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Abstract

The compact direct flux reconstruction method (CDFR) for conservation laws utilizes techniques from compact
finite difference methods to directly approximate spatial derivatives of fluxes within standard elements. The
CDFR scheme is a compact high-order method family which can be efficiently parallelized for high performance
computing. In the present study, a parallel performance study of the 3rd-order CDFR scheme with a 3rd-order
explicit Runge-Kutta scheme is conducted. The inviscid isentropic vortex propagation problem is adopted as a
test case. The numerical performance studies have demonstrated that the CDFR method can efficiently solve
conservation laws. The parallel performance study shows excellent observed speedup and efficiency. A comparison
between different partition approaches of the mesh also demonstrates that optimized communication between
processes can improve the parallel performance.

1 Introduction

Computational fluid dynamics (CFD) can be time-consuming especially when it comes to turbulence simulations.
The diversities of both temporal and spatial scales result in small mesh size and time step size to capture the turbulent
structures. In terms of both hardware and time cost, it is inevitable to make use of high performance computing
in CFD. In terms of numerical methods, we also want develop high-accuracy methods [1] which can be efficiently
parallelized for high performance computing.

First proposed by Huynh [2, 3], the flux reconstruction/correction procedure via reconstruction (FR/CPR)
method has demonstrated its capacity to handle complex flow problems on unstructured meshes [4]. Correction
functions are essential for original FR/CPR schemes. With k solution points, if only Lagrange interpolation is used,
a flux polynomial of degree (k − 1) can be obtained. Hence, the spatial flux derivatives can only reach (k − 1)st-
order of accuracy. By correcting the local fluxes with correction functions of degree k (or equivalently, a kth-order
correction of flux derivatives), the kth-order of accuracy can be recovered. Recently, Romero et al. [5, 6] proposed a
simplified FR/CPR, called direct flux reconstruction (DFR), which can obtain kth-order of accuracy schemes without
correction functions. Instead, direct polynomial fitting involving all k solution points and 2 flux points within an
element is used. The compact direct flux reconstruction method (CDFR) [7] utilize the techniques of compact finite
difference schemes [8] within an elements and directly approximate the spatial derivatives of fluxes within an ele-
ments. Compared to DFR, the reconstruction of flux polynomials is implicit, i.e., the spatial derivatives are obtained
under the premise that there exist corresponding differentiable flux polynomials. It is observed that the flexibility
to recover different methods of the CDFR method is hindered compared to the original FR/CPR method, due to
the fact that only Gaussian points within the standard element can assure CDFR schemes stable and no correction
functions are used. However, the CDFR method needs less calculation to obtain the spatial derivatives than the
FR/CPR method. This fact potentially makes CDFR to be more efficient.

In the present study, the two dimensional (2D) Euler equation is solved. The CDFR methods are employed for
the spatial discretization and the 3rd-order three stage Runge-Kutta scheme is used for temporal discretization. The
parallel performance study is conducted on the HPCF2013 portion of the maya cluster, the UMBC High Performance
Computing Facility (HPCF). HPCF2013 has 72 nodes. Every node has two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20
MB cache), processors with eight cores apiece, i.e., 16 cores per node. For HPCF2013, a high performance quad data
rate (DQR) InfiniBand (IB) interconnect, termed as IB-QDR, connects all nodes. Ideally the system can achieve a
latency of 1.2 µs to transfer a message between two nodes, and can support a bandwidth of up to 40 Gbps (Gigabits
per second). All nodes are running Red Hat Enterprise Linux 6.4. g++ (GCC) 4.8.4 with Intel(R) MPI Library
for Linux* OS, 64-bit applications, Version 5.0 Update 3 Build 20150128 is used as the compiler. The -std=c++11

compiler option is chosen to make use of the C++11 standard of C++ programming language.
The remainder of this report is organized as follows. Section 2 gives a brief introduction of the CDFR method.

Then Section 3 elaborates the 2D Euler equation and explains how to extend CDFR to solve the 2D Euler equation.
In Section 4, we discuss the parallel implementations. Section 5 demonstrates the numerical results and the parallel
performances study. The last section draws conclusions for the present study.
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Figure 2.1: Illustration of the l.h.s. and three r.h.s. stencils used in the 3rd-order CDFR scheme.

2 A Brief Introduction of the Compact Direct Flux Reconstruction
Method

Consider the one-dimensional (1D) conservation law,

∂u

∂t
+
∂f

∂x
= 0, (2.1)

defined on the space-time domain Ω× [0,+∞).
When the CDFR method is employed to solve (2.1), the spatial domain Ω is divided into N non-overlapping

intervals Ωj , j = 1, 2, ..., N . The reconstruction of the CDFR method is conducted within the standard element. In
the present study, the physical element Ωj , x ∈ [xj−1/2, xj+1/2] is projected onto a standard element ξ ∈ [−1, 1]. For
this coordinate transformation,

fx = fξξx, ξx = ∆ξ/∆x,∆ξ = 2. (2.2)

Since the reconstruction of derivatives is conducted with respect to ξ, the subscript of coordinate in the spatial
derivatives is neglected in the followings. The kth-order CDFR method makes use of k Gauss points(solution points)
ξi, i = 1, 2, . . . , k and two ending points(flux points), ξL/R = −1/1, within the standard element. L and R are the
left ending point and right ending point respectively. The utilization of the ending points assures the conservation
of the method. For simplicity of notation, we use i = 1, 2, . . . , k as the index of spatial derivative on the solution
points, such as f ′i and i = L, 1, 2, . . . , k, R for flux on all the points, such as fi. A kth-order finite difference scheme
within the standard element (in terms of spatial derivatives of Gauss points i, i = 1, 2, . . . , k) can be expressed as

l=k∑
l=1

αlf
′
l =

1

∆ξ

r=i+1∑
r=i−1

βrfr +O(ξki ). (2.3)

Note that in the left hand side (l.h.s.) of (2.3) all the Gauss points are involved and in the right hand side (r.h.s.)
only three consecutive points are involved. And for the right hand hand side, there will be k optional stencils, such
as r = {L, 1, 2}, {1, 2, 3}, . . . , {k − 1, k, R}. As illustrated in Figure 2.1, in each element Ωj , taking three solution
points ξi, i = 1, 2, 3, as an example, the l.h.s. of (2.3) will always have a three-point stencil f (ξi) , i = 1, 2, 3. For the
r.h.s., there will be three stencils. Specifically, these three discretization formulas can be expressed as follows:

α11f
′
1 + α12f

′
2 + α13f

′
3 = 1

∆ξ (β1Lfcom,L + β11f1 + β12f2),

α21f
′
1 + α22f

′
2 + α23f

′
3 = 1

∆ξ (β21f1 + β22f2 + β23f3),

α31f
′
1 + α32f

′
2 + α33f

′
3 = 1

∆ξ (β32f2 + β33f3 + β3Rfcom,R),

(2.4)

where fcom,L and fcom,R are common fluxes at left(L) and right(R) interfaces of Ωj , respectively. For αli, βlj , i, l =
1, 2, 3, j = L, 1, 2, 3, R, as mentioned above, Taylor expansion can be used to obtain their values. To be more specific,
taking stencil l = 1 as an example, the coefficients of f (n)s on each side should be consistent up to n = 4. Thus, we
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can formulate a linear system for the first stencil as
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α11

α12

α13

β1L

β11

β12

 =


0
0
0
0
0
1

 , (2.5)

where the 6th equation is the restriction
∑i=3
i=1 α1i = 1 to avoid trivial solutions. Note that ξL = −1 and ξR = 1.

Here we use
M1C1 = B (2.6)

to represent the linear system (2.5). Similar forms for the second and third stencils in (2.4) can be formulated. As
a result, the linear systems used to obtain the coefficients in (2.4) can be expressed as follows:

M1C1 = B,

M2C2 = B,

M3C3 = B.

. (2.7)

By solving (2.7), we can obtain all the coefficients αli, βlj , i, l = 1, 2, 3, j = L, 1, 2, 3, R. Finally, (2.4) can be rewritten
as

f ′ =
1

∆ξ
α−1βf̃ . (2.8)

where α is a 3× 3 matrix and β is a 3× 5 matrix,

α =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 , f ′ =

f ′1f ′2
f ′3

 , (2.9)

β =

β1L β11 β12 0 0
0 β21 β22 β23 0
0 0 β32 β33 β3R

 , f̃ =


fcom,L
f1

f2

f3

fcom,R

 . (2.10)

A common flux solver which satisfies physical conservation laws must be employed to reconstruct the common fluxes
on interfaces. For (2.1), an upwind Riemann solver is preferred. For example, the Roe Riemann solver or Rusanov
Riemann solver can be adopted for Euler equations. Particularly, for the 1D first-order wave equation (i.e., f = cu
with c a constant in (2.1)), the left common flux of the current element Ωj can be expressed as

f jcom,L =

{
f j−1
R , if c > 0,

f jL, if c < 0.
(2.11)

Since the common flux solver involves neighboring elements, we introduce superscript ‘j’ to denote the jth element.
Lagrange interpolation is used to obtain local fluxes f jL and f jR on interfaces as follows

f jL/R =

3∑
i=1

 3∏
l=1,l 6=i

ξL/R − ξl
ξi − ξl

 f ji

 , ξL/R = −1/1. (2.12)

To construct the arbitrary order CDFR method, the procedure is similar. See details in Ref. [7]. The analysis of
accuracy, stability, dissipation and dispersion properties of the CDFR method can also be found in Ref. [7].

3 Extension to the 2D Euler Equation

The 2D Euler equations can be expressed as

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= 0, (3.1)
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where

q =


ρ
ρu
ρv
E

 , f =


ρu

ρu2 + p
ρuv

(E + p)u

 , g =


ρu
ρuv

ρv2 + p
(E + p)v

 , (3.2)

ρ is the density, u and v are velocity components in x and y directions, respectively, p is the pressure and E is the
total energy. The pressure is related to the total energy by the perfect gas law,

E =
p

γ − 1
+

1

2
ρ(u2 + v2), (3.3)

with the ratio of specific heat γ = 1.4. After transforming (3.1) into the computational domain (i.e., the standard
element [−1, 1]× [−1, 1]) (ξ, η), we have

∂Q

∂t
+
∂F

∂ξ
+
∂G

∂η
= 0, (3.4)

where 
Q = |J |q,
F = |J |(fξx + gξy),

G = |J |(fηx + gηy),

(3.5)

and

J =
∂(x, y)

∂(ξ, η)
, |J | = xξyη − xηyξ. (3.6)

If no moving grids are involved, (3.4) can be rewritten as follows

∂q

∂t
+

1

|J |

(
∂F

∂ξ
+
∂G

∂η

)
= 0. (3.7)

On interfaces of quadrilateral elements, F and G in (3.5) can be rewritten as{
F = |J ||∇ξ|fn sign(n · ∇ξ),
G = |J ||∇η|fn sign(n · ∇η),

(3.8)

where

|∇ξ| = 1

|J |

√
x2
η + y2

η, |∇η| = 1

|J |

√
x2
ξ + y2

ξ , (3.9)

and n = (nx, ny) is the unit normal vector at the interface. The sign function is defined as

sign (a) =

{
1, if a > 0,

−1, if a < 0.
(3.10)

Herein, fn is the normal flux in the physical domain.

fn = fnx + gny. (3.11)

Note that common fluxes are always calculated in the physical domain, As a result, F com and Gcom can be expresses
as {

F com = |J ||∇ξ|f com,n sign(n · ∇ξ),
Gcom = |J ||∇η|f com,n sign(n · ∇η),

(3.12)

where f com,n is the common flux in n direction. f com,n is given as

f com,n =
1

2

(
fn,L + fn,R −R|Λ|R−1

(qR − qL)
)
. (3.13)

Given that the Jacobian matrix at the interface is ∂f
∂q nx + ∂g

∂qny, |Λ| is the diagonal matrix with absolute values
of averaged eigenvalues and R is a matrix whose columns are the corresponding averaged eigenvectors. Herein, the
Roe average is used to calculate R, R−1, and |Λ|. The subscripts ‘L’ and ‘R’ denote the left side and right side of
the current interface, respectively. Note that the ‘L’ side of the interface is always the current element.
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After the transformation, the CDFR method can be used in a dimension by dimension sense for the spatial
derivatives in (3.7). For temporal discretization of (3.7), the third-order three-stage strong stability-preserving
Runge-Kutta scheme (SSPRK3) [9] is used, which can be written as

q(1) = qn + ∆tL(qn),

q(2) = 3
4q

n + 1
4q

(1) + 1
4∆tL(q(1)),

qn+1 = 1
3q

n + 2
3q

(2) + 2
3∆tL(q(2)),

(3.14)

where L(q) = − 1
|J|

(
∂F
∂ξ + ∂G

∂η

)
, subscript ‘n’ denotes the current time step and ‘n+ 1’ denotes the next time step.

4 Parallel Implementation for Unstructured Grids

Unlike structured grids, unstructured girds require the connectivity of different elements in the entire domain. In
most cases, the neighboring elements of element m will not be m − 1 or m + 1. The partitioning of unstructured
grids for parallel computing needs special intention. A number of softwares have been developed for the partition of
unstructured grids [10]. In the present study, the domain of the test case is a square and the CDFR method only works
on quadrilateral elements. The entire domain is uniformly divided into N ×N non-overlapping elements. Therefore,
we can manually and uniformly divide the domain based on the number of processes is used. For complicated
geometries and meshes, we can seek help from well-developed softwares [10]. Different partition approaches are
tested in this report, i.e., dividing the mesh in only x direction and dividing the mesh in both x and y directions
(always divide the mesh in x direction into more parts when the number of processes is not the square of any integer).
As illustrated in Figure 4.1, if dividing the mesh in both x and y direction, taking eight processes as an example, on
each process, connectivity information of the local unstructured mesh is stored as well as the connectivity information
with respect to elements in neighboring processes. Simply from a geometric sense, when the mesh is divided in both
x and y directions, the total communication cost will be lower that only dividing the mesh in x direction with the
same number of processes. In the procedure of the CDFR methods, when calculating the common fluxes, information
from neighboring cells are required. To be more specific, the elements that contains the surfaces shared by different
processes need the information from other processes. Thus, we can treat these shared faces as ones that have special
boundary conditions regarding the parallel mesh-partition. As for the communication between different processes,
we wrap up the information on all the shared faces and use MPI_Send() and MPI_Recv() to send and receive them
together. Since the feature of unstructured grids also exists in these shared faces, we need use blocking send and
receive MPI commands which can make sure all the shared-boundary information are received before calculating the
spatial derivatives in the local mesh on each process. Besides, MPI_Allreduce() is used for the calculation of global
error and global residual.

5 Numerical Results and the Performance Study

In this session, an irentropic vortex propagation case is used to study the numerical performance and parallel
performance of the CDFR scheme. The isentropic vortex propagation describes the superposition of an isentropic
vortex of strenth Γ and an uniform flow of velocities u∞ and v∞. The exact solution of the vortex propagation when
t < 9 can be given as [5] 

ρexact = (1− Γ2(γ−1)
8γπ2 e2f )

1
γ−1 ,

uexact = u∞ − Γ(y−y0)
2π ef ,

vexact = v∞ + Γ(x−x0)
2π ef ,

pexact = (1− Γ2(γ−1)
8γπ2 e2f )

γ
γ−1 ,

(5.1)

where 
f = 1

2

(
1− (x− xc)2 − (y − yc)2

)
,

xc = x0 + u∞t,

yc = y0 + v∞t.

(5.2)

Herein, (xc, yc) is the position of the vortex center. For this case, we set Γ = 5, u∞ = v∞ = 1. At t = 0, the vortex
center is at (x0, y0) = (0, 0). The domain Ω is [−10, 10] × [−10, 10]. Periodic boundary conditions are used for all
four boundaries.
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Figure 4.1: The mesh partition in both x and y directions for the square domain when 8 processes are used in parallel
computing.

5.1 The Grid Refinement Study and the Polynomial Refinement Study

The L2 error of density within the domain Ω at time t is used for the numerical performance studies of the CDFR
scheme in this section. Specifically, it is defined as

e =

√∫
Ω

(ρ− ρexact)2
dV∫

Ω
1 dV

. (5.3)

For the k-th order CDFR method the error can be estimated as

e ≈ C ∆xk. (5.4)

For the convenience of analyzing numerical performance, we further write (5.4) as

log(e) = log(C) + k log(∆x). (5.5)

For the CDFR method of certain order of accuracy k (log(C) is a constant for different mesh size ∆x when k is fixed),
if the error of the CDFR method satisfies the above estimate (5.4), log(e) should be linearly related to log(∆x). That
is to say, when the mesh is refined from ∆x1 to ∆x2, the slope (log(e1) − log(e2))/(log(∆x1) − log(∆x2)), which
is the numerical order of accuracy, should be consistent with the theoretical value k. For a certain mesh size ∆x,
we expect the differences of log(C) among CDFR methods of different orders of accuracy to be trivial. Therefore,
log(e) should be quasi-linearly related to k. Thus, when the order of accuracy is increased from k1 to k2, the slope
(log(e1)− log(e2))/(k1 − k2) should be around log(∆x), which means the error e drops exponentially as k increases.
A uniform mesh set, i.e., 24× 24, 48× 48, 96× 96 meshes, is used for the grid refinement study. The time step ∆t is
fixed as 1× 10−4 to ensure that the numerical errors from time marching is negligible. The SSPRK3 scheme is used
for time marching. Simulation ends at t = 0.5.

Figure 5.1 shows the density contours of the 3rd-order scheme on the 48 × 48 mesh. Figure 5.2a presents the
numerical orders of accuracy results from the grid refinement study for the 3rd-, 4th-, and 5th-order schemes. In
Figure 5.2a, the mesh size ∆x and L2 error e are both illustrated in log scale. The slope (the float number between
two points in the figure) when one mesh is refined to another is the numerical order of accuracy. It is observed that
the numerical orders of accuracy agree well with the theoretical values for all the tested CDFR methods in the grid
refinement study. A polynomial refinement study of 3rd to 8th-order CDFR methods is also conducted on the 96×96
mesh. The result is shown in Figure 5.2b. In Figure 5.2b, the error is illustrated in log scale. For the polynomial
refinement study, we do not quantitatively expect the slopes of log(e) versus the order of accuracy to be around
log(∆x). In fact, we are simply intrested in if the error drops exponentially when the order of accuracy is increased.
As shown in Figure 5.2b, over a wide range of polynomial refinement, when the order of accuracy increases, log(e)
drops linearly. In other words, the convergence of the CDFR method family can be regarded as spectral.
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Figure 5.1: Density contour at t = 0.5 on the 48× 48 mesh with the 5th order CDFR scheme for the isentropic Euler
vortex propagation problem.
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Figure 5.2: (a) The grid refinement study on a mesh set with 24 × 24, 48 × 48, 96 × 96 elements for the isentropic
Euler vortex propagation problem using the 3rd to 5th order CDFR schemes and the floats in the figure are the
numerical orders of accuracy when meshes are refined; (b) the polynomial refinement study for the 3rd to 8th order
CDFR schemes on the 96× 96 mesh.

5.2 The Parallel Performance Study

In this section, we focus on the parallel performance study of the CDFR method. The 3rd-order CDFR method is
used in this section. We only let the simulations run 100 time steps with the time step size fixed as ∆t = 10−6 (small
enough to make sure the Courant Friedrichs Lewy (CFL) condition satisfied for all the meshes). Different partition
approaches have also been tested.

For the 3rd-order CDFR method, in each element we have 3× 3× (D+ 2) degree of freedoms, where 3× 3 is the
number of Gauss points within the element and D + 2 is the number of variables on each Gauss point. For the 2D
case, D = 2. In this case, the mesh is uniformly divided into N ×N elements. So the total degree of freedom of the
entire mesh can be calculated as 36N2.
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Table 5.1: Memory prediction and observed memory usage for mesh partition in only x direction.

N 128 256 512 1024 2048 4096
Predicted 13.5 MB 54 MB 216 MB 864 MB 3.75 GB 13.5 GB
Observed 70 MB 239 MB 913 MB 3.5 GB 11 G 43 GB

Table 5.2: The performance study of the 3rd-order CDFR scheme with SSPRK3 solving the isentropic vortex
propagation in 100 time steps with ∆t = 10−6 on HPCF2013.

Mesh partition only in x direction

(a) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

128 00:01:12 00:00:36 00:00:18 00:00:10 00:00:05 00:00:03 00:00:01 – –
256 00:05:10 00:02:36 00:01:21 00:00:43 00:00:22 00:00:11 00:00:06 00:00:03 –
512 00:20:53 00:10:35 00:05:27 00:02:55 00:01:28 00:00:46 00:00:23 00:00:12 00:00:06

1024 01:24:46 00:41:57 00:21:41 00:11:28 00:06:04 00:03:03 00:01:34 00:00:49 00:00:28
2048 05:44:48 02:53:04 01:27:50 00:45:44 00:24:12 00:12:31 00:06:13 00:03:15 00:01:47
4096 25:04:41 12:13:14 06:07:01 03:11:11 01:37:45 00:50:03 00:24:49 00:12:59 00:07:01

(b) Observed Sx
p

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

128 1.00 1.99 3.93 6.97 14.31 26.17 49.64 – –
256 1.00 1.99 3.82 7.21 14.28 28.98 55.18 105.12 –
512 1.00 1.97 3.83 7.18 14.27 27.22 53.40 106.66 193.71

1024 1.00 2.02 3.91 7.39 13.98 27.76 54.18 103.85 179.90
2048 1.00 1.99 3.93 7.54 14.25 27.55 55.42 106.35 193.94
4096 1.00 2.05 4.10 7.87 15.39 30.07 60.63 115.91 214.56

(c) Observed Ex
p

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

128 1.00 1.00 0.98 0.87 0.89 0.82 0.78 – –
256 1.00 1.00 0.96 0.90 0.89 0.91 0.86 0.82 –
512 1.00 0.99 0.96 0.90 0.89 0.85 0.83 0.83 0.76

1024 1.00 1.01 0.98 0.92 0.87 0.87 0.85 0.81 0.70
2048 1.00 1.00 0.98 0.94 0.89 0.86 0.86 0.83 0.76
4096 1.00 1.03 1.02 0.98 0.96 0.94 0.95 0.91 0.84

Mesh partition in both x and y directions

(c) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

128 00:01:12 00:00:36 00:00:19 00:00:10 00:00:05 00:00:03 00:00:01 – –
256 00:05:10 00:02:36 00:01:16 00:00:43 00:00:22 00:00:11 00:00:05 00:00:03 –
512 00:20:53 00:10:35 00:05:04 00:02:51 00:01:26 00:00:45 00:00:21 00:00:10 00:00:06

1024 01:24:46 00:41:57 00:22:27 00:11:22 00:05:52 00:02:55 00:01:28 00:00:45 00:00:22
2048 05:44:48 02:53:04 01:29:48 00:44:24 00:24:19 00:11:47 00:05:53 00:02:55 00:01:30
4096 25:04:41 12:13:14 06:02:04 03:10:21 01:40:39 00:48:28 00:25:23 00:11:41 00:05:53

(d) Observed Sxy
p

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

128 1.00 1.99 3.72 7.34 13.33 28.23 54.12 – –
256 1.00 1.99 4.07 7.16 13.98 29.37 57.86 111.95 –
512 1.00 1.97 4.12 7.31 14.51 28.09 58.48 119.47 223.01

1024 1.00 2.02 3.78 7.46 14.46 29.12 57.50 112.89 228.26
2048 1.00 1.99 3.84 7.77 14.18 29.27 58.57 118.19 230.20
4096 1.00 2.05 4.16 7.90 14.95 31.04 59.27 128.77 255.85

(e) Observed Exy
p

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

128 1.00 1.00 0.93 0.92 0.83 0.88 0.85 – –
256 1.00 1.00 1.01 0.89 0.87 0.92 0.90 0.87 –
512 1.00 0.99 1.03 0.91 0.91 0.88 0.91 0.93 0.87

1024 1.00 1.01 0.94 0.93 0.90 0.91 0.90 0.88 0.89
2048 1.00 1.00 0.96 0.97 0.89 0.91 0.92 0.92 0.90
4096 1.00 1.03 1.04 0.99 0.93 0.97 0.93 1.00 1.00
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Figure 5.3: The performance study of the 3rd order CDFR scheme with SSPRK3 solving the isentropic vortex
propagation in 100 time steps with ∆t = 10−6 on HPCF2013.

Recalling (3.14), we have also declared memory for q of the previous time step and L(q). Thus, we can do a
rough memory prediction here without including the memory usage of the auxiliary information for unstructured
grids. The memory usage difference between different mesh partition approaches are not significant. Thus we only
present the memory prediction and observed memory usage of mesh partition in only x direction, as illustrated in
Table 5.1. It is discovered that the auxiliary information for the CDFR method on unstructured mesh consumes much
larger memory space than the solutions on the solution points. The memory usage makes sense because for nodal
high order methods on unstructured mesh, the geometry informations, such as connectivity, coordinates, coordinate
transformations, etc., will consume a lot of memory.

The parallel scalability is often studied by the observed speedup Sp and efficiency Ep, where p is the number of
processes. For a fixed size problem, the observed speedup Sp is defined as [11]

Sp = T1/Tp, (5.6)

where Tp denotes the time needed for p processes to solve the problem. And the observed efficiency Ep is defined as

Ep = Sp/p. (5.7)

The performance study results are presented in Table 5.2 and Figure 5.3. Note that for p = 1, Ep = Sp = 1. In
Table 5.2, the raw time, Sp and Ep of different partition approaches are illustrated. Herein we use supscript ‘x’ and
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‘xy’ to distinguish the results of these two partition approaches, such as Sxp and Exyp . Figure 5.3a and Figure 5.3b
visualize the Sxp and Exp while Figure 5.3c and Figure 5.3d visualize the Sxyp and Exyp respectively. From the last row
of raw wall clock time, it is observed the time for N = 4096 is over 25 hours for 100 time step size. This is why we
do not conduct a performance study on a long physical time range. Generally, for both two partition approaches, it
is observed that when the number of processes p increases , Sp and Ep will gradually decrease. And for bigger N ,
i.e., bigger problem size (N > 512), the speedup and efficiency will be better when more processes are used. Overall,
scalability of the CDFR method is excellent, and the CDFR method can be efficiently accelerated utilizing parallel
computing. Through the comparison between these two partition approaches, it is observed that dividing the mesh
in both x and y directions the observed Exyp and Sxyp will be better. Since the data need to be send between CPUs
is less than only dividing the mesh in x direction when the numbers of elements on each process are the same.

6 Conclusions

In the present study, a brief introduction of the CDFR method is presented. We use the CDFR method as spa-
tial discretization and SSPRK3 as the temporal discretization to solve the isentropic vortex propagation problem.
Convergence rate studies have shown that the CDFR method performs well for conservation laws. The parallel
performance study conducted in the present study has demonstrated that the CDFR method can benefit a lot from
parallelization. Overall, the CDFR method is a compact high-order scheme family can be efficiently parallelized for
high performance computing. Through the comparison of different mesh partition tests, it is also observed that by
optimizing the communication cost between different processes the parallel performance can be obviously improved.

Acknowledgment

Wang and Yu gratefully acknowledge the support of the Office of Naval Research through the award N00014–16–
1–2735, and the faculty startup support from the department of mechanical engineering at University of Maryland,
Baltimore County (UMBC). The hardware used in the computational studies is part of the UMBC High Performance
Computing Facility (HPCF). The facility is supported by the U.S. National Science Foundation through the MRI
program (grant nos. CNS–0821258 and CNS–1228778) and the SCREMS program (grant no. DMS–0821311), with
additional substantial support from the University of Maryland, Baltimore County (UMBC). See hpcf.umbc.edu for
more information on HPCF and the projects using its resources.

References

[1] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann, K. Hillewaert,
H. T. Huynh, N. Kroll, High-order CFD methods: current status and perspective, International Journal for
Numerical Methods in Fluids, vol. 72, issue 8, pp. 811–845, 2013.

[2] H. T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods,
in 18th AIAA Computational Fluid Dynamics Conference, AIAA–2007–4079, Miami, FL, 2007.

[3] H. T. Huynh, A reconstruction approach high-order schemes including discontinuous Galerkin methods for diffu-
sion, in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace, AIAA–2009–
403, Orlando, FL, 2009.

[4] H. T. Huynh, Z. J. Wang, P.E. Vincent, High-order methods for computational fluid dynamics: a brief review of
compact differential formulations on unstructured grids, Computers & Fluids, vol. 98, pp. 209–220, 2014.

[5] J. Romero, K. Asthana, A. Jameson, A simplified formulation of the flux reconstruction method, Journal of
Scientific Computing, vol. 67, issue 1, pp. 351–372, 2016.

[6] J. Romero, A. Jameson, Extension of the flux reconstruction method to triangular elements using collapsed-edge
quadrilaterals, in 54th AIAA Aerospace Sciences Meeting, AIAA SciTech, AIAA 2016–1825, San Diego.

[7] L. Wang, M. L. Yu, Compact direct flux reconstruction for conservation laws, submitted.

[8] S. K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics,
vol. 103, issue 1, pp. 16–42, 1992.

10

hpcf.umbc.edu


[9] S. Gottlieb, C. W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM
Review, vol. 43, issue 1, pp. 89–112, 2001.

[10] G. Karypis, V. Kumar, MeTiS—A software package for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices—Version 4.0, University of Minnesota, Department of
Computer Science and Engineering, Army HPC Research Center, Minneapolis, MN, 1998.

[11] S. Khuvis, M. K. Gobbert, Parallel performance studies for an elliptic test problem on the cluster maya, Technical
Report HPCF–2015–6, UMBC High Performance Computing Facility, University of Maryland, Baltimore County,
2015.

11


	Introduction
	A Brief Introduction of the Compact Direct Flux Reconstruction Method
	Extension to the 2D Euler Equation
	Parallel Implementation for Unstructured Grids
	Numerical Results and the Performance Study
	The Grid Refinement Study and the Polynomial Refinement Study
	The Parallel Performance Study

	Conclusions

