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Abstract

Understanding the complex growth and metabolic dynamics in microorganisms re-

quires advanced kinetic models containing both metabolic reactions and enzymatic

regulation to predict phenotypic behaviors under different conditions and pertur-

bations. Most current kinetic models lack gene expression dynamics and are sepa-

rately calibrated to distinct media, which consequently makes them unable to

account for genetic perturbations or multiple substrates. This challenge limits our

ability to gain a comprehensive understanding of microbial processes towards ad-

vanced metabolic optimizations that are desired for many biotechnology applica-

tions. Here, we present an integrated computational and experimental approach for

the development and optimization of mechanistic kinetic models for microbial

growth and metabolic and enzymatic dynamics. Our approach integrates growth

dynamics, gene expression, protein secretion, and gene‐deletion phenotypes. We

applied this methodology to build a dynamic model of the growth kinetics in batch

culture of the bacterium Cellvibrio japonicus grown using either cellobiose or glucose

media. The model parameters were inferred from an experimental data set using an

evolutionary computation method. The resulting model was able to explain the

growth dynamics of C. japonicus using either cellobiose or glucose media and was

also able to accurately predict the metabolite concentrations in the wild‐type strain

as well as in β‐glucosidase gene deletion mutant strains. We validated the model by

correctly predicting the non‐diauxic growth and metabolite consumptions of the

wild‐type strain in a mixed medium containing both cellobiose and glucose, made

further predictions of mutant strains growth phenotypes when using cellobiose and

glucose media, and demonstrated the utility of the model for designing industrially‐
useful strains. Importantly, the model is able to explain the role of the different

β‐glucosidases and their behavior under genetic perturbations. This integrated ap-

proach can be extended to other metabolic pathways to produce mechanistic

models for the comprehensive understanding of enzymatic functions in multiple

substrates.
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1 | INTRODUCTION

Gaining a mechanistic understanding of microbial metabolic processes

including their dynamic and regulatory aspects will be essential to

address many biological and industrial problems (Millard, Smallbone, &

Mendes, 2017). Experimental approaches such as genetic knockouts of

key enzymes can be used to analyze the resultant growth dynamics and

determine the physiological functions of each component of a metabolic

pathway (Wu, Du, Chen, & Zhou, 2015). Furthermore, extracting

mechanistic knowledge from these datasets towards quantitative pre-

dictions in terms of growth dynamics under different conditions

requires system‐level kinetic modeling able to account for the

degradation of multiple metabolites by different enzymes and under

various growth conditions (Kurata & Sugimoto, 2018; Steuer, Gross,

Selbig, & Blasius, 2006). However, traditional kinetic models lack ge-

netic and enzymatic dynamics and are usually calibrated for predicting

growth using only a single substrate (Park, Lang, Thamaraiselvi,

Kukor, & Abriola, 2008). Consequently, more sophisticated kinetic

models are needed for gaining a comprehensive understanding of

specific microbial degradation pathways that can predict multiple en-

zyme functions and growth dynamics under complex substrate condi-

tions and genetic perturbations (Smallbone et al., 2013).

Polysaccharides are the most abundant carbon compounds in

the biosphere, and have numerous applications in the biomedical,

chemical, and renewable energy industries (Jeoh, Cardona, Karuna,

Mudinoor, & Nill, 2017). However, recovering the nutrients locked

away in insoluble polysaccharides, such as lignocellulose, is a major

challenge for environmental bacteria due to the complexities of the

substrate (Kuusk, Sørlie, & Väljamäe, 2015). Some environmental

microbes are able to degrade insoluble polysaccharides by expres-

sing carbohydrate active enzymes (CAZymes; Nelson, Attia, et al.,

2017). For example, Cellvibrio japonicus is a model bacterium able to

completely degrade all of the major plant cell wall polysaccharides

(DeBoy et al., 2008). This bacterium possesses at least twelve en-

doglucanases, one cellobiohydrolase, and four β‐glucosidases, and
previous genetic and biochemical studies have shown the importance

of these CAZymes for C. japonicus to degrade and metabolize both

pure cellulose as well as corn stover (Gardner & Keating, 2010;

Gardner et al., 2014; Nelson & Gardner, 2015). A more recent report

described in detail the later stages of cellulose degradation by C.

japonicus, and discussed the nonredundant functions of four

β‐glucosidases participating in the degradation of cellodextrins

(Nelson, Rogowski, et al., 2017). While obtaining a mechanistic un-

derstanding of the in vivo physiological roles of cellulose‐degrading
CAZymes required genetic and biochemical data, what is now nee-

ded are methods to use those data to further predict the growth

dynamics of bacteria under multiple substrates and after deletion of

specific genes. Furthermore, any generated models need to be con-

structed with an emphasis on the discovery and manipulation of the

most relevant metabolic pathways.

A number of kinetic models have been proposed for describing

microbial growth on cellulosic substrates, but they are based on

traditional Michaelis–Menten for enzymatic reactions and Monod for

microbial growth without considering multiple substrates or bac-

terial strains possessing genetic perturbations. For example, the

saccharification or fermentation of cellulose by bacteria or yeast

together with their growth in both batch and continuous cultures

have been empirically modeled with kinetic models based on

Langmuir absorption equations for cellulose degradation,

Michaelis–Menten kinetics for β‐glucosidase reactions, and Monod

models for cell biomass growth. These approaches make use of yield

coefficients to directly link substrate concentrations to cell biomass

growth, either with a single yield coefficient from glucose (Mutturi &

Lidén, 2014; Oh, Kim, Jeong, & Hong, 2000; Philippidis & Hatzis,

1997; Sakimoto, Kanna, & Matsumura, 2017) or with separated

experiment‐specific coefficients to explain the growth dynamics

on different substrates (Fox, Levine, Blanch, & Clark, 2012;

Gomez‐Flores, Nakhla, & Hafez, 2015, 2017; Kwon & Engler, 2005;

Moldes, Alonso, & Parajó, 1999). In addition, models explicitly in-

cluding the function of enzymes have been proposed for the enzy-

matic saccharification of lignocellulose. However, these approaches

either omit cell biomass growth (Kadam, Rydholm, & McMillan,

2004), lump all enzyme concentrations together (Shen & Agblevor,

2010), or include different coefficients for different substrates (Shin,

Yoo, Kim, & Yang, 2006), preventing the understanding of specific

enzyme functions or with multiple substrates. Constant enzyme

concentrations have been also used to predict different dynamics

during the saccharification and fermentation of cellulose to ethanol

and cell biomass (Shadbahr, Khan, & Zhang, 2017). Overall, current

modeling approaches for cellodextrins degradation and microbial

growth lack the ability to model the physiological function of in-

dividual enzymes when a bacterium is metabolizing different sub-

strates. New modeling approaches are needed to obtain a better

understanding of the dynamic roles of the enzymes participating in

cellulose degradation (Steuer et al., 2006).

Here we present a combined in vivo and in silico approach for

developing a kinetic metabolic model of cellobiose degradation in

Cellvibrio japonicus. Our modeling strategy is able to recapitulate the

dynamics of cell growth and metabolite consumption while ac-

counting for different genetic perturbations and growth with multi-

ple substrates. The model integrates data for the expression of

β‐glucosidase genes participating in extra‐ and intracellular meta-

bolic reactions. A computational optimization methodology was de-

veloped to infer the parameters of the model from data collected

using both wild‐type and mutant strains of C. japonicus and could

accurately recapitulate the growth dynamics of all strains. The model

was then validated by the prediction of growth dynamics in a mixed

medium with cellobiose and glucose, which was predicted to be

co‐utilized and subsequently observed in vivo. Finally, we made

predictions of the growth dynamics of the mutant strains during co‐
utilization of both cellobiose and glucose and designed strain opti-

mization strategies for the maximization of the specific degradation

rate of cellobiose in C. japonicus. In summary, the presented approach

can provide a detailed mechanistic understanding of the metabolic

pathways essential in cellulose degradation and will aid in advanced

metabolic engineering optimizations.
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2 | MATERIALS AND METHODS

2.1 | Growth and metabolic analyses

The C. japonicus strains used in this study were the wild‐type strain

(Ueda107), and three β‐glucosidase mutants derived from wild‐type
(Δcel3A, Δcel3B, and Δcel3A Δcel3B). The construction of the mutant

strains has been described previously (Nelson, Attia, et al., 2017;

Nelson, Rogowski, et al., 2017). Single colonies of these strains were

used to inoculate three 18‐mm test tubes each containing 5ml of

3‐(N‐morpholino)propanesulfonic acid (MOPS) defined medium with

glucose (0.2% wt/vol) as the sole carbon source. These inocula were

incubated for 24 h at 30°C with a high level of aeration (200 RPM)

and then used to inoculate Erlenmeyer flasks that contained 500ml

MOPS defined medium. The flasks were inoculated with a dilution

ratio of 1:100. The flasks contained MOPS defined media with glu-

cose (0.25% wt/vol), cellobiose (0.25% wt/vol), or a mixture of cel-

lobiose and glucose (0.125% wt/vol for each carbon source). Three

flasks of each carbon source were used for the growth and meta-

bolite experiments. After inoculation in the flasks, a 10ml sample

was collected every hour for 24 h and cell density was measured as

absorbance at 600 nm using a Spec20D+ spectrophotometer

(Thermo Fisher Scientific), which was then interpolated to dry weight

using an experimentally determined linear conversion factor of

[gL ] 0.8994 [OD ]1
600= ⋅− . From the 10ml sample, three 500 μl aliquots

were dispensed in 1.5 ml microcentrifuge tubes and spun at 21130

RCF on a tabletop centrifuge (Eppendorf). The pellets were discarded

and the supernatants were filtered through 0.2 μm nylon syringe

cartridges (Thermo Fisher Scientific). The concentration of glucose

and cellobiose that remained in the supernatants was determined by

HPAEC‐PAD as done previously (Nelson, Rogowski, et al., 2017).

Briefly, we used a Dionex ICS‐5000+ system (Thermo Fisher Scien-

tific) equipped with a 4 × 250mm SA‐10 anion‐exchange column and

a 4 × 50mm SA‐10 guard column. A sample volume of 25 μl was

injected into an isocratic gradient with a flow rate of one mL/min of

20mM sodium hydroxide with the column temperature set to 30°C.

To ensure data robustness, all in vitro experiments were performed

in both technical and biological triplicate. Preliminary data analysis

used the Dionex Chromeleon 7 and GraphPad Prism 6 software

packages.

2.2 | Model simulation and parameter estimation

We developed a simulator for kinetic models including metabolites,

enzymes, and microbial growth represented by a system of ordinary

differential equations (ODEs), together with an optimization metho-

dology based on genetic algorithms to infer the kinetic parameters

directly from experimental data (Lobikin et al., 2015; Lobo & Levin,

2015; Lobo & Vico, 2010a, 2010b). Models are numerically solved

with LSODA (Petzold, 1983); mutant strains with gene knockouts are

simulated by keeping the concentration and rate of the eliminated

enzymes as zero. Enzymatic parameters of known enzymes are based

on experimental values (Nelson, Rogowski, et al., 2017), whereas the

rest were inferred with the optimization methodology. In brief, the

genetic algorithm evolves a population of individuals, each re-

presenting a set of parameters in the model. For each generation, the

individuals in the population are selected, crossed, mutated, simulated

and their fitness scored. This iterative process runs until no better

model is found for 1000 generations. To improve performance and

preserve genetic diversity, the population follows an island distribu-

tion approach (Whitley, Rana, & Heckendorn, 1999) with 32 parallel

subpopulations with 64 individuals each; every 1000 generations the

islands are randomly paired and their individuals shuffled. Cross‐over
produces new individuals by randomly combining two existing ones,

mutations randomly change the parameters of an individual, each with

1% probability, following a uniform distribution, and selection chooses

the next population among the current and new individuals using a

deterministic crowding method (Mahfoud, 1992). Quotients involved

in enzyme production (h−1) have a range of (0, 109); quotients re-

presenting catalyst constant (h−1) or maximum velocity (g L−1 h−1)

degradation rates, uptake rates (g L−1 h−1), and saturation and inhibi-

tion constants (g L−1) have a range of (0, 106); specific coefficients of

expression rates (dimensionless), specific rate of cell biomass to

glucose (g L−1), and decay rate (h−1) have a range of (0, 1). The initial

population consists of individuals with uniform random parameters

within their range. The fitness of an individual represents its ability to

recapitulate the training data set of microbial growth experiments,

calculated as the normalized root mean square error averaged among

all the curves and experiments in the data set with
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where M is the number of training experiments, Ni is the number of

experimental curves (either metabolites or cell biomass concentra-

tions) in experiment i, Pi j, is the number of data points in curve j in

experiment i, and yi j k, , , ŷi j k, , , ŷi j, ,max , and ŷi j, ,min are the predicted, ex-

perimental, maximum, and minimum data point k , of curve j, in ex-

periment i , respectively. The simulation, optimization, visualization,

and statistical algorithms were implemented in C++ using the

Standard, Eigen (http://eigen.tuxfamily.org), Qt (The Qt Company

Ltd.), and Qwt (Uwe Rathmann and Josef Wilgen) libraries.

2.3 | Data analysis

The coefficient of determination (R2) was implemented between the

experimental data and the model's predictions to evaluate its pre-

cision. A value closer to 1 indicates a higher correlation and that the

resulting model simulation can accurately describe the experimental

data. Growth rates of in vivo experiments averages and in silico

simulations were computed as in (Hall, Acar, Nandipati, & Barlow,

2014) with a 3‐h window. Cellobiose‐specific degradation rates were

calculated in the midpoint of the exponential phase as determined in

the growth rate computation.
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3 | RESULTS

3.1 | Mathematical model of microbial growth and
enzymatic activity

We developed a kinetic model of C. japonicus growth in batch culture

including enzyme expression and substrate uptake, degradation, and

conversion to cell biomass. The model includes the metabolites glu-

cose and cellobiose (both intra‐ and extracellular), β‐glucosidase
enzymes (including intracellular Cel3A and Cel3B (Nelson, Rogowski,

et al., 2017) and other β‐glucosidases lumped together as either

intra‐ or extracellular enzymes), and cell biomass concentration.

Figure 1 shows a diagram of the cell with the components and

reactions included in the model.

When degraded extracellularly, cellobiose is converted to glu-

cose by secreted β‐glucosidases following Michaelis–Menten kinetics

such that

v
e c

K c
,cge

cge e e

cge e

β
=

⋅ ⋅

+
(2)

where νcge is the velocity of the extracellular conversion of cellobiose

into glucose, ce is the concentration of extracellular cellobiose, ee is

the concentration of extracellular β‐glucosidases lumped together,

cgeβ is the specific rate, and Kcge is the saturation constant.

Similarly, intracellular cellobiose is degraded to glucose by in-

tracellular β‐glucosidases, including Cel3A, Cel3B, and others lumped

together following Michaelis–Menten kinetics, resulting in
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where vcgi is the combined reaction velocity and vcgCel A3 , vcgCel B3 , and vcgo

are the reaction velocities for each particular enzymatic reaction,

Cel3A, Cel3B, and eiare the intracellular concentration of Cel3A, Cel3B,

and other β‐glucosidases lumped together, respectively, ciis the con-

centration of intracellular cellobiose, cgiCel A3β , cgiCel B3β , and cgoβ are the

specific rates, and KcgiCel A3 , KcgiCel B3 , and Kcgo the saturation constants.

Uptake kinetics are modeled with facilitated diffusion, since

genomic analyses of C. japonicus have shown a lack of phospho-

transferase systems (PTS) for utilization of cellobiose or glucose, as it

is the case in the pseudomonads family (Rojo, 2010) and other ob-

ligate aerobes (Riemann & Azam, 2002). In this way, both extra-

cellular cellobiose and extracellular glucose are uptaken by the cell

with an inhibition term to model the kinetics of facilitated diffusion,

resulting in
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where vuc and vug are the uptake rates of cellobiose and glucose,

respectively, ge and gi are the concentrations of extracellular and

intracellular glucose, respectively, ucβ and ugβ are the maximum rates,

Kuc and Kug are the saturation constants, and Kic and Kig are the

inhibition constants.

Intracellular glucose is degraded into cell biomass precursors,

which is modeled as a lumped reaction based on Michaelis–Menten

kinetics such that

e g

K g
v ,gb

gb b i

gb i

β
=

⋅ ⋅

+
(5)

where vgb is the degradation velocity, eb are the lumped enzymes, gbβ

is the specific rate, and Kgb is the saturation constant.

The specific microbial growth rate μ depends on the degradation

velocity of intracellular glucose, resulting in

K v ,u gbμ = ⋅ (6)

where Ku is a lumped conversion constant from glucose to biomass,

an approach previously used to model the specific microbial growth

F IGURE 1 Diagram of the proposed model for Cellvibrio japonicus
growth, β‐glucosidases expression and activity, and uptake and
degradation of cellobiose and glucose. Extracellular cellobiose (ce)
is either degraded at rate vcge to extracellular glucose (ge) by
β‐glucosidase enzymes lumped together (ee) secreted at rate vee

or uptaken into the cell at rate vuc as intracellular cellobiose (ci).
Extracellular glucose is uptaken into the cell as intracellular glucose
(gi) at rate vug . Intracellular cellobiose is degraded to intracellular
glucose by Cel3A, Cel3B, and other lumped intracellular
β‐glucosidases (e )i at rate vcgi. Intracellular glucose is then converted
into cell biomass (b) at specific growth rate μ by a reaction involving
multiple enzymes lumped together (eb). Dashed oval represents the
bacterial cell
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rate from production rates of intracellular metabolites (Jahan,

Maeda, Matsuoka, Sugimoto, & Kurata, 2016; Kadir, Mannan,

Kierzek, McFadden, & Shimizu, 2010; Kurata & Sugimoto, 2018).

The rate of cell biomass concentration includes also a decay

term, resulting in

db
dt

b K b,dμ= ⋅ − ⋅ (7)

where b is the concentration of cell biomass and Kd is the decay

constant.

Enzymes are expressed depending on the intracellular con-

centration of their respective substrates and modulated by the

concentration of intracellular glucose, which acts as a proxy for the

available energy in the cell such that

v
g

K g
,eb

eb i

eb i

β
=

⋅

+

v
c g

K c
,Cel A

Cel A i i

Cel A i
3

3

3

β
=

⋅ ⋅

+

v
c g

K c
,Cel B

Cel B i i

Cel B i
3

3

3

β
=

⋅ ⋅

+

v
c g

K c
,ei

ei i i

ei i

β
=

⋅ ⋅

+

v
c g

K c
,ee

ee i i

ee i

β
=

⋅ ⋅

+
(8)

where veb, vCel A3 , vCel B3 , vei, vee are the velocities of expression of the

lumped biomass precursor enzymes, Cel3A, Cel3B, other internal

β‐glucosidases, and the secreted β‐glucosidases, respectively, ebβ ,

Cel A3β , Cel3Bβ , eiβ , and eeβ are the specific rates, and Kei , KCel A3 , KCel B3 ,

Kei , and Kee are the saturation constants.

The intracellular enzymatic concentrations are diluted due to the

collective cell volume increase during microbial growth, resulting in

de
dt

K v e ,i
gei ei iμ= ⋅ − ⋅

de
dt

K v e ,b
geb eb bμ= ⋅ − ⋅

dCel A
dt

K v Cel A
3

3 ,gCel A Cel A3 3 μ= ⋅ − ⋅

dCel B
dt

K v Cel B
3

3 ,gCel B Cel B3 3 μ= ⋅ − ⋅ (9)

where Kgei, Kgeb, KgCel A3 , and KgCel B3 are the specific coefficients of the

expression rates. The model omits enzyme degradation terms as a

simplification due to the long half‐life of bacterial β‐glucosidases
(Goswami, Gupta, & Datta, 2016; Mehmood, Shahid, Hussain, Latif, &

Rajoka, 2014; Meng, Ying, Zhang, Lu, & Li, 2015) compared to the

short duration (24 h) of the growth experiments.

Extracellular and intracellular rates of uptaken metabolites and

secreted enzymes are converted with a factor of ρ grams of dry cell

weight/L of cell volume, estimated to be 564 gDCWL−1 as used before

(Chassagnole, Noisommit‐Rizzi, Schmid, Mauch, & Reuss, 2002;

Jahan et al., 2016; Kurata & Sugimoto, 2018), such that

v v
b

,ug medium ug,
ρ

= ⋅

v v
b

,uc medium uc,
ρ

= ⋅

v v
b

,ee medium ee,
ρ

= ⋅ (10)

where vug,medium and vuc,medium are the uptake rates in media con-

centration of glucose and cellobiose, respectively, and vee,medium is the

secretion rate in media concentration of lumped extracellular

β‐glucosidases.
The rate of extracellular enzymatic concentration of lumped

extracellular β‐glucosidases is hence

de
dt

K v ,gee ee medium
e

,= ⋅ (11)

where Kgee is the specific coefficient of expression rate.

The mass balance equations for external and internal cellobiose

are hence given by

dc
dt

v v ,e
uc medium cge,= − −

dc
dt

v v c .i
uc cgi iμ= − − ⋅ (12)

And the mass balance equation for external glucose takes

the form

dg
dt

v v1.053 .e
cge ug medium,= ⋅ − (13)

The mass balance equation for internal glucose also includes

depletion terms to account for the production of enzymes, result-

ing in

dg
dt

v v1.053 ,i
cgi ug= ⋅ +

v v v v v v g .gb ee ei eb Cel A Cel B i3 3 μ− − − − − − − ⋅ (14)

3.2 | Parameter estimation results

The enzymatic parameters of Cel3A and Cel3B were obtained ex-

perimentally (Nelson, Rogowski, et al., 2017) and the rest of the

parameters in the model were inferred computationally. We devel-

oped an inference methodology based on genetic algorithms—an

heuristic optimization approach popular for the optimization of
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metabolic models (López‐Pérez, Puebla, Velázquez Sánchez, &

Aguilar‐López, 2016; Neto, Dos Reis Garcia, Rueda, & Da Costa,

2013; Shadbahr, Zhang, Khan, & Hawboldt, 2018)—and a dynamic

simulator of metabolic models including multiple substrates and gene

deletions. We employed this algorithm to infer a single set of para-

meters that could recapitulate the microbial growth and metabolite

changes from a series of batch cultures that used different carbon

sources for both wild‐type and mutant strains. The training data set

consisted of growth experiments from wild‐type C. japonicus and

β‐glucosidase gene deletion strains grown in media containing either

glucose or cellobiose as the sole carbon source. The algorithm

evolves in silico a population of models (set of real‐valued para-

meters) in an iterative process, where the best models are kept in the

population and produces new models by mixing and mutating ex-

istent ones. Each new model is simulated with the experimental

conditions of the training data set, which includes the measured

values of cell biomass and extracellular metabolite concentrations.

The remaining variables are initialized with a zero concentration

except for intracellular glucose, which starts at a conservative con-

centration of 0.01 g L−1. After a model is simulated, its growth and

metabolic dynamics are compared and scored with respect to the in

vivo experiments as the normalized root mean square error. The

algorithm stops after no improvement has been found for 1000

generations, and the model with the lowest error is returned.

To test the reproducibility of the inference algorithm, five in-

dependent evolutions were run, which took an average of 31 h each

F IGURE 2 Evolutionary optimization runs to infer the model
parameters from experimental data. A dynamic simulator and genetic
algorithm were implemented to infer unknown model parameters from a
training data set containing the growth and metabolic consumption
dynamics for wild‐type and β‐glucosidase gene deletion strains. The
graph shows the average normalized root mean square error of the best
individual in the population among five independent evolutionary runs.
The best‐optimized set of parameters among the five evolutions (error of

0.072) was used for the reported model. The shaded area represents
standard deviation [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Parameter values of the model, all computationally
inferred except the enzymatic parameters of β‐glucosidases Cel3A
( cgiCel A3β , KcgiCel A3 ) and Cel3B ( cgiCel B3β , KcgiCel B3 ) that were inferred in
vitro (Nelson, Rogowski, et al., 2017), and the specific weight of
biomass ρ from Chassagnole et al. (2002)

Parameter Equation Value

cgeβ (2) 5.04 × 105 h−1

Kcge (2) 3.29 × 105 g L−1

cgiCel A3β (3) 7.02 × 103 h−1

KcgiCel A3 (3) 0.62 g L−1

cgiCel B3β (3) 3.23 × 105 h−1

KcgiCel B3 (3) 0.51 g L−1

cgoβ (3) 7.04 × 105 h−1

Kcgo (3) 1.93 × 104 g L−1

ucβ (4) 5.77 × 105 g L−1 h−1

Kuc (4) 2.63 × 103 g L−1

Kic (4) 7.57 g L−1

ugβ (4) 1.00 × 106 g L−1 h−1

Kug (4) 5.08 × 103 g L−1

Kig (4) 5.97 × 105 g L−1

gbβ (5) 5.73 × 105 h−1

Kgb (5) 1.13 × 105 g L−1

Ku (6) 1.13 × 10−2 g−1 L

Kd (7) 3.84 × 10−3 h−1

ebβ (8) 9.95 × 108 g L−1 h−1

Keb (8) 3.08 × 105 g L−1

Cel A3β (8) 7.19 × 108 h−1

KCel A3 (8) 3.96 × 104 g L−1

Cel B3β (8) 1.00 × 109 h−1

KCel B3 (8) 1.58 × 104 g L−1

eiβ (8) 1.00 × 109 h−1

Kei (8) 7.53 × 104 g L−1

eeβ (8) 9.97 × 108 h−1

Kee (8) 1.55 × 105 g L−1

Kgei (9) 6.88 × 10−2

Kgeb (9) 8.66 × 10−2

KgCel A3 (9) 6.49 × 10−3

KgCel B3 (9) 8.62 × 10−4

ρ (10) 564 gDCW L−1

Kgee (11) 0.59
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in a single computer node using 36 threads. Figure 2 shows the

average evolutionary dynamics of the five independent optimiza-

tions, which consistently resulted in a good inferred model with an

average error of 0.074 ± 0.001 SD. The model with the lowest error

(0.072) among the five runs is reported, and Table 1 shows the values

of all the parameters in the model.

3.3 | Parameter estimation experiments

3.3.1 | Dynamics of wild‐type strain growth in
glucose or cellobiose

The mathematical model with the inferred parameters was able to

recapitulate the growth dynamics and metabolic consumptions of

wild‐type C. japonicus grown in either glucose or cellobiose (Figure 3),

which resulted in very similar growth rates of 0.4 h−1 for the ex-

perimental and simulated data (Table 2). Figure 3a shows the in vivo

and in silico dynamics of cell biomass and metabolic consumption in

the wild‐type strain growing in glucose media. The model re-

capitulated the lag, exponential, and stationary phases of the cell

biomass concentration (red line) together with the dynamic extra-

cellular concentration of glucose (purple line), with an R2 of 0.978

(Table 3). Figure 3b shows how the same model and parameters also

recapitulated the cell biomass concentration and metabolic con-

sumption dynamics of the wild‐type strain in cellobiose media, in-

cluding the experimentally observed extracellular degradation of

cellobiose (yellow line) into glucose (purple line), with an R2 of 0.979

(Table 3).

3.3.2 | Dynamics of β‐glucosidase knockout strains
growth in glucose or cellobiose

Next, we performed growth experiments and model simulations in

single and double β‐glucosidase knockout mutants of C. japonicus

grown in either glucose or cellobiose (Figure 4). The model and

parameters were the same as in the wild‐type strain simulations

except for the knockout enzymes, which concentrations and rates

were set to zero to simulate enzyme gene deletions. Figure 4 shows

the in vivo and in silico dynamics in single and double C. japonicus

mutants grown in glucose or cellobiose media. The results demon-

strate that the knockouts of the β‐glucosidases cel3A or/and cel3B

had no effect on the bacterial growth dynamics in glucose media in

terms of cell biomass and metabolite consumption, a behavior that

the model recapitulated with an R2 of 0.99 for the three experiments

(Table 3). Indeed, the three mutant strains produced a similar growth

rate as the wild‐type strain (0.4 h−1; Table 2). When grown in
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F IGURE 3 Experimental and inferred model dynamics of wild‐type Cellvibriojaponicus growth, metabolite consumption, and β‐glucosidase
expressions in glucose or cellobiose media. The model simulation (solid lines for cell biomass and metabolites concentration; dashed lines for
enzyme concentrations) recapitulates the bacterial growth dynamics and extracellular concentrations of glucose and cellobiose metabolites
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cellobiose media, the Δcel3A strain resulted in the same growth

(0.4 h−1) and metabolite consumption dynamics as in the wild‐type as

recapitulated by the model with an R2 of 0.985 (Figure 4b). In con-

trast, the Δcel3B strain resulted in slower growth dynamics in cel-

lobiose media (0.36 h−1), a behavior that the model also recapitulated

with an R2 of 0.976 and a reduced growth rate of 0.33 h−1

(Figure 4d). Interestingly, the double knockout Δcel3A Δcel3B strain

in cellobiose media resulted in the slowest growth dynamics

(0.27 h−1), as the model also recapitulated with an R2 of 0.996 and

growth rate of 0.22 h−1 (Figure 4f).

The mechanistic model can explain the different growth dy-

namics of the mutants in terms of the higher expression of the dif-

ferent β‐glucosidases, which compensate for the effects of the gene

knockouts. Comparing the enzyme concentrations during growth in

cellobiose in the mutant Δcel3A strain (Figure 4b) with those in the

wild‐type (Figure 3b), the model showed no significant difference in

the concentration of Cel3B (dashed blue line) or other intracellular

β‐glucosidases (dashed orange line) due to the experimentally de-

rived high catalytic efficiency of Cel3B. In contrast, in the Δcel3B

strain growing in cellobiose (Figure 4d) the model showed an in-

creased concentration in both Cel3A (dashed green line) and other

β‐glucosidases (dashed orange line) to be necessary to compensate

for the loss of Cel3B. In the Δcel3A Δcel3B double mutant grown in

cellobiose (Figure 4f), the model showed a very large increase in

concentration of other β‐glucosidases (dashed orange line) with re-

spect the wild‐type, a behavior that was not enough to maintain a

high growth rate due to the predicted low efficiency of these

β‐glucosidases. In addition, the model predicted an accumulation of

extracellular glucose (purple solid line) proportional to the reduction

of growth rates in the mutant strains with cellobiose media due to

the cumulative activity of extracellular β‐glucosidases, which con-

centration was the highest in the Δcel3A Δcel3B double mutant

(Figure 4f).

3.4 | Predictive experiments

3.4.1 | Dynamics of wild‐type growth in glucose
and cellobiose mixed media

To test the predictive power of the model with the inferred para-

meters, a novel experiment with glucose and cellobiose mixed media

not included in the training data set was performed experimentally

and simulated with the model. Figure 5 shows the in vivo experi-

mental and corresponding model predicted growth dynamics in

mixed media of 0.125% glucose and 0.125% cellobiose for the wild‐
type strain of C. japonicus. The results showed non‐diauxic con-

current utilization of both glucose and cellobiose carbon sources

resulting in a single exponential growth phase, a behavior that the

TABLE 2 Growth rates of in vivo (average) and in silico experiments

Medium Strain In vivo growth rate (h−1) In silico growth rate (h−1)

0.25% Glucose Wild type 0.411 0.386

0.25% Glucose Δcel3A 0.424 0.396

0.25% Glucose Δcel3B 0.410 0.384

0.25% Glucose Δcel3A Δcel3B 0.411 0.396

0.25% Cellobiose Wild type 0.409 0.403

0.25% Cellobiose Δcel3A 0.414 0.396

0.25% Cellobiose Δcel3B 0.361 0.331

0.25% Cellobiose Δcel3A Δcel3B 0.267 0.219

0.125% Glucose/0.125% Cellobiose Wild type 0.416 0.405

0.125% Glucose/0.125% Cellobiose Δcel3A – 0.381

0.125% Glucose/0.125% Cellobiose Δcel3B – 0.337

0.125% Glucose/0.125% Cellobiose Δcel3A Δcel3B – 0.238

TABLE 3 Coefficients of determination comparing the dynamics
of cell biomass and extracellular metabolic concentrations between
in vivo (average) and in silico experiments

Medium Strain

Coefficient of

determination (R2)

0.25% Glucose Wild type 0.978

0.25% Glucose Δcel3A 0.994

0.25% Glucose Δcel3B 0.997

0.25% Glucose Δcel3A Δcel3B 0.997

0.25% Cellobiose Wild type 0.979

0.25% Cellobiose Δcel3A 0.985

0.25% Cellobiose Δcel3B 0.976

0.25% Cellobiose Δcel3A Δcel3B 0.996

0.125% Glucose/

0.125% Cellobiose

Wild type 0.938
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model correctly predicted with an R2 of 0.938 (Table 3). Remarkably,

the model predicted a growth rate in the mixed media (0.405 h−1)

that closely mirrored the growth rate observed experimentally

(0.416 h−1). Furthermore, the model predicted glucose concentration

levels to be slightly higher than cellobiose levels in the media during

the exponential growth phase, a phenomenon that was experimen-

tally observed as well. Finally, the model predicted a slight decrease

in the concentration levels of β‐glucosidase enzymes in the mixed

media (Figure 5, dashed lines) with respect to the single cellobiose

carbon source (Figure 3B, dashed lines) due to the decreased con-

centration levels of extracellular cellobiose in the mixed media.

3.4.2 | Dynamics of β‐glucosidase knockout strains
growth in glucose and cellobiose mixed media

Next, we used the model to predict the growth dynamics of C. ja-

ponicus single and double β‐glucosidase mutant strains in glucose and

cellobiose mixed media conditions. Figure 6 shows the predicted

dynamics in the single and double mutants of Δcel3A and Δcel3B,

resulting in similar decreases in growth rates as the same mutants

growing in cellobiose as a single substrate (Table 2). Interestingly, the

model predicted a substantial increase in the concentrations of glu-

cose in the media with respect to cellobiose in the Δcel3B strain

(Figure 6b) due to the combined effect of slower growth dynamics

and unaffected extracellular cellobiose degradation. This phenom-

enon was not observed in the Δcel3A strain (Figure 6a), which ex-

hibits the same dynamics as the wild‐type strain growing in mixed

media (Figure 5), but was exacerbated in the Δcel3A Δcel3B double

mutant (Figure 6c), since the growth rate was slower than in the

single mutants. Similar to the growth of the Δcel3A and Δcel3B

single gene deletion strains in cellobiose‐only media (Figure 4), the

knockout of cel3A did not result in a significant increase in the

concentration of the enzymes (Figure 6A, dashed lines), but a

knockout of the cel3B gene resulted in higher concentration levels of

Cel3A and other intracellular β‐glucosidases (Figure 6B, green and

orange dashed lines, respectively). The concentrations of other in-

tracellular β‐glucosidases reached the highest value in mixed media

growth for the Δcel3A Δcel3B double mutant strain (Figure 6C, or-

ange dashed line), although this concentration was lower than during

the growth in cellobiose‐only media (Figure 4f).

3.5 | Design strategies for maximizing cellobiose‐
specific degradation rate

The proposed kinetic model can be employed to design strategies for

industrially relevant genetic strains of C. japonicus. In particular,

maximizing the cellobiose‐specific degradation rate represents an

optimization strategy towards the efficient production of value‐
added metabolites derived from lignocellulose, such as ethanol or

succinate. Towards this, the model can predict the cellobiose‐specific
degradation rate under any combination of deletion and over-

expression of the relevant enzymes. We simulated all combinations

of one and two genetic perturbations, including deletions and med-

ium and high overexpression, for all β‐glucosidase genes in the

model. Figure 7 shows the specific degradation rate of cellobiose
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F IGURE 5 Model prediction and experimental validation of non‐
diauxic growth, metabolite consumption, and β‐glucosidase
expressions in mixed glucose and cellobiose media. The model
simulations (solid lines for cell biomass and metabolites
concentration; dashed lines for enzyme concentrations) predict the
non‐diauxic growth dynamics of wild‐type Cellvibriojaponicus in a
mixed media containing both 0.125% (wt/vol) glucose and 0.125%
(wt/vol) cellobiose as carbon sources. The predicted cell biomass and
metabolite dynamics were validated in vivo (dots). Inset graphs show
a zoom‐out of concentration profiles. Error bars indicate standard
deviation from biological triplicate experiments [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 4 Experimental and inferred model dynamics for cell growth, metabolite consumption, and β‐glucosidase expressions of deletion
mutants grown with either glucose or cellobiose media. The model simulations (solid lines for cell biomass and metabolites concentration;
dashed lines for enzyme concentrations) recapitulates the experimental Cellvibriojaponicus growth dynamics (dots) in single and double mutants
in media containing either cellobiose or glucose as the sole carbon sources. (a,b) Growth dynamics of a Δcel3A mutant in 0.25% (wt/vol) glucose
(a) or 0.25% (wt/vol) cellobiose (b). (c,d) Growth dynamics of a Δcel3B mutant in glucose (c) or cellobiose (d). (e,f) Growth dynamics of a Δcel3A
Δcel3B double mutant in glucose (e) or cellobiose (f). Inset graphs show a zoom‐out of concentration profiles. Error bars indicate standard
deviation from biological triplicate experiments [Color figure can be viewed at wileyonlinelibrary.com]
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obtained for each of the perturbation combination simulations, to-

gether with the baseline rate obtained in the wild‐type strain. The

results show that Cel3B and the extracellular β‐glucosidases have

the highest impact on the cellobiose‐specific degradation rate. In

particular, the best‐predicted strategy for maximizing the cellobiose‐
specific degradation rate is the deletion of the cel3B gene together

with a high overexpression of the extracellular β‐glucosidases genes.
This mutant strain is predicted to result in a 3.8‐fold increase in

cellobiose‐specific degradation rate with respect to the wild‐type
strain. Future work will engineer these strains in vivo towards the

validation of these results and the study of their feasibility for spe-

cific bioengineering applications.

4 | DISCUSSION

We presented here a combined in vivo and in silico approach for

developing a Cellvibrio japonicus kinetic model that mechanistically

accounts for (i) bacterial growth dynamics, (ii) metabolite consump-

tion, and (iii) genetic knockouts of key enzymes. The proposed model

consisted of a set of ODEs utilizing Michaelis–Menten kinetics for

the metabolic reactions in addition to specific terms for the uptake of

metabolites into the cell, expression, secretion, and dilution of dif-

ferent β‐glucosidase enzymes, and cell biomass growth. The kinetic

parameters of the known β‐glucosidases were derived from in vitro

enzymatic experiments. To infer the unknown parameters, we de-

veloped a computational methodology based on genetic algorithms

that takes as input the growth dynamics and metabolic concentra-

tions from in vivo experiments with both wild‐type and mutant

strains to infer a parameter set able to recapitulate the bacterial

growth dynamics and metabolic consumptions during the lag, ex-

ponential, and stationary phases under multiple substrates and ge-

netic backgrounds.

The model with the single set of inferred parameters could

account for the dynamics of cellobiose degradation and glucose
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F IGURE 6 Model predictions of growth, metabolic consumption,
and β‐glucosidase expression for gene deletion strains in mixed
glucose and cellobiose media. The model simulation (solid lines for
cell biomass and metabolites concentration; dashed lines for enzyme
concentrations) predicts the growth dynamics for mutant
Cellvibrio japonicus strains in media containing both 0.125% (wt/vol)
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utilization experimentally obtained in wild‐type and gene‐
knockout mutants of C. japonicus. The inferred model re-

capitulated all the experimental dynamics in terms of cell

biomass and metabolite concentrations for all the experiments in

the training data set. In addition, the model simulation showed

how the concentration levels of the β‐glucosidases are modu-

lated during the knockouts. In the case of Cel3A, despite a low

catalytic efficiency for cellobiose (as obtained in vitro), it had an

increased concentration in a Δcel3B strain, which accounts for

the minimal decrease in cell growth rate. In contrast, Cel3B has a

high catalytic efficiency for cellobiose and therefore its con-

centration was not increased in a Δcel3A strain. The Δcel3A

Δcel3B double mutant displayed a very high increase in other

intracellular β‐glucosidase concentration, but due to their pre-

dicted low catalytic efficiency the cell growth rate was still se-

verely reduced. Future work will generate and analyze

metabolite and proteomics data from the mutant strains to fur-

ther validate the model predicted dynamics for enzyme secre-

tions and nutrient concentrations.

The predictive power of the inferred model was tested with a

growth experiment of the wild‐type strain with mixed glucose and

cellobiose media. The model predicted non‐diauxic growth with a

simultaneous consumption of both carbon sources, which was indeed

validated in vivo. In addition, further predictions were presented for

the growth in mixed glucose and cellobiose media for the

β‐glucosidase mutant strains. Our results indicated a decreased

growth rate similar to the cellobiose media growth dynamics and a

decreased cellobiose concentration with respect to glucose for the

Δcel3A Δcel3B double mutant. Finally, a design strategy to maximize

the specific degradation rate of cellobiose in C. japonicus was derived

from the model. The analysis predicted that a mutant strain with a

deletion of the cel3B gene together with a high overexpression of the

extracellular β‐glucosidases genes resulted in a substantial increase

in cellobiose‐specific degradation rate with respect the wild‐type
strain. These analyses show the capacity of the proposed model to

guide the design of industrially relevant optimizations that would be

essential for the production of value‐added metabolites derived from

lignocellulose.

5 | CONCLUSION

The presented methodology can provide insights into the kinetic

relationships of different enzymes during the degradation of carbo-

hydrates in microorganisms, and further modeling extensions and

pathway analysis tools can include detailed information regarding

the regulatory dynamics of the essential enzymes (Hari & Lobo,

2020; Koutinas et al., 2011; Tsipa, Koutinas, Usaku, & Mantalaris,

2018). The study of cellulose degradation and associated enzymes

could have significant implications in the development of efficient

cellulose bioconversion into renewable fuels and chemicals

(Martien & Amador‐Noguez, 2017). C. japonicus shows incredible

F IGURE 7 Model predictions of cellobiose‐
specific degradation rates for β‐glucosidase
gene deletions and overexpressions. Model
simulations of Cellvibrio japonicus growth in
0.25% (wt/vol) cellobiose media with single
and double β‐glucosidase gene perturbations,
including knock‐out (Δ), medium (↑), or high
(⇑) overexpression levels, predict the specific
degradation rates of cellobiose (g cellobiose/
(g cell biomass ∙ h)). Gene perturbations are
simulated by multiplying the specific rates of
Cel3A, Cel3B, other internal β‐glucosidases,
and the secreted β‐glucosidases ( Cel A3β , Cel B3β ,

eiβ , and eeβ , respectively) by zero (knock‐out),
2 (medium overexpression), and 10 (high
overexpression). The specific degradation rate
of cellobiose in the wild‐type strain simulation
is shown for comparison [Color figure can be

viewed at wileyonlinelibrary.com]
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potential as a model organism for research with its ability to com-

pletely degrade lignocellulose and other polymeric materials. The

methodology and model presented in this study is the first step to-

wards developing a comprehensive metabolic and regulatory net-

work for the degradation of lignocellulose in C. japonicus, paving the

way for the comprehensive understanding of polysaccharide utili-

zation dynamics by microorganisms.
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