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Abstract

Hidden Markov models (HMM) for multi-site daily precipitation usually assume that precipitation

at each location is independently distributed conditional on the daily state; correlation in precipita-

tion at different locations is induced by the state process. In practice, however, spatial correlations

are underestimated especially when working with remote sensing data. This results in simulated

data which cannot recreate the spatiotemporal patterns of the historical data. We construct a daily

precipitation generator based on a hidden Markov model with Gaussian copulas (HMM-GC) using

GPM-IMERG (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement) remote

sensing data for the Chesapeake Bay watershed on the East Coast of the USA. Daily precipitation

from 2000–2019 for the wet season months of July to September is modeled using a 6-state HMM.

Positive precipitation at each location is given by a two-part distribution with a delta function at

zero and a mixture of two Gamma distributions; Gaussian copulas are used to accommodate the

correlation in precipitation at different locations. Based on 20 years of synthetic data simulated

from an HMM and an HMM-GC, we conclude that the HMM-GC captures key statistical properties

of IMERG precipitation better than the HMM.

Key Words: Hidden Markov models, Stochastic simulations, Gaussian copula, Spatiotemporal
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1. Introduction

The modeling and forecasting of seasonal and inter-annual variations in precipitation is

used to determine water allocation and resource management for regions dependent on pre-

cipitation as a primary water source. To this end, precipitation generators are constructed

to produce time series of synthetic data representative of the general rainfall patterns within

the region. In particular, stochastic precipitation generators aim to replicate key statistical

properties of the historical data like dry and wet stretches, spatial correlations, and extreme

weather events. Not only are these models used to downscale numerical weather models,

synthetic data from these models find use in climate projections, impact assessments of

extreme weather events, water resources and agricultural management, and for public and

veterinary health [1].

Our region of interest is the Chesapeake Bay watershed which includes parts of six

states and nine major river systems on the East Coast of the USA. Figure 1 shows the

Chesapeake Bay watershed and the different land cover classes within it. The watershed

has a diverse, interconnected ecosystem which is affected by extreme weather potentially

related to climate change [8], and has been targeted for restoration as an integrated wa-

tershed and ecosystem. Rainfall within the watershed and resulting runoff into the rivers

and the bay bring substantial amounts of sediments and nutrients to the bay and impact

the water quality of the bay. Therefore, understanding and forecasting rainfall patterns and

temporal variability, particularly extreme rainfall events in the Chesapeake Bay watershed

are crucial for monitoring and managing water quality in the Bay. We use daily data from
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Figure 1: Land cover classes within the Chesapeake Bay watershed.

the GPM-IMERG dataset [2] for the months of July to September from 2000–2019. With a

0.1◦×0.1◦ spatial resolution, The IMERG dataset covers the 64,000 square mile watershed

with 1927 grid points. A hidden Markov model with Gaussian copulas (HMM-GC) is used

for multi-site daily precipitation generation within the watershed.

2. Hidden Markov Model with Gaussian Copulas (HMM-GC)

Let R1:T = {R1, . . . ,Rt, . . . ,RT } be the M × T matrix of precipitation amounts for a

network of M grid points over T days, with R
′

t = (Rt1, . . . , RtM ) representing precipita-

tion on day t for all M locations. Let S1:T = {S1, . . . , St, . . . , ST } be the set of hidden

(unobserved) weather states, where St ∈ {1, . . . , J}. At each location m and day t,

p[Rtm = r|St = j] =

{

pjm0 if r = 0
∑C

c=1
pjmcf(r|αjmc, βjmc) if r > 0

(1)

with pjmc ≥ 0 and
∑C

c=0
pjmc = 1 for all m = 1, . . . ,M and j = 1, . . . , J ; f(·|α, β) is the

density function of a Gamma distribution with shape parameter α > 0 and rate parameter

β > 0. The states arise from a stationary, first-order Markov process. Spatial dependence

is induced by the Markov chain {St}, and precipitation at each of the M locations for every

Rt is independent given St. Furthermore, daily precipitation depends only on the state on

day t. Details of model formulation, estimation and simulation are described in [3, 10].

HMM parameters are usually estimated using the Baum-Welch (B-W) algorithm [9]

which is a modification of the Expectation Maximization (EM) algorithm. Similarly, for

the problem of estimating the most likely sequence of states given the data, the algorithm



proposed by Viterbi [11] is used, which maximizes the joint distribution of the observa-

tions and the model. We have previously found [5] that while the Baum-Welch algorithm

estimates the marginal emission distribution parameters adequately, the assumption that the

daily state can capture the spatial correlation of precipitation between grid points does not

hold up very well for datasets with high spatial dimensions. For the purposes of simulat-

ing correlated multi-site daily precipitation, a Gaussian copula is employed to estimate the

pairwise spatial correlations in our data.

For a grid of M locations, there are M(M-1)/2 pairs of grid points. Further, for each

state, daily precipitation is independently and identically distributed at each location. For

each state j, it is possible to construct an M-variate Gaussian copula Cj(u1,j , . . . , uM,j)
and generate daily correlated precipitation amounts (rj1, . . . , rjM ) using the correlation

structure of Cj .

Thus, for the j-th state, we define the copula Cj as follows

Cj(u1,j , . . . , uM,j) = ΦΣ(Φ
−1(u1,j), . . . ,Φ

−1(uM,j)) (2)

and um,j = Gm,j(rm,j), ∀m = 1, . . . ,M (3)

Here, Cj(u1,j , . . . , uM,j) is an M-dimensional random vector with uniform marginals. Cor-

respondingly, ΦΣ is the cumulative distribution function (CDF) of an M-variate normal dis-

tribution with mean vector 0 and M ×M correlation matrix Σ, Φ−1 is the inverse CDF of

the univariate standard normal distribution, rm,j are the precipitation observations for state

j at location m, and Gm,j is the CDF of the mixture of the Gamma distributions modeling

positive precipitation for state j at location m.

Following ideas discussed in [7], the Spearman rank correlation estimate ρ̂j(m1,m2)
from the historical data for state j between locations m1 and m2 allows us to estimate the

corresponding Pearson correlation ζ̂j(m1,m2) using the relationship for a bivariate Normal

distribution [6] given by

ζ(m1,m2) = 2 sin

[

π
ρ(m1,m2)

6

]

(4)

All marginal parameters used for the construction of the copula are estimated from the

Baum-Welch algorithm, and the Viterbi algorithm provides the most likely sequence of

states. The following procedure is used to construct a Gaussian copula for each state.

Algorithm 1: Algorithm to construct a Gaussian copula for each state.

for states j in 1:J do

Subset the days corresponding to state j;

Calculate the M(M-1)/2 estimates of ρj(m1,m2) from Eqn. 4 ;

Calculate pairwise correlations for the copula, ζj(m1,m2);
Plug ζj(m1,m2) into the correlation matrix Σ;

Set diagonal elements of the correlation matrix to be 1;

Ensure that the resulting matrix is positive definite;

end

Note that the correlation matrix of the copula is also its covariance matrix. Positive

definiteness is ensured by diagonalizing the matrix and replacing all negative eigenvalues

with a small positive number, and recalculating the matrix [7].



RMSE = 11.69 mm
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Figure 2: Scatterplot of the mean precipitation per month at each grid point based on

historical IMERG data (2000–2019) compared with synthetic HMM-GC data.

3. HMM-GC for Daily Precipitation over the Chesapeake Bay Watershed

3.1 Model selection

Bayesian Information Criterion (BIC) scores have been used for model selection. The

BIC is a model selection criterion calculated from the likelihood function; the model with

the lowest BIC tends to be chosen. For each combination of parameters, we restarted the

Baum-Welch algorithm 10 times, and the solution with the lowest BIC was used. We

choose a 6-state HMM with 2 Gamma components (C=2) for our analysis which had a BIC

score of 1.195e+07. Beyond this the improvements in BIC were marginal, and the model

often failed to converge. Models with exponential distributions had higher BIC scores than

their Gamma counterparts. Going forward, a Gaussian copula is constructed for each of

the 6 states, and for each copula the marginal CDF comes from a mixture of 2 Gamma

distributions.

3.2 Model fit and interpretation

Figure 2 compares monthly means computed from 20 years of synthetic HMM-GC data

against IMERG data from 2000–2019. It plots the monthly precipitation at each grid point,

with July–September means represented by red, green, and blue dots respectively. We see

a linear relationship between the means computed from the synthetic HMM-GC data and

those from IMERG, with positive bias at a few locations. The root mean square error

(RMSE) of the synthetic data estimates is 11.69 mm. Similarly, the RMSE for the propor-

tion of dry days is 2% for our data. Spatially, pairwise correlations between grid points for

the IMERG data have a median of 0.395 and a maximum of 0.991, whereas the HMM-GC

synthetic data has a median spatial correlation of 0.332 and a maximum of 0.925.

Table 1 lists the daily and seasonal precipitation statistics corresponding to the 6 states

over all grid points for the Chesapeake Bay watershed calculated based on our 2000–2019

IMERG data. State 1 is the driest and occurs most often (23.26%), even during the wet

season. State 3 is the wettest state with the highest mean and maximum precipitation and



Table 1: Precipitation statistics for the 6 HMM states over all 1927 locations within the

Chesapeake Bay watershed.

Daily mean Daily maximum % of all days % of all days

State precipitation (mm) precipitation (mm) without rain spent in state

1 0.12 2.24 18.32 23.26

2 5.08 16.61 1.24 16.63

3 13.84 51.97 0.22 13.97

4 4.47 13.78 1.50 13.64

5 0.91 4.91 6.30 15.76

6 1.97 13.26 6.82 16.74
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Figure 3: Pairwise spatial correlation between grid points for historical IMERG data

(2000–2019) compared with synthetic data from HMM and HMM-GC models.

the smallest proportion of dry days (0.22%). State 6 is also a dry state in general but

occasionally has heavy precipitation events. States 2, 4, and 5 have precipitation patterns

which range between the other 3 states.

3.3 Comparison with classical HMM

Figure 3 shows box plots of the pairwise correlation between grid points based on IMERG

data from 2000–2019, as well as synthetic data from HMM and HMM-GC for 20 years.

The low median and interquartile ranges of HMM and HMM-GC compared to IMERG

suggest that both models struggle with capturing spatial correlation to different degrees. We

see that the classical HMM for precipitation tends to severely underestimate the correlations

between precipitation amounts. The HMM-GC does a significantly better job of estimating

the spatial correlations with its longer upper tail.

Figures 4 and 5 plot the daily total precipitation amounts over the basin from July to

September of 2018. The cyan line in both plots represents daily IMERG precipitation from

2018 over the entire watershed. These are compared to synthetic precipitation represented

by the red lines corresponding to the HMM in Figure 4 and the HMM-GC in Figure 5.

The IMERG data in both figures contains low precipitation events, as well as high precip-

itation events of nearly 50000 mm. When comparing the HMM and HMM-GC data, we

see that the HMM-GC simulates high precipitation events much better than the HMM, as
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Figure 4: Time series of total daily rainfall over the basin in July to September 2018,

compared against a single realization from the HMM.
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Figure 5: Time series of total daily rainfall over the basin in July to September 2018,

compared against a single realization from the HMM-GC.

evidenced by the peaks in both graphs. The failure to simulate extreme precipitation events

in the classical HMM formulation may be attributed to the underestimation of spatial cor-

relations. Both methods perform well in simulating low precipitation events. In general,

the HMM-GC outperforms the HMM both spatially and temporally with some additional

computational cost for estimation and simulation.

4. Discussion

Based on the synthetic data, both the HMM and the HMM-GC have similar monthly pre-

cipitation statistics at individual locations; this is because the marginal parameters are the

same for both models. However, when we start looking at precipitation over the entire

watershed, the HMM shows unrealistic spatial patterns. Due to the underestimated spatial

correlations, simulated data from the HMM can have high precipitation at specific locations

but low precipitation values at nearby grid points. So while both models can simulate low

precipitation events well, the HMM fails to simulate high precipitation events simultane-

ously across large areas of the watershed adequately. The HMM-GC alleviates this to a

certain extent, as evidenced by the higher peaks in the simulated daily data.



However, simulated data from the HMM-GC still underestimates spatial correlations

compared to historical data. One of the reasons could be that the Gamma CDFs that make

up our copula are estimated from the data as well. There also arises another issue where

several pairs of locations do not have any days with rainfall at both locations. This prevents

us from calculating correlation based on just positive precipitation. We have tried to ad-

dress this by using all available data to estimate the copula, not just the days with positive

rainfall. However, while generating simulated data, rainfall occurrence is determined us-

ing the marginal estimates derived from the Baum-Welch algorithm, while the intensity is

determined by the values generated from the copula. While this allows us to have a larger

sample size for estimating the correlations and produces higher correlation estimates com-

pared to using just the positive precipitation data, we are looking at ways to simulate both

occurrence and intensity of daily rainfall from the copula.
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