 strap Model (12, 12) (36, 12) (36, 36)

g1 1000 PB None 0.944 0.940 0.944
g2 1000 PB None 0.951 0.937 0.947
f1 1000 PB None 0.945 0.939 0.943
f2 1000 PB None 0.950 0.940 0.948
g1 500 PB EqDiff 0.960 0.959 0.962
g2 500 PB EqDiff 0.957 0.956 0.957
f1 500 PB EqDiff 0.959 0.958 0.961
f2 500 PB EqDiff 0.960 0.958 0.959
g1 1000 PB Weibull 0.959 0.958 0.962
g2 1000 PB Weibull 0.961 0.955 0.960
f1 1000 PB Weibull 0.960 0.959 0.960
f2 1000 PB Weibull 0.960 0.957 0.962
g1 1000 NPB None 0.944 0.945 0.949
g2 1000 NPB None 0.950 0.947 0.952
f1 1000 NPB None 0.946 0.937 0.945
f2 1000 NPB None 0.942 0.945 0.950

B of the online supporting material. Again, we varied the sample sizes nR and nT between 36 and 12. Unstructured and
structured means were both considered, as specified in Appendix B of the online supporting material. The coverage
probabilities are reported in Table 3.

The numerical results in Table 1− Table 3 indicate that our proposed methodology does result in accurate tolerance
limits for dissolution comparisons, simultaneously accounting for the sampling variability and the correlations across
multiple time points. All the coverage probabilities are close to the assumed nominal level of 0.95, even when nT = nR =

12. In particular, we note that if a model is not available for the mean profile, and if the normality assumption is not tenable,
our non-parametric bootstrap approach, without the assumption of a model for the mean, still provides an accurate upper
tolerance limit.

4. Two Examples

Two real examples are presented here to illustrate the application of our tolerance interval methodology. The data sets
used are taken from the articles by [19] and [7], and are reproduced in Appendix A and Appendix B, respectively, of the
online supporting material.

4.1. Example 1: The Tsong et al. (1997) data set

The data set includes four dissolution batches in total. The first three batches are the reference batches, consisting of
12 tablets per batch; thus nR = 36. A fourth batch with 12 tablets forms the test batch; thus nT = 12. Furthermore,
there are K = 7 times points: 1, 2, 3, 4, 6, 8, and 12 hours. We shall apply our methods to calculate upper tolerance

limits for the distributions of 1
K

∑K
t=1(Y tR − Y tT )2, 1

K

∑K
t=1(Ȳ tR − Ȳ tT )2,

K∑
t=1

|Y t
R−Y

t
T |

K∑
t=1

Y t
R

and

K∑
t=1

|Ȳ t
R−Ȳ

t
T |

K∑
t=1

Ȳ t
R

, leading to lower

tolerance limits for g2 and f2 and upper tolerance limits for g1 and f1. The content and confidence level are chosen to be
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Table 4. Lower tolerance limits for the distributions of g2 and f2 and upper tolerance limits for the distributions of g1 and
f1 for Example 1; content p = 0.90 and confidence level 1− α = 0.95.

Target Parametric Values of
variable No mean structure Weibull structure Non-parametric f1 and f2

g2 48.119 45.805 45.112
f2 54.567 56.121 59.083 f2 = 64.111
g1 17.197 17.616 19.652
f1 10.613 10.987 7.213 f1 = 6.479

p = 0.90 and 1− α = 0.95, respectively. We shall consider model-independent as well as model-dependent cases, where a
Weibull model is assumed for the mean profile in the model dependent case, as done in [19]. Here we shall implement both
parametric and nonparametric bootstrap methods. We usedB = 1000 bootstrap samples for computing the upper tolerance
limit, after estimating the content value by bootstrap calibration using B1 = 1000 and B2 = 1000 bootstrap samples (for
implementing Algorithm 2 and Algorithm 4). The lower tolerance limits for g2 and f2 and upper tolerance limits for g1

and f1 under various scenarios are given in Table 4. One should certainly expect the lower tolerance limit for g2 to be
less than that of f2, and the upper tolerance limit for g1 to be higher than that for f1 since V ar(ȲR) < V ar(YR) and
V ar(ȲT ) < V ar(YT ); we note this to be the case in Table 4. The table also gives the numerical values of f2 and f1; these
numerical values certainly meet the FDA specifications for concluding profile similarity, namely f2 > 50 and f1 < 15.

From the results in Table 4 we note that the lower tolerance limit for f2 is greater than 50, when the methodology is
implemented parametrically or non-parametrically. Thus we conclude with 95% confidence that 90% or more of the f2

distribution is above 50. Also, the upper tolerance limits for f1 under both parametric and non-parametric approaches are
less than 15; we thus conclude with 95% confidence that 90% or more of the f1 distribution is below 15. In another words,
dissolution profile similarity can be concluded if we use the criteria f2 and f1. However, if we look at the corresponding
tolerance limits for g2 and g1, and use the same threshold values 50 and 15, respectively, we cannot conclude profile
similarity. This conclusion holds under the parametric and non-parametric scenarios.

4.2. Example 2: The Ocana (2009) data set

This data set consists of dissolution profiles coming from a batch of Metoclopramide Hydrochloride tablets with
tensioactive, and a batch of tablets without tensioactive. Each batch includes 12 dissolution profiles and each profile
consists of observations across 8 time points. In other words, nR = nT = 12 and K = 8 (t = 1, 2, 3, 4, 5, 6, 7, 8). The data
set is available in Table 3 of [7], and are reproduced in Appendix B of the suppoirting material. We shall continue to use
p = 0.90 and 1− α = 0.95 as the content and confidence level, respectively. Again, B = 1000 bootstrap samples were
used to calculate the upper tolerance limit after performing bootstrap calibration using Algorithm 2 and Algorithm 4 with
B1 = 1000 and B2 = 1000. The tolerance limits for the various scenarios are given in Table 5, along with the numerical
values of f2 and f1. We note from Table 5 that the f1 and f2 values (given in the last column of the table) do meet the
FDA requirements, so that we can conclude similarity of the two dissolution profiles. However, this is no longer the case
if we use the tolerance limits; the tolerance limits for g2 and g1 are far removed from the FDA specified thresholds. The
conclusion is the same based on the tolerance limits for f1 and f2, except for the limits obtained non-parametrically. The
non-parametric lower tolerance limit for f2 just crosses the 50 threshold, and the non-parametric upper tolerance tolerance
limit for f1 is less than 15%. The overall conclusion that emerges from Table 5 is that the similarity of the two dissolution
profiles cannot be concluded.

A close examination of the original data in [7] reveals the following. Among the eight time points at which dissolution
data have been obtained, significant differences exist among the dissolution values at the first three time points, and
considerable similarity is noticeable among the last 5 time points; see Appendix B of the online supporting material.
Perhaps the dissimilarity that is so noticeable among the first three time points accounts for the lack of dissolution profile
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Table 5. Lower tolerance limits for the distributions of g2 and f2 and upper tolerance limits for the distributions of g1 and
f1 for Example 2; content p = 0.90 and confidence level 1− α = 0.95.

Target Parametric Values of
variable No mean structure Weibull structure Non-parametric f1 and f2

g2 41.200 39.077 41.416
f2 46.472 44.085 50.037 f2 = 51.704
g1 24.629 29.882 26.228
f1 18.098 22.770 13.196 f1 = 12.635

Table 6. Example2: Lower tolerance limits for g2 using data on all time points and on last five time points (p = 0.80, 0.90,
1− α = 0.95), compared with FDA defined f2.

NoMeanstruc Weibull nonpara percentile f2

p = 0.9 p = 0.8 0.9 0.8 0.9 0.8 0.9

All time points 41.20 43.53 39.08 41.43 41.42 43.79 41.21 51.71
Last five time pts 46.10 50.66 46.35 50.12 48.99 53.39 46.33 68.19

similarity that emerges from the numerical results reported in Table 5. In view of this, it may be of interest to check
for dissolution profile similarity, concentrating only on the last 5 time points. Such an evaluation of dissolution profile
comparison using the data of last few time points could be of interest for certain drug products. Table 6 gives the lower
tolerance limits for g2 using the last five time points and using all the time points using the content level p = 0.80 and 0.90.
Table 6 shows that we can conclude similarity of the two dissolution profiles based on f2 values shown in the last column
using all time points or last five time points. Furthermore, using the lower tolerance limit for g2, we can also conclude
similarity based on the last 5 time points if the content is chosen to be p = 0.80, but not for p = 0.90. Subject-specific
knowledge on the tablets and the treated disease will perhaps be helpful to determine whether using the last few time
points and a lower content level are clinically meaningful or not.

5. Discussion

Dissolution testing is a critical component in the development of pharmaceutical dosage forms, since it can serve as a
substitute for in vivo studies. Valid statistical analysis of the relevant data is clearly a crucial part of dissolution profile
comparisons. The criteria that are currently in use, based on the factors f1 and f2, appear ad hoc, and lack statistical
rigor, even though they are widely used and recommended by the FDA. A number of alternative criteria have been
suggested in the literature, and new criteria continue to be introduced in the recent literature; see [20]. Rather than
introducing new criteria, the present work takes up the existing criteria and develops statistically rigorous procedures
based on them, using the concept of tolerance limits. We feel that tolerance limits are the right quantities in this context,
since they are meant to provide bounds on the entire population, and can thus be used to draw conclusions regarding
the similarity of the population dissolution profiles. Even though the computation of the required tolerance limits can be
demanding, we could circumvent some of the difficulties using a non-parametric tolerance limit computation, coupled
with a bootstrap calibration. Since an upper tolerance limit is an upper confidence limit for a population percentile, and
since an approximation is available for the percentile (as noted in the Appendix), a natural question that comes up is
whether the bootstrap can be directly applied to the approximate percentile. We did try a percentile bootstrap method for
computing an upper confidence limit for the approximate percentile, but the coverage probability was not satisfactory. A
bootstrap calibration was then tried, and this did improve the accuracy of the coverage probability. However, the resulting
computation turned out to be more time consuming than the methodology we are proposing in this paper. The computations
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outlined in Algorithm 2 and Algorithm 4 may look cumbersome, but are straightforward to carry out using the R codes
available as supplementary material online.

It could be argued that the FDA recommended thresholds applied to upper tolerance limits result in requirements that
are too strong for concluding dissolution profile similarity. If so, one could relax the requirement by simply lowering the
value of the content p. In particular, by choosing p = 0.50, our methodology will provide upper confidence limits for the
median of the relevant random variable. Clearly, regulatory input is necessary before deciding a value of p.

We want to conclude by highlighting a few other aspects of the dissolution testing problem and the available literature,
from the perspective of our work. Most researchers assume a common covariance matrix for the test and reference
dissolution profile distributions. This is especially the case for the problem of comparing the mean dissolution profiles.
This assumption is likely to be unrealistic in applications. A formal test for the equality of the covariance matrices
resulted in rejection of the equality hypothesis for both of the data sets used in this paper. In our work, we have not
made this assumption. If the common covariance matrix assumption does hold, our methodologies can be modified in
a straightforward manner so as to reflect this assumption. A second concern is the multivariate normality assumption.
It should be clear that the dissolution profile of each tablet (reference as well as test) is an increasing function of time.
In other words, the random vector for which the multivariate normality is assumed, always has its components ordered
from smallest to largest. In view of this, the multivariate normality assumption is simply not appropriate. Thus the non-
parametric tolerance limit that we have developed should be of considerable interest.

Note that for the data in the first example, the data are available in batches, which suggests the possibility of using a
model where random batch effects are present. We did consider such a model for this example, for the data on the reference
drug, but the batch effects turned out to be highly insignificant. However, the tolerance limit problem can certainly be
addressed in the presence of random batch effects. This is currently under investigation.

6. Appendix: An Approximation for the Percentile of X = 1
K

K∑
t=1

(Y t
R − Y t

T )
2

Here is a brief description of the method due to [16], for approximating the pth percentile of X = 1
K

K∑
t=1

(Y tR − Y tT )2. In

order to explain the approximation, let
Q = (YR − YT )′(YR − YT ),

so that X = Q
K . Clearly, YR − YT ∼ N(µR − µT ,ΣR + ΣT ). For notational convenience, let µ = µR − µT and Σ =

ΣR + ΣT . The approximation to the cdf of Q is obtained by noting that Q is a linear combination of independent non-
central chisquare random variables, with non-centrality parameters depending on µ and Σ, and the dfs depending on the
multiplicity of the eigenvalues of Σ. If the eigenvalues of Σ are distinct, then each non-central chisquare in the linear
combination has one df, and the number of terms in the linear combination is K (the dimension of YR, as well as that of
YT ). In order to give the approximation, let

ck = trace(Σk) + kµ′Σk−1µ k = 1, 2, 3, 4.

Then [16] provide the approximation
P (Q ≤ u) ' P (χ2

l (δ) ≤ u′),

where u′ =
[
u−c1√

2c2
×
√

2(l + 2δ)
]

+ l + δ, where l and δ are given by (i) and (ii) below, and depend on s1 = c3
c
3/2
2

and
s2 = c4

c22
.
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(i) if s2
1 > s2,

δ =
s1

(s1 −
√
s2

1 − s2)3
− 1

(s1 −
√
s2

1 − s2)2

and l =
1

(s1 −
√
s2

1 − s2)2
− 2δ;

(ii) if s2
1 ≤ s2,

δ = 0, and l = c32/c
2
3.

Furthermore, the pth percentile of Q can be approximated as Qp =
(
(χ2
l,δ;p − l − δ)×

√
c2
l+2δ

)
+ c1, where χ2

l,δ;p is
the pth percentile of the non-central chisquare distribution χ2

l (δ). For X = Q
K , the pth percentile, say Xp, can thus be

approximated as

Xp =
1

K

[(
(χ2
l,δ;p − l − δ)×

√
c2

l + 2δ

)
+ c1

]
. (7)
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