
, ,

TIME-STEPPING TECHNIQUES TO ENABLE
THE SIMULATION OF BURSTING BEHAVIOR IN A

PHYSIOLOGICALLY REALISTIC
COMPUTATIONAL ISLET

Samuel Khuvisa, Matthias K. Gobberta, Bradford E. Peercya,∗

aDepartment of Mathematics and Statistics, University of Maryland, Baltimore County,
1000 Hilltop Circle, Baltimore, MD 21250, U.S.A.

Abstract

Physiologically realistic simulations of computational islets of beta cells require
the long-time solution of several thousands of coupled ordinary differential equa-
tions (ODEs), resulting from the combination of several ODEs in each cell and
realistic numbers of several hundreds of cells in an islet. For a reliable and accu-
rate solution of complex non-linear models up to the desired final times on the
scale of several bursting periods, an appropriate ODE solver designed for stiff
problems is eventually a necessity, since other solvers may not be able to han-
dle the problem or are exceedingly inefficient. But stiff solvers are potentially
significantly harder to use, since their algorithms require at least an approx-
imation of the Jacobian matrix. For sophisticated models, systems of several
complex ODEs in each cell, it is practically unworkable to differentiate these
intricate non-linear systems analytically and to manually program the resulting
Jacobian matrix in computer code. This paper demonstrates that automatic
differentiation can be used to obtain code for the Jacobian directly from code
for the ODE system, which allows a full accounting for the sophisticated model
equations. This technique is also feasible in source-code languages Fortran and
C, and the conclusions apply to a wide range of systems of coupled, non-linear
reaction equations. However, when we combine an appropriately supplied Jaco-
bian with slightly modified memory management in the ODE solver, simulations
on the realistic scale of one thousand cells in the islet become possible that are
several orders of magnitude faster than the original solver in the software Mat-
lab, a language that is particularly user friendly for programming complicated
model equations. We use the efficient simulator to analyze electrical bursting
and show non-monotonic average burst period between fast and slow cells for
increasing coupling strengths. We also find that interestingly, the arrangement
of the connected fast and slow heterogeneous cells impacts the peak bursting
period monotonically.

1

Keywords: Computational Islet, Beta cells, Stiff ordinary differential
equations, Numerical differentiation formulas, Automatic differentiation
2010 MSC: 37M05, 65L04, 68W30, 92-08, 92B25

1. Introduction

The endocrine system of the pancreas contains clusters of cells called islets of
Langerhans, which consist primarily of four different types of cells [15]. The most
common type of cell is the β-cell, which is responsible for the secretion of insulin.
Since diabetes is characterized by irregular levels of insulin, we are interested
in developing a numerical framework that will allow us to calculate and better
understand emergent dynamics that lead to the secretion of insulin. Many
models of β-cells have been developed that range in focus from electrical bursting
and exocytosis to glucose metabolism and have been recently reviewed in [1].
Furthermore, models of networks of β-cells have been developed [22, 17, 13]. We
use a seven variable β-cell model by Bertram and Sherman [2] and a comparable
three variable model by Sherman and Rinzel [21], [8].

As an example of a physiological question, we analyze in this paper the
effect of electrical coupling between heterogeneous cells in differing patterns of
connectivity within a computational islet, represented by a three-dimensional
N ×N ×N cube of β-cells. On the physiologically realistic scale of N3 = 1, 000
cells in an islet, N in N×N×N ranges up to 10. By concatenating all unknown
variables into a vector y of length 7N3 for the seven variable and 3N3 for the
three variable model, the matrix form of the initial value problems for both
islet models with N3 cells can then be written as a system of coupled ordinary
differential equations (ODEs)

dy

dt
= f (ode)(t, y) = f(t, y) +Gy, 0 < t ≤ tf , y(0) = y0. (1)

The two terms on the right-hand side distinguish explicitly the non-linear re-
actions in f(t, y) and the coupling between cells involving the matrix G. To
capture several burst periods, the simulations for the three variable model are
required from 0 ms to 200,000 ms and for the seven variable model the simula-
tions from 0 ms to 500,000 ms.

The reaction equations in these models result in systems of ODEs that are
referred to as stiff, since the reaction speeds can vary widely, say between voltage
dynamics and gating or endoplasmic reticulum calcium dynamics. ODE solvers
appropriate for stiff ODEs necessarily require the Jacobian matrix J (ode)(t, y) =
∇yf (ode)(t, y) of the system of ODEs. Since the simulations are needed for
large final times to fully capture at least several burst periods, the efficient
performance of the ODE solver is crucial. This is the focus of this work.

∗Corresponding author: Phone +1–410–455–2436, Fax +1–410–455–1066,
bpeercy@umbc.edu

Preprint submitted to Elsevier January 24, 2015

Some other work that takes into account multiple β-cells to create an islet
in three spatial dimensions includes Tsaneva-Atanasova and Sherman [24], who
consider electrical coupling and coupling in calcium in a manner similar to
our work in a 6 × 6 × 6 islet implemented with Runge-Kutta time-stepping in
Fortran 95. Other work by Sherman, Xu, and Stokes [22] considers a 5× 5× 5
islet to address the impact of intercellular currents during an experiment where
a single islet cell is voltage clamped to record local transmembrane currents.
Our works [9] and [16] utilize the islet framework described here with the seven
variable model and further include coupling in metabolic variables. Recent work
by Pu et al. [17] includes the mention of computer performance. They consider
a hexagonal lattice of β-cells with up to 1,000 cells using LSODE in Fortran 90.
They report that solving a 10 variable model with 1,000 cells for 2,000 s of
model time takes 26 hours [17, page 7]. This information gives an indication of
the expected computational load involved in simulations of the intended scale
of a seven variable model on N ×N ×N cells.

One of the crucial opportunities for a user to influence the performance of a
stiff ODE solver is the choice, how to supply the Jacobian information. Choices
range from supplying no information, which results in the code computing a
numerical approximation of it, to providing a function that returns the values
of the matrix J (ode)(t, y) for inputs (t, y) whenever required by the ODE solver.
This function is analogous in interface to the function for f (ode)(t, y) that the
user has to provide to the solver in any case to specify the ODE problem (1). But
the function for the matrix J (ode)(t, y) is much more difficult to supply, since an
analytic formula for each derivative component needs to be calculated and then
hand-coded by the user. Since this is a tedious and potentially extremely error
prone process, automatic differentiation is a tool that was developed to take the
Fortran or C code of a function and differentiate it symbolically. This is different
than conventional symbolic differentiation in that both input and output of the
process are functions in the same source code as the input function, so it is
directly usable as code for a Jacobian function for an ODE solver for which one
had to write code for the right-hand side function anyway. It is clear that Matlab
offers the same opportunity for automatic differentiation as Fortran or C, but it
has taken longer for automatic differentiation libraries to become available. We
use the software package ADiMat for automatic differentiation in Matlab [4].

This paper demonstrates the potential advantage of using automatic differ-
entiation in particular in Matlab: Matlab is a language that allows readily the
correct implementation of fairly complicated non-linear model equations, for
instance for ODEs, and many users prefer it for this reason over other (particu-
larly source code) languages. By automatic differentiation, the programming of
a Jacobian is not a limiting factor any more. In particular, once the machinery
of the automatic differentiation is set up, it can readily be used again to obtain
a new Jacobian, if the model is changed in any way. This is easier than it would
be to hand-calculate the Jacobian again.

To analyze the effect of coupling between cells in a computational islet, we
consider an islet of β-cells with varying burst rates [14]. The distribution of these
cells is not known, therefore we are investigating several possible distributions of

3

slow bursting and fast bursting cells and capturing their emergent behavior, and
we introduce a quantitative measure for the heterogeneity. It turns out that the
arrangement of the connected fast and slow heterogeneous cells impacts the peak
bursting period monotonically. We also observe that as the heterogeneity of an
islet structure increases the peak coupling strength decreases. These simulations
demonstrate that both the three variable and the seven variable model have
analogous dynamics. This justifies the use of the three variable model as a
stand-in for the more complex model in the numerical analyses.

The remainder of this paper is structured as follows: Section 2 describes the
physiological background and both the three variable and seven variable model
in detail; Section 2.4 specifically defines the model of the coupling strength
in (1). Section 3 motivates the inclusion of all available numerical methods,
specifies our modifications, and describes the use of ADiMat in more detail.
Section 4 contains the full results of our physiological studies. Section 5 presents
the numerical performance studies for both models that drive home the need for
using an appropriate ODE solver designed for stiff problems and that Matlab
can also be an extremely efficient computational tool. For instance, enabling
physiologically realistic simulations for the duration of several burst periods on
an islet with 1,000 cells become possible that take only on the order of 10 minutes
instead of 10 hours. Finally, Section 6 discusses the detailed conclusions that
can be drawn from all reported simulations.

4

2. Physiological Models

In this section, we discuss the physiological background in Section 2.1, we
specify the full details of the three variable and seven variable models in Sec-
tions 2.2 and 2.3, respectively, and we describe cell coupling in an islet in Sec-
tion 2.4.

2.1. Physiological Background

Diabetes mellitus is a disease characterized by a high concentration of glu-
cose in a person’s blood stream. The concentration of glucose in the blood is
regulated by insulin, a hormone produced by cells in the pancreas. So, if the
concentration of glucose in the blood stream is too high, it is caused mainly
by either an insulin deficiency or an insulin resistance which means that in-
sulin does not properly interact with cells to signal glucose uptake. Type 1
diabetes corresponds to an insulin deficiency due to an autoimmune attack on
insulin-producing β-cells, while Type 2 diabetes is caused by either an insulin
resistance or insulin deficiency. With statistics from January 2011 showing that
23.6 million people in the United States suffer from diabetes (Centers for Disease
Control and Prevention [5]), being able to model the cells and their interactions
which play a large role in diabetes would be valuable.

The pancreas is an organ in the body which is part of both the endocrine
system and digestive system. In the endocrine system in the pancreas are clus-
ters of cells called islets of Langerhans. These islets contain α-cells, β-cells,
δ-cells, and pancreatic polypeptide (PP) producing cells along with distributed
capillaries, with β-cells the most common type of cell in an islet of Langerhans.
An islet’s production of insulin, the key hormone in blood glucose maintenance
released by β-cells, is related to both its metabolic and electrical activities.

The consensus model of stimulus-secretion coupling illustrates how a β-cell
responds to glucose entering the cell. In the consensus model, after glucose
enters the β-cell through the glucose transporter GLUT2 it is converted into
pyruvate through glycolysis and then metabolized inside mitochondria. This
process produces adenosine triphospate (ATP) and cellular energy at the ex-
pense of adenosine diphosphate (ADP). The increase in ATP-ADP ratio results
in the closing of KATP channels. This results in the depolarization of the β-
cell which allows calcium to enter the cell. The calcium triggers autocatalytic
release of more calcium from the endoplasmic reticulum and the exocytosis of
insulin containing secretory granules. The insulin causes the blood glucose to
return back to basal levels by signaling to cells throughout the body. As the
glucose levels drop at the β-cell, ATP-ADP levels also tend to recover, allowing
the KATP channels to open back up. The opening of these channels stops the
depolarizing electrical activity [3].

The change in voltage that happens during this process occurs in bursts
which repeat every few seconds to minutes, depending on the properties of the
cell. Cells of different bursting rates can exist in a single islet with no known
pattern of distribution. The cells which burst every few seconds, usually on the
order of tens of seconds, are categorized as fast β-cells. The cells which burst

5

every few minutes, usually around every 4 to 6 minutes, are categorized as slow
β-cells [20].

In an islet, cells are connected to each other through a complex of proteins
called gap junctions. These gap junctions allow both ions and small molecules
to travel between cells. So, cells in an islet affect each other’s electrical activity
through the ions traveling through the gap junction. Due to this coupling
between cells, a single-cell model can be thought of as describing the behavior
of a single cell in a synchronized islet or even as one entire islet [20]. This also
means that the secretion of insulin in one cell is affected by other cells that are
connected through a gap junction due to the ions and small molecules traveling
between the two cells. So, we consider a pair of models which takes into the
electrical activity in the cell to describe the bursting of a β-cell. We focus on
the electrical output, comparable in both models, rather than other variables
such as calcium not explicitly present in both models.

We begin now with a description of the three variable model, before returning
to the seven variable model.

2.2. Details of the Three Variable Model

Sherman and Rinzel developed a three variable model to simulate the be-
havior of two coupled β-cells [21]. This model uses the 3 state variables V , n,
and s.

V represents the electric potential of the cell membrane in mV.
n represents the fraction of open potassium channels for IK .
s is a slow variable gating the potassium channel Is.

The system of ODEs for the three variable model is given by

dV

dt
=
−(IK + ICa + Is)

Cm
, (2)

dn

dt
=

λ(n∞(V)− n)

τ
, (3)

ds

dt
=

s∞(V) + β − s
τs

. (4)

The initial condition is y0 = (V0, n0, s0)T with V0 = −60 mV, n0 = 0.0001,
s0 = 0.4. This system of ODEs requires the following ionic currents that are
used in the two cell model: ICa, IK, Is. These currents are defined as

IK = ĝKn(V − VK), (5)

ICa = ĝCam∞(V)(V − VCa), (6)

Is = ĝss(V − VK), (7)

where

ν∞(V) =
1

1 + exp[Vν−Vθν
]

for ν = m,n, s. (8)

Table 1 displays the parameters of the system.

6

To write the system of ODEs (2)–(4) in the standard form y′(t) = f(t, y) for
the ODE solver, we define y as the 3× 1 vector (V, n, s)T and f(t, y) as a 3× 1
vector consisting of the right-hand side of the ODEs

f(t, y) =


−(IK+ICa+Is)

Cm
λ(n∞(V)−n)

τ

s∞(V)+β−s
τs

 .
We demonstrate now for one cell that for this model with only three equations
and limited complexity, it is workable to insert the definitions for the currents IK,
ICa, Is and for ν∞(V), given in detail in Equations (5)–(8), into f(t, y) to enable
the analytical calculation of the Jacobian. This approach yields concretely first
the 3× 1 vector

f(t, y) =


−ĝK
Cm

(V − VK)n− ĝCa

Cm
(V − VCa)m∞(V)− ĝs

Cm
(V − VK)s

λ
τ (n∞(V)− n)

1
τs

(s∞(V) + β − s)

 , (9)

with ν∞(V) for ν = m,n, s in (8) and y = (V, n, s)T . Then, the Jacobian of
the ODE system for each cell is computed by analytically differentiating each
component of f(t, y) with respect to V, n, s to obtain the 3× 3 matrix

J(t, y) = ∇yf(t, y) =

 J11
−ĝK
Cm

(V − VK) ĝs
Cm

(V − VK)
λ
τ n
′
∞(V) −λτ 0

1
τs
s′∞(V) 0 − 1

τs

 (10)

with J11 = − ĝK
Cm

n− ĝCa

Cm
m∞(V)− ĝCa

Cm
(V − VCa)m′∞(V)− ĝs

Cm
s and

ν′∞(V) ≡ dν∞
dV

=
d

dV

([
1 + exp

(
Vν−V
θν

)]−1
)

=
exp

(
Vν−V
θν

)
θν

[
1 + exp

(
Vν−V
θν

)]2 (11)

for ν = m,n, s. One key to making the coding of the above workable without
mistake is to program the functions ν∞(V) in (8) and ν′∞(V) in (11) sepa-
rately and not insert them into (9) and (10). This approach often simplifies
the writing of code, but the point is that for a more complicated system, such
as the seven-variable model below, this method will not yield sufficient sim-
plifications to allow for coding that is safely free of mistakes. Indeed, already
the first step above of inserting the currents to get (9) is too complicated for
hand-calculations.

To extend this two cell model to an N ×N ×N computational islet, define
now V , n, and s each represent a vector corresponding to the value of the
variable for each of the N3 cells. For each vector, the `-th element is the value
of the parameter for cell ` using the indexing ` = i+N(j − 1) +N2(k − 1) for

7

i, j, k = 1, . . . , N , and our solution vector y is the 3N3 × 1 vector

y =

Vn
s

 .
For a model with N3 cells, f(t, y) is a 3N3×1 vector where the first N3 elements
are the values of the right-hand side of (2) for each cell, the second N3 elements
are the values of the right-hand side of (3) for each cell, and the third N3

elements are the values of the right-hand side of (4) for each cell. Thus, f(t, y)
in our initial value problem (1) represents the non-linear reactions, and the
coupling between the cells is modeled explicitly as Gy with the coupling matrix
G described in Section 2.4.

The Jacobian of the right-hand side of the ODE system (1) with 3N3 equa-
tions and a coupling term is then given by the 3N3 × 3N3 matrix

∇y
(
f (ode)(t, y)

)
= ∇y

(
f(t, y) +Gy

)
= J +G =

 J11 J12 J13

J21 J22 J23

J31 J32 J33

+G, (12)

where each N3 ×N3 block of J is given by

J11 = diag
(
− ĝK

Cm
n− ĝCa

Cm
m∞(V)− ĝCa

Cm
(V − VCa)m′∞(V)− ĝs

Cm
s
)
, (13)

J12 = diag
(−ĝK

Cm
(V − VK)

)
, (14)

J13 = diag
(ĝs

Cm
(V − VK)

)
, (15)

J21 = diag
(λ
τ
n′∞(V)

)
, (16)

J22 = −λ
τ
IN3×N3 , (17)

J23 = 0N3×N3 , (18)

J31 =
1

τs
s′∞(V)IN3×N3 , (19)

J32 = 0N3×N3 , (20)

J33 = − 1

τs
IN3×N3 . (21)

Here, 0N3×N3 denotes an N3×N3 matrix in which all elements are zeros, and the
identity IN3×N3 is an N3 ×N3 matrix in which the diagonal elements are ones
and all other elements are zeros. Some blocks of J are diagonal matrices with the
same constant in all diagonal elements, represented above by blocks involving
the product of a constant with IN3×N3 . Other blocks have different values in
the diagonal elements, indicated by the notation diag(v), which constructs a
diagonal matrix with the components of the N3×1 vector v along the diagonal.

8

Table 1: Constants and variables for the three variable model, where (f) or (s) denote which
parameter value goes with a fast or slow cell, respectively.

Symbol Name Example or Range Units
t time 0 ≤ t ≤ 200000 ms
ĝCa channel conductance 954 pS
ĝK channel conductance 2650 pS
ĝs channel conductance 1060 pS
VK K+ Nernst Potential −75 mV
VCa Ca2+ Nernst Potential 25 mV
Cm capacitance 5300 fF
Vm Half-maximal activation of channel −20 mV
Vn Half-maximal activation of channel −17 mV
Vs Half-maximal activation of channel −38 mV
θm m-gate sensitivity 12 mV
θn n-gate sensitivity 5.6 mV
θs s-gate sensitivity 10 mV
τ n-gate time constant 20 ms
τs s-gate time constant 35000 ms
λ n-gate time constant modifier 0.9 1
β heterogeneity constant 0 (f) or 0.075 (s) 1

It is clear that coding this 3N3×3N3 Jacobian of the N ×N ×N cell model
is more problematic than the single cell one demonstrated above. But Matlab
offers a good opportunity for doing so effectively due to its vectorization and
matrix capabilities. For instance, the diagonal matrices in J (ode) can be created
in Matlab by the diag command; however, this command sets up a dense matrix
(that stores all zeros in the matrix), and the analogue command spdiags for
sparse matrices should actually be used.

2.3. Details of the Seven Variable Model

We simulate the glycolytic oscillator model for β-cells using a deterministic
model developed by Smolen [23]. This model was then coupled by Bertram and
Sherman [2] with Sherman’s update [20] of the model developed by Chay and
Keizer [6] and includes voltage data collected by Rorsman and Trube [18].

This model uses 7 state variables in one cell: V , n, [Ca], [Caer], [ADP],
[G6P], and [FBP], where [XX] denotes the concentration of species XX in moles
per liter.

V represents the electric potential of the cell membrane in mV.
n represents the fraction of K+ channels, IK , that are open in the cell.
[Ca] represents the concentration of free intracellular calcium ions.
[Caer] represents the concentration of calcium ions in the endoplasmic retic-

ulum.
[ADP] represents the concentration of Adenosine Diphosphate (ADP) in the

cell.
[G6P] represents the concentration of Glucose 6-Phosphate in the cell.
[FBP] represents the concentration of Fructose 1,6-Biphosphate in the cell.

9

The dynamics of these state variables are modeled by a system of 7 coupled
ordinary differential equations given by

dV

dt
=
−(IK + ICa + IK (Ca) + IK (ATP))

Cm
, (22)

dn

dt
=

(n∞(V)− n)

τn
, (23)

d[Ca]

dt
= fcyt (Jmem + Jer), (24)

d[Caer]

dt
= −σV fer Jer, (25)

d[ADP]

dt
=

[ATP]− [ADP] exp
{

(r + γ)
(

1− [Ca]
r1

)}
τa

, (26)

d[G6P]

dt
= κ (RGK −RPFK), (27)

d[FBP]

dt
= κ (RPFK − 0.5RGPDH). (28)

The initial condition is y0 = (V0, n0, [Ca]0, [Caer]0, [ADP]0, [G6P]0, [FBP]0)
T

with V0 = −60 mV, n0 = 0.00016, [Ca]0 = 0.08 nM, [Caer]0 = 789 nM,
[ADP]0 = 170 nM, [G6P]0 = 187 nM, [FBP]0 = 16 nM. These equations require
the following ionic currents that are used in the individual β-cell model: IK,
ICa, IK (Ca), IK (ATP), where IXX(YY) is the current of ion XX and modulated

10

by YY. These currents are defined by

IK = gK n (V − VK),

ICa = gCam∞(V) (V − VCa),

IK (Ca) = gK Ca (V − VK),

gK Ca([Ca]) =
gK Ca([Ca])

1 +
(
Kd
[Ca]

)2 ,

IK (ATP) = gK ATP (V − VK),

gK ATP = gK,ATP o∞([ADP]),

m∞(V) =
1

1 + exp
[
−(20+V)

12

] ,
n∞(V) =

1

1 + exp
[
−(16+V)

5

] ,
o∞([ADP]) =

(
(8.4× 10−5) [ADP]

2
+ 0.0016 [ADP] + 0.08

)
gK,ATP

(0.05 [ATP] + 0.0052 [ADP] + 1) (1 + 0.0098 [ADP])
2 ,

[ATP] = 1500− 1

2
[ADP] +

1

2

(
−3[ADP]2 − 6000[ADP] + 9000000

) 1
2 ,

Jer = 0.0002([Caer]− [Ca])− 0.4[Ca],

Jmem = (4.5× 10−6)ICa − 0.2[Ca],

where RGK, gK Ca, and gK,ATP are parameters relating to the bursting rate of
the cell. These are the parameters altered for fast or slow cells. The parameters
are chosen for robust burst period separation between fast and slow bursters.
Modest changes that retain the slow fast separation will have only modest quan-
titative but not qualitative effects on the output and will not substantially effect
the computational timing beyond that already captured in the strength of the
coupling conductance. Table 2 displays the parameters of the system.

RPFK is the rate of phosphofructokinase activity. It is given as a combina-
torial function of [G6P] and [FBP] that can be found in [23]. Each cell in our
cluster has a certain state based on the 7 state variables. We call this set of
variables S.

To model the state variables in an islet with N × N × N cells, we intro-
duce now V , n, [Ca], [Caer], [ADP], [G6P], and [FBP] as vectors of length N3

corresponding to the value of each variable for each of the cells in the islet.
For each vector the `-th element is the value of the parameter for cell `, where
` = i + N(j − 1) + N2(k − 1) for i, j, k = 1, . . . , N , and our solution vector, y,
is the 7N3 × 1 vector

y = (V, n, [Ca], [Caer], [ADP], [G6P], [FBP])
T
,

The vector relating f(t, y), the right-hand side of (22)–(28), is similarly defined

11

Table 2: Constants and variables for the seven variable model, where (f) or (s) denote which
parameter value goes with a fast or slow cell, respectively.

Symbol Name Example or Range Units
t time 0 ≤ t ≤ 500000 ms

fcyt rapid calcium buffering in the cytosol 0.01 1
fer rapid calcium buffering in the ER 0.01 1
σV cytosolic to ER volume ratio 31 1
κ conversion parameter for glycolytic subsystem 0.005 1
Cm capacitance 5300 fF

VK K+ Nernst Potential −75 mV

VCa Ca2+ Nernst Potential 25 mV
gK channel conductance 2700 pS
τn time constant 20 ms
gCa channel conductance 1000 pS
RGK rate of glucose influx 0.4 (f) or 0.2 (s) nM / ms
gKCa maximum K Ca channel conductance 25000 (f) or 27000 (s) pS
gK,ATP maximum K ATP channel conductance 600 (f) or 100 (s) pS

as

f(t, y) =



fV (t, y)
fn(t, y)
f[Ca](t, y)
f[Caer](t, y)
f[ADP](t, y)
f[G6P](t, y)
f[FBP](t, y)


.

In matrix form, our initial value problem is again the ODE system (1), involving
the non-linear reactions f(t, y) and the coupling between the cells is modeled as
Gy with the coupling matrix G described in the following Section 2.4. Unlike
the three variable model, the seven variable model is too complex to compute
the analytical Jacobian by hand.

2.4. Cell Coupling

In an islet, cells are joined together by proteins called gap junctions which
allow both ions and small molecules to move between cells. We assume nearest
neighbor coupling in our models, which means that only cells directly adjacent
to each other have a gap junction between them. In our model, only voltage is
coupled between neighboring cells.

Let W be the set of nw = 7 or 3 state variables per cell for the seven variable
model or three variable model, respectively. For a given state variable w in W ,
if there is coupling between cells for this state variable, the effect of coupling
between a cell and its neighbor is described by

gw = gAi,j,k(wi+1,j,k − wi,j,k) + gBi,j,k(wi−1,j,k − wi,j,k) + gCi,j,k(wi,j+1,k − wi,j,k)

+gDi,j,k(wi,j−1,k − wi,j,k) + gEi,j,k(wi,j,k+1 − wi,j,k) + gFi,j,k(wi,j,k−1 − wi,j,k),

for i, j, k = 1, . . . , N where gXi,j,k is the coupling strength between the cell in the
(i, j, k)-th cell in the islet, X = A, . . . , F and its respective neighbor for state
variable w, and X distinguishes between the coupling for different neighbors.

12

Our simulation uses a N3 ×N3 matrix C, where the (a, b) entry of C is the
coupling strength between cell a and cell b. Here, cell ` is defined by indexing
` = i + N(j − 1) + N2(k − 1) for i, j, k = 1, . . . , N . We define a matrix C
to be represent the voltage coupling between neighboring cells in the cubic
lattice. This can be thought of as the adjacency matrix for nearest neighbors
multiplied by the coupling strength. C is a matrix with seven non-zero bands.
In our model, the coupling strength between cells is the same throughout the
islet. So, the elements on the main diagonal are the number of neighbors each
cell has multiplied by −1 and the coupling strength of the islet. On the first
superdiagonal and subdiagonal, the N superdiagonal and subdiagonal, and the
N2 superdiagonal and subdiagonal are the coupling strength of the islet. This
C matrix is used to define G in the ODE system (1) as

G =


C 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . (29)

The coupling matrix G is a block matrix with 7×7 blocks for the seven variable
model and a block matrix with 3× 3 blocks for the three variable model. Each
block, including each 0 block, is of size N3×N3 for the N ×N ×N islet. Only
the upper left block for the voltage variable is non-zero in G and contains the C
matrix; among the variables, voltage coupling is the only coupling treated here.

The distribution of the cells with heterogeneous bursting properties is not
known, therefore we are investigating several possible distributions of slow burst-
ing and fast bursting cells and capturing their emergent behavior. Each islet
distribution has a connection heterogeneity associated with the distribution of
slow and fast cells and computed based on the average number of different cells
connected to each cell in the islet. We introduce a measure of connection hetero-
geneity based on the fraction of neighboring cells with burst frequency different
from the cell’s own burst frequency. This quantitative measure of connection
heterogeneity provides a rational ordering of the different islet structures. The
connection heterogeneity of a particular islet distribution is computed as

ch =
1

N3

N3∑
i=1

di
vi
, (30)

where

di =

{
number of slow cells connected to cell i if cell i is fast,
number of fast cells connected to cell i if cell i is slow,

and vi is the total number of cells connected to i.
We consider five distributions of slow and fast cells. These islet distributions

are depicted in Figure 1. Black and white circles represent slow and fast cells
and the lines between cells represent gap junctions. The five distributions we
consider are:

13

(a) (b) (c)

(d) (e)

Figure 1: Schematic of distributions of slow and fast cells for a 5 × 5 × 5 islet: (a) grouped
structure, (b) split grouped structure, (c) layered middle structure, (d) layered split structure,
(e) equally distributed structure.

a. The grouped structure has a block of N3

2 fast cells and a block of N3

2 slow
cells. It has a connection heterogeneity of 0.0928.

b. The split grouped structure has two non-adjacent blocks of N
2

4 fast cells and

two non-adjacent blocks of N
3

4 slow cells. It has a connection heterogeneity
of 0.1712.

c. The layered middle structure has N alternating layers of N2 slow and then

N2 fast cells. However, the middle layer is N2

2 slow cells and N2

2 fast cells.
It has a connection heterogeneity of 0.2693.

d. The layered split structure has N alternating layers where a layer with the

first N2

2 cells are slow the last N2

2 cells are fast is followed by a layer with

the first N2

2 cells are fast and the last N2

2 cells are are slow and vice versa.
It has a connection heterogeneity of 0.4261.

e. In the equally distributed structure, all neighbors of fast cells are slow
cells and all neighbors of slow cells are fast cells. It has a connection
heterogeneity of 1.0000.

14

3. Numerical Methods

This section introduces the numerical methods used to solve both the seven
variable and the three variable models described in Section 2.

We compare in our studies five approaches to supplying the Jacobian and two
implementations of the NDFk family of methods, for a total of ten cases using
the Matlab function ode15s. To provide a clear contrast of the performance of
a stiff ODE solver to non-stiff solvers, we also include two other ODE solvers in
our comparison, the non-stiff solvers in functions ode45 and ode113.

3.1. Matlab’s Stiff Solver ode15s

Systems of ODEs of the types (2)–(4) and (22)–(28) need to be handled as
stiff equations, since the reactions modeled by the ODEs can have a wide range of
speeds. The Numerical Differentiation Formulas (NDFk), which improve upon
the well-known Backward Differentiation Formulas (BDFk), are a state-of-the-
art ODE solver family for stiff problems. An introduction to these methods is
available in [19] and a detailed description introduction in our context in [11].
There are two key ingredients to stiff ODE solvers: To achieve the stability
required for solving stiff ODEs, the NDFk methods discretize the time derivative
backwards in time and solve the arising non-linear system by Newton’s method.
This requires the Jacobian matrix, that is, the gradient of the right-hand side
of the ODE system (1), which involves the Jacobian of the systems (2)–(4) and
(22)–(28).

One implementation of the NDFk methods is Matlab’s ode15s function.
ode15s selects both the step size ∆t and method order k automatically to
control the estimated ODE error.

The other implementation is a version of ode15s with modified memory
handling. This version makes two improvements on the management of mem-
ory in ode15s. The first improvement is to not store the 3-D array dif3d

which contains all gradient approximations for all solution components at all
time steps. The second improvement is to improve the allocation and realloca-
tion of memory for vectors stored by the function by using larger chunk sizes.
These modifications reduce the memory needed for the simulation significantly
and enable the solution of larger problems. They also have the potential for
speedup for smaller problems, if the reduction in memory usage lets a portion
of the Jacobian fit into the cache of the CPU. These issues were discovered and
improvements were tested originally in [7] and studied more systematically in
[11]. By deleting the array dif3d, we give up on some powerful post-processing
functions available in Matlab; but most users do not take advantage of these
anyhow.

The five approaches to supplying the Jacobian matrix are:

Numerical Jacobian: Since the NDFk uses Newton’s method, it requires the
Jacobian of the system of ODEs. If no Jacobian is provided by the user,
the Jacobian is numerically approximated using divided differences for
each element in the matrix, which is an expensive computation.

15

Dense Jacobian: Matlab’s ode15s provides the option to provide a function
handle to a function that computes the Jacobian analytically. This func-
tion will be called whenever ode15s needs to re-evaluate the value of the
Jacobian. Evaluating an analytic Jacobian is much cheaper computation-
ally than computing its approximation numerically and also increases its
accuracy.

As we can see from (12)–(21), the Jacobian is a block matrix, and each
block is mathematically diagonal. We can use Matlab’s diag function to
create these diagonal matrices. However, this creates these matrices in
dense storage mode, in which all data of the matrix — including elements
with zero value — are stored.

Sparse Jacobian: We supply the ode15s function with the Jacobian in sparse
storage mode in this implementation. This recognizes the mathematical
fact that most matrix elements of diagonal matrices are zero. Since Matlab
stores a sparse matrix more efficiently than a dense matrix by not storing
the zero values, we can expect a speedup in the runtime of simulations. So,
rather than using Matlab’s diag command we use the spdiags command
to create the sparse diagonal matrices necessary to form the Jacobian in
this approach. This will show that correct usage of its features is vital for
efficient calculations in Matlab.

Sparsity pattern of Jacobian: An alternative to supplying the Jacobian of
the system of ODEs to ode15s is to provide the sparsity pattern of the
Jacobian matrix, J . Matlab’s ode15s allows for the option to provide the
sparsity pattern of the Jacobian by a matrix with ones at each position
where the Jacobian contains a non-zero element and zeros everywhere else.
The Jacobian is then computed numerically as in the first method, however
it is stored in sparse storage mode and only the elements of the Jacobian
which correspond to a non-zero element of the matrix S are computed.

Automatically differentiated (AD) Jacobian: We are able to use a soft-
ware tool to generate a function for the analytic Jacobian for functions
that are too complex to compute analytically. The ADiMat software tool
[4] used in this paper uses the function for the ODE to generate code that
computes the Jacobian of the right-hand side of the system. We ensure
that the calculated Jacobian uses sparse storage mode by providing the
sparsity pattern to ADiMat.

After installing this software according to its instructions, we create a file
jac.m which computes the Jacobian of the system of ODEs. In this file,
we define an admOptions struct which contains all the information neces-
sary for the software to compute the Jacobian. We define the following
fields: Jpattern, independents, and dependents. Jpattern contains
the sparsity pattern of the Jacobian, with ones at each position where the
Jacobian contains a non-zero element and zeros everywhere else. We then
call the function admDiffFor to compute the Jacobian with the following
code:

16

Jac = admDiffFor(@model, @cpr, t, y,p,N^3,opts);

The Jac matrix returned by this function is returned by the jac function.

The first argument, @model, is a function handle for the function con-
taining the model. The second argument, @cpr, is function handle to a
function used by the software to generate a sparse Jacobian. The third
argument, t is the current time. The fourth argument, y, is the solution
vector at that time. The fifth argument, p, is the distribution of slow and
fast cells. The sixth argument, N^3, is the number of cells in the islet.
The seventh argument, opts, is the admOptions struct.

This code creates a file, called g_model.m. This function should not be
used directly, since sparsity is not preserved in this function. Rather, use
the code above to generate the Jacobian.

By providing this jac function to ode15s we provide a sparse Jacobian to
the ode solver.

One key advantage of this approach is that once the machinery of ADiMat
is set up, it is available to compute a new Jacobian function whenever a
change to the model is made.

3.2. Two Non-Stiff ODE Solvers in Matlab

Matlab’s ode45 solver uses the explicit Runge-Kutta-Fehlberg 5(4) pair of
Dormand and Prince [19]. In ode45, the step size ∆t is selected automatically
to control the estimated ODE error. The method is explicit and thus does not
require a Jacobian. It is not suitable for stiff problems.

Matlab’s ode113 is a variable step size, predictor-corrector algorithm, based
on the Adams-Bashforth-Moulton families of linear multi-step methods of orders
1 to 12, see [19]. While the Adams-Moulton method used as corrector is implicit,
due to the use of functional iteration, no Jacobian is required for the algorithm.
ode113 selects both the step size ∆t and method order k automatically to control
the estimated ODE error. However, for the functional iterations to be stable,
the time step needs to be restricted to be relatively small. This makes this
family of methods unsuitable for stiff problems.

17

4. Physiological Results

This section collects representative physiological results of simulations for
the three variable model in Figures 2–4 and Table 3 and for the seven variable
model in Figures 5–7 and Table 4. We present the same sets of results for both
models to confirm their analogous dynamics, which provides the justification for
using the three variable model as a test bed for numerical methods intended for
the seven variable model and other models with similar dynamics.

All physiological studies use a 5×5×5 computational islet with 50% slow cells
and 50% fast cells. Results use the most efficient numerical method available
for each model using a relative tolerance of 10−3 and an absolute tolerance of
10−5 on the ODE error.

The simulations for the three variable model are run from 0 ms to 200,000 ms
and for the seven variable model the simulations from 0 ms to 500,000 ms. The
coupling strength between cells in the islet is expressed in pS for the seven vari-
able model, however the three variable model uses a unitless coupling strength
as used in [8] that can be multiplied by Cm

τ = 265 pS to obtain the coupling
strength in pS to compare with the seven variable model, with Cm and τ from
Table 1.

We study the effects of distributions on the average burst period of cells in
the islet for the five different islet structures defined in Section 2.4: grouped
structure with connection heterogeneity ch = 0.0928, split grouped structure
with ch = 0.1712, layered middle structure with ch = 0.2693, layered split
structure with ch = 0.4261, and the equally distributed structure with ch =
1.0000.

Figures 2–3 and 5–6 contain the bursting behavior of cells in an islet. The
bursting behavior of a cell is shown by plotting the voltage of a cell in mV versus
time in minutes. For each islet, we see the behavior of a representative slow cell
and a fast cell since we observe that cells of the same type synchronize their
bursting even for very small coupling strength.

As we can see in Figures 2 and 5, when the cells are uncoupled the behavior
of a fast cell is significantly different to the behavior of a slow cell. We also note
that the bursting behaviors for uncoupled cells are the same for different islet
structures. As we can see, this is true for both the three variable model and
seven variable model, though the burst periods and amplitude are different for
each model.

However, as we can see by comparing plots (a) and (b) in each of Figures 3
and 6, the burst period is already synchronized when there is a coupling strength
of 0.1 between cells for the three variable model and a coupling strength of 100 pS
for the seven variable model. We observe that although the burst period is the
same at such a coupling strength, there is still a difference in the behavior of
the bursting. For a stronger coupling strength of 1 for the three variable model
and 1000 pS for the seven variable model, these differences between slow and
fast cells are far less visible. We observe this same behavior for each of the five
structures.

The five plots (a) through (e) in Figures 4 and 7 contain plots of average

18

burst period in minutes versus coupling strength for a representative fast cell
and slow cell for each islet structure. To compute the average burst period of
a cell, we first find the times at which the voltage of the cell exceeds −60 mV.
We then determine the time at which a burst ends by checking if it takes more
than 100 ms for the three variable model and 1,000 ms for the seven variable
model for the voltage to be greater than −60 mV again. The beginning of each
burst is defined as the next time at which the voltage is above −60 mV. The
burst period is then defined as the average of the differences between the start
of bursts and the differences between the end of bursts.

As we would expect, the burst period is the same for the uncoupled cells.
Insets have been added to Figures 4 (a) and (b) to clarify this point since the
burst period of slow and fast cells increase when there is a very small coupling
strength for the grouped and split grouped islet structures. In all other cases
we observe that the burst period and bursting behavior for the same coupling
strength varies for different islet structures. As we previously noted, the burst
period synchronizes at a very small coupling strength for all five islet structures.
We observe that as the connection heterogeneity of the structure increases the
synchronization coupling strength decreases. For each islet structure the average
burst period remains constant above a certain coupling strength. This coupling
strength varies for each islet structure. The average burst period for very strong
coupling strengths also varies for different islet structures.

Another difference between the bursting behavior of cells for different islet
structures is in the intermediate coupling strengths. Plots (f) in Figures 4 and 7
contain plots of peak coupling strength versus connection heterogeneity of the
islet for each model. The peak coupling strength is defined as the coupling
strength at which the average burst period is slowest after the synchronization
of slow and fast cells. To compare the values of coupling strength quantitatively,
the dimensionless coupling strength in Figure 4 (f) can be multiplied by 265 pS,
as explained above. These plots demonstrate that as connection heterogeneity
increases, the peak coupling strength decreases. This demonstrates the appro-
priateness of the definition for connection heterogeneity of an islet structure in
Section 2.4.

Tables 3 and 4 collect the coupling strengths for each islet structure at which
(i) the slow and fast cells synchronize, (ii) the peak burst period is achieved,
and (iii) the burst period stops changing as coupling strength increases. These
coupling strengths are determined using the five plots (a) through (e) of average
burst period vs. coupling strength for each islet structure in Figures 4 and 7.
We define synchronization as when the burst period of the slow and fast cells are
within 1.25 seconds of each other. The peak coupling strength is given by the
highest point after synchronization, and leveled refers to the coupling strength,
after which the lines are essentially flat; we considered more data than are
shown in the plots, hence the extent of the horizontal axes in the five plots (a)
through (e) in Figures 4 and 7 were actually set after determining the leveled
coupling strength. Since these tables contain coupling strengths of particular
physiological interest, we test the numerics in Section 5 for each model for these
coupling strengths.

19

(a) fast cell (b) slow cell

Figure 2: Bursting behavior of uncoupled cells for the three variable model.

(a) fast cell (b) slow cell

(c) fast cell (d) slow cell

Figure 3: Bursting behavior of cells in an islet with equally distributed structure (ch = 1) for
the three variable model. (a) and (b) islet with coupling strength of 0.1. (c) and (d) islet with
coupling strength of 1.

20

(a) ch = 0.0928 (b) ch = 0.1712

(c) ch = 0.2693 (d) ch = 0.4261

(e) ch = 1.0000 (f)

Figure 4: Average burst period over a range of coupling strengths for cells for the three vari-
able model: (a) grouped structure, (b) split grouped structure, (c) layered middle structure,
(d) layered split structure, (e) equally distributed structure. (f) Peak coupling strength vs.
connection heterogeneity.

Table 3: Synchronization, peak, and leveled coupling strengths for each islet structure for the
three variable model.

Coupling Strength Grouped Split Grouped Layered Middle Layered Split Equal
(ch = 0.0928) (ch = 0.1712) (ch = 0.2693) (ch = 0.4261) (ch = 1.0000)

Synchronization 0.06 0.03 0.03 0.02 0.02
Peak 2.60 1.30 0.80 0.40 0.10

Leveled 15.00 10.00 3.00 2.00 1.00

21

(a) fast cell (b) slow cell

Figure 5: Bursting behavior of uncoupled cells for the seven variable model.

(a) fast cell (b) slow cell

(c) fast cell (d) slow cell

Figure 6: Bursting behavior of cells in an islet with equally distributed structure (ch = 1) for
the seven variable model. (a) and (b) islet with coupling strength of 100 pS. (c) and (d) islet
with coupling strength of 1000 pS.

22

(a) ch = 0.0928 (b) ch = 0.1712

(c) ch = 0.2693 (d) ch = 0.4261

(e) ch = 1.0000 (f)

Figure 7: Average burst period over a range of coupling strengths for cells for the seven vari-
able model: (a) grouped structure, (b) split grouped structure, (c) layered middle structure,
(d) layered split structure, (e) equally distributed structure. (f) Peak coupling strength vs.
connection heterogeneity.

Table 4: Synchronization, peak, and leveled coupling strengths for each islet structure for the
seven variable model.

Coupling Strength Grouped Split Grouped Layered Middle Layered Split Equal
(ch = 0.0928) (ch = 0.1712) (ch = 0.2693) (ch = 0.4261) (ch = 1.0000)

Synchronization 100 pS 60 pS 40 pS 20 pS 6 pS
Peak 600 pS 340 pS 200 pS 140 pS 40 pS

Leveled 1100 pS 600 pS 500 pS 500 pS 400 pS

23

5. Numerical Performance Studies

This section contains the results of our numerical performance studies, first
for the three variable model in the two Tables 5–6 and the one Figure 8, and
then for the seven variable model in the three Tables 7–9. Results were obtained
using ode15s, ode45, and ode113 with a relative tolerance of 10−3 and an
absolute tolerance of 10−5 on the respective estimator of the ODE error. We
begin by reviewing the results for the three variable model since we are able
to analytically compute the Jacobian, allowing us to compare the performance
results for this numerical method to those for the automatically differentiated
Jacobian. We then demonstrate the results for the seven variable model, where
the computation of the analytical Jacobian is too complex to write by hand.

Simulations were run on one node of the 86-node cluster tara in the UMBC
High Performance Computing Facility (www.umbc.edu/hpcf). This node con-
tains two quad-core Intel Nehalem X5550 processors (2.66 GHz, 8,192 kB cache)
and 24 GB of memory. While Matlab is nominally serial, it does use multi-
threading on this kind of node with 8 computational cores available. And natu-
rally, an advantage of a large cluster is that many runs of Matlab can take place
simultaneously, which is a powerful enabler for studies with many cases, such
as reported in the previous section.

24

5.1. Three Variable Model

Table 5 contains the runtimes for the coupling strengths from Table 3 for
all five islet structures using the memory modified ode15s with sparse Jacobian
for the three variable model. We consider these different coupling strengths to
test the ODE solver across a range of conditions. For all five islet structures
we observe that the peak coupling strength has the shortest runtime, followed
by the leveled coupling strength, with the synchronization coupling strength
having the longest runtime. We also observe that the runtime is approximately
the same for analogous simulations for each of the five islet structures. Based on
this observation, we only show results for the equally distributed islet structure
in the following.

Matlab’s ode15s returns useful statistics about its performance. One statis-
tic of particular interest is the time stepping behavior of the ODE solver. We
find that for analogous simulations the synchronization coupling strength took
the most steps, followed by the leveled coupling strength, and then the peak
coupling strength. As an example, Figure 8 (a) contains the time step size
vs. time and Figure 8 (b) contains the method order vs. time for the equally
distributed islet structure using the memory modified ode15s with sparse Ja-

Table 5: Runtimes in seconds for the three variable model for all islet structures using memory
modified ode15s and sparse Jacobian.

(a) Synchronization coupling strength
N Grouped Split Grouped Layered Middle Layered Split Equally Distributed
2 12 16 16 19 18
3 16 24 23 28 24
4 19 26 28 32 34
5 24 34 37 41 39
6 37 42 54 54 56
7 45 55 68 74 69
8 61 76 86 102 101
9 86 104 130 134 134
10 105 152 187 215 205

(b) Peak coupling strength
N Grouped Split Grouped Layered Middle Layered Split Equally Distributed
2 7 7 5 8 4
3 9 8 12 9 4
4 10 10 8 9 7
5 12 13 12 10 9
6 10 11 17 14 13
7 15 14 27 22 18
8 24 22 35 29 28
9 39 39 46 44 29
10 64 51 63 59 57

(c) Leveled coupling strength
N Grouped Split Grouped Layered Middle Layered Split Equally Distributed
2 7 7 5 7 8
3 8 8 11 8 8
4 10 10 12 10 10
5 13 12 12 12 13
6 18 18 15 17 17
7 26 24 29 24 25
8 34 33 37 33 37
9 49 49 48 44 50
10 68 71 64 67 75

25

(a) (b)

Figure 8: Numerical performance data for the three variable model for a 10×10×10 computa-
tional islet with peak coupling strength using memory modified ode15s with sparse Jacobian:
(a) time step ∆t vs. t, (b) method order k vs. t.

cobian. We observe that time step size decreases and method order increases
as the cell bursts. This is exactly the desired behavior for an ODE solver with
sophisticated time step and method order control based on an error estimator
for the ODE error.

Table 6 contains the runtimes for the equally distributed islet structure with
the synchronization coupling strength, peak coupling strength, and leveled cou-
pling strength for all available numerical methods. We observe that in most
cases the runtime is longer for both of the non-stiff solvers ode45 and ode113,
when compared to the runtimes of the more efficient ode15s methods, particu-
larly for larger coupling strengths. The function ode45 is competitive at peak
coupling strength, which is the least stiff case with shorter runtimes than the
other coupling strengths. But overall, these timing results demonstrate the need
to use a stiff solver when running simulations for a range of coupling strengths.

We observe that simply providing a dense Jacobian results in a small im-
provement in runtime when compared to the numerical Jacobian. In the instance
of N = 10 for the peak coupling strength, for instance, we observe an improve-
ment in runtime from 4,140 seconds to 3,588 seconds. Even if we provide a
sparse Jacobian, we only observe a small improvement in runtime to 2,268 sec-
onds. If we provide the sparsity pattern of the Jacobian, we observe a runtime of
2,245 seconds, similar to when the sparse Jacobian is provided. We also observe
that the original ode15s with automatically differentiated Jacobian has a run-
time of 2,296 seconds, which is on the same order of magnitude improvement as
the original ode15s with sparse Jacobian. We can conclude that for the original
ode15s, having a sparse Jacobian matrix is the key, which is accomplished by
any of the latter three methods.

By using the memory modified ode15s with numerical Jacobian, we observe
a improvement in runtime from the original 4,140 seconds to 1,813 seconds,
which is a larger improvement than any of the methods described so far. We
observe a small improvement in runtime by providing a dense Jacobian, with

26

a runtime of 1,276 seconds. By providing a sparse Jacobian, we observe a
much more dramatic improvement in runtime to just 57 seconds. This is an
improvement in runtime on the order of 100 times faster than the original ode15s
with numerical Jacobian. We observe that providing the sparsity pattern of
the Jacobian results in a runtime of 53 seconds. This is slightly faster than
using the sparse Jacobian. The memory modified ode15s with automatically
differentiated Jacobian has a runtime of 89 seconds, which is still on the same
order of magnitude improvement as the memory modified ode15s with sparse
Jacobian or sparsity pattern. We can conclude overall that using the memory
modified ode15s with any of the three methods that use a sparse Jacobian
provided the dramatic improvement of runtime.

We observe that ode113 runs out of memory for larger N for some of the
coupling strengths. A memory study confirms that as we increase N , the mem-
ory usage increases until it runs out of memory for the worst cases of large N
using ode113 for synchronization and leveled coupling strength. A study of the
memory required to run our simulations with ode15s implementations found
that the most memory for these simulations was 16.1 GB for the least efficient
method of numerical Jacobian with original ode15s. Since ode15s stores a large
amount of information for each step, the number of steps directly affects the
memory usage. We found that providing an analytical Jacobian results in a
small improvement in memory usage. The largest improvement in runtime is
obtained by using the memory modified ode15s with sparse Jacobian. We ob-
serve that the most memory efficient implementations are obtained by providing
the sparsity pattern of the Jacobian or the providing the AD Jacobian function
to the memory modified ode15s.

We can conclude from these complete studies of all available numerical meth-
ods for the three variable model that the memory modified ode15s with sparse
Jacobian, sparsity pattern of the Jacobian, and the AD provided Jacobian are
essentially equally good and are at least two orders of magnitude faster than the
other methods. On the scale of this improvement, using the AD provided Ja-
cobian is not worse than hand-coding an analytically derived Jacobian, but the
AD provided Jacobian is a lot easier and less error prone. Providing the sparsity
pattern of the Jacobian is yet easier than providing the automatically differen-
tiated Jacobian since it does not require the use and setup of ADiMat. Note,
however, that since providing the sparsity pattern is not automated, providing
the incorrect pattern may result in a drastic increase in runtime.

27

Table 6: Runtimes in seconds for the three variable model for the equally distributed islet
structure using all numerical methods, where O.M. signifies a simulation that ran out of
memory.

(a
)

S
y
n
ch

ro
n
iz

a
ti

o
n

c
o
u
p
li
n
g

st
re

n
g
th

O
ri

g
in

a
l

o
d
e
1
5
s

M
e
m

o
ry

m
o
d
ifi

e
d

o
d
e
1
5
s

o
d
e
4
5

o
d
e
1
1
3

N
n
u
m

.
J
a
c
.

d
e
n
se

J
a
c
.

sp
a
rs

e
J
a
c
.

p
a
tt

e
rn

A
D

n
u
m

.
J
a
c
.

d
e
n
se

J
a
c
.

sp
a
rs

e
J
a
c
.

p
a
tt

e
rn

A
D

2
2
8

1
9

1
9

2
2

3
8

2
4

1
8

1
8

2
1

3
6

1
3

1
6

3
5
9

5
1

4
7

5
7

6
0

3
7

2
7

2
4

2
8

3
7

1
9

9
2

4
2
6
1

2
2
9

2
2
3

2
3
5

2
3
0

6
8

4
1

3
4

3
7

4
6

3
9

7
9
3

5
9
7
2

7
3
7

7
1
9

8
2
2

6
9
0

1
1
3

6
8

3
9

4
4

5
0

8
1

2
,5

5
1

6
2
,5

9
6

2
,5

5
0

2
,2

8
9

2
,4

2
2

2
,2

0
8

2
7
7

1
8
4

5
6

6
0

7
3

1
8
2

8
,1

1
5

7
7
,7

5
9

7
,2

0
6

6
,7

2
0

7
,9

0
2

6
,7

2
4

5
8
6

4
0
8

6
9

7
5

9
1

3
5
5

2
6
,2

2
4

8
1
3
,6

2
2

1
2
,7

6
7

1
2
,1

4
8

1
3
,4

6
3

1
2
,4

1
9

1
,2

7
4

9
1
2

1
0
1

1
0
5

1
3
8

6
0
8

4
3
,8

6
9

9
3
7
,9

4
3

3
5
,4

0
6

3
7
,0

5
3

3
6
,5

3
7

3
3
,8

0
4

2
,2

6
2

1
,7

3
2

1
3
4

1
3
3

1
6
8

1
,0

6
4

6
8
,6

1
2

1
0

6
8
,6

4
4

6
2
,3

7
4

6
0
,6

6
7

6
4
,6

1
4

6
1
,9

9
3

5
,0

0
9

3
,7

7
4

2
0
5

1
8
5

2
7
1

1
,6

3
3

O
.M

.
(b

)
P

e
a
k

c
o
u
p
li
n
g

st
re

n
g
th

O
ri

g
in

a
l

o
d
e
1
5
s

M
e
m

o
ry

m
o
d
ifi

e
d

o
d
e
1
5
s

o
d
e
4
5

o
d
e
1
1
3

N
n
u
m

.
J
a
c
.

d
e
n
se

J
a
c
.

sp
a
rs

e
J
a
c
.

p
a
tt

e
rn

A
D

n
u
m

.
J
a
c
.

d
e
n
se

J
a
c
.

sp
a
rs

e
J
a
c
.

p
a
tt

e
rn

A
D

2
5

4
4

5
8

5
4

4
5

7
7

7
3

8
5

5
6

8
7

5
4

5
7

9
2
4

4
2
3

1
6

1
3

1
5

1
7

1
6

9
7

8
1
0

1
4

1
1
7

5
5
8

4
4

3
6

3
9

4
0

3
1

1
6

9
1
1

1
3

2
7

4
8
1

6
1
7
9

1
5
2

1
0
4

1
1
1

1
1
0

8
6

4
6

1
3

1
6

1
9

5
2

1
,3

9
4

7
5
0
8

4
4
9

3
2
3

3
4
7

3
3
3

1
9
7

1
2
9

1
8

2
0

2
7

1
0
2

4
,6

0
7

8
1
,0

2
8

8
6
5

6
0
1

6
2
7

6
1
7

4
5
6

2
9
3

2
8

2
9

4
4

1
5
7

7
,4

8
0

9
1
,5

7
0

1
,2

9
4

9
6
3

8
5
6

9
1
3

6
7
6

4
4
0

2
9

2
9

4
7

2
2
1

7
,9

5
8

1
0

4
,1

4
0

3
,5

8
8

2
,2

6
8

2
,2

4
5

2
,2

9
6

1
,8

1
3

1
,2

7
6

5
7

5
3

8
9

3
5
4

1
4
,4

4
4

(c
)

L
e
v
e
le

d
c
o
u
p
li
n
g

st
re

n
g
th

O
ri

g
in

a
l

o
d
e
1
5
s

M
e
m

o
ry

m
o
d
ifi

e
d

o
d
e
1
5
s

o
d
e
4
5

o
d
e
1
1
3

N
n
u
m

.
J
a
c
.

d
e
n
se

J
a
c
.

sp
a
rs

e
J
a
c
.

p
a
tt

e
rn

A
D

n
u
m

.
J
a
c
.

d
e
n
se

J
a
c
.

sp
a
rs

e
J
a
c
.

p
a
tt

e
rn

A
D

2
1
0

7
8

9
1
6

1
0

7
8

8
1
5

3
4

4
9

3
2
0

1
2

1
1

1
4

2
0

1
7

9
8

1
0

1
6

7
4

5
4
4

4
4
8

2
7

2
5

2
8

3
5

3
3

1
3

1
0

1
2

2
0

2
1
6

3
,3

2
4

5
1
1
7

8
4

7
0

7
2

7
8

6
4

2
5

1
3

1
5

2
4

5
8
0

1
4
,2

6
3

6
2
9
5

2
0
4

1
5
8

1
9
5

1
7
1

1
3
1

6
5

1
7

2
0

3
2

1
,3

5
6

1
2
8
,1

8
5

7
8
0
6

7
4
9

5
6
7

6
5
6

6
0
9

2
3
9

1
6
5

2
5

3
0

3
5

2
,8

4
6

O
.M

.
8

1
,5

4
5

1
,3

2
4

1
,0

1
5

1
,1

3
6

9
9
2

4
6
7

3
5
8

3
7

3
7

4
5

6
,9

6
5

O
.M

.
9

4
,4

3
2

3
,8

0
1

3
,0

8
5

3
,5

6
7

3
,5

9
0

9
3
6

7
4
6

5
0

5
3

6
6

8
,1

0
5

O
.M

.
1
0

7
,6

4
9

7
,0

4
9

4
,9

9
2

5
,9

6
7

5
,5

2
8

2
,0

6
1

1
,7

2
5

7
5

7
3

9
8

1
1
,2

4
9

O
.M

.

28

5.2. Seven Variable Model

Table 7 contains the runtimes for the coupling strengths from Table 4 for
all five islet structures using the method of memory modified ode15s with AD
provided Jacobian for the seven variable model. We observe that for analogous
simulations the runtimes are approximately the same for each islet structure.
We also observe that the runtimes for the simulations using synchronization
coupling strength is greater than the runtimes for the other coupling strengths
for all five islet structures. For islet structures with larger connection hetero-
geneities (layered split and equally distributed) the runtime for simulations using
the leveled coupling strength is greater than the runtime for simulations using
the peak coupling strength. However, for smaller connection heterogeneities
simulations using the peak coupling strength has a greater runtime than simu-
lations using the leveled coupling strength. We again proceed with the equally
distributed islet structure as example in the following.

Table 8 contains the runtimes for the equally distributed islet structure using
all available numerical methods. Since it is too complicated to analytically
compute the Jacobian of the seven variable model, results for the dense and
sparse Jacobians are not available for the seven variable model. First of all,
Matlab’s ode45 returns an invalid solution, so it cannot be used for this model;

Table 7: Runtimes in seconds for the seven variable model for all islet structures using memory
modified ode15s and AD Jacobian.

(a) Synchronization coupling strength
N Grouped Split Grouped Layered Middle Layered Split Equally Distributed
2 23 34 39 43 166
3 34 30 45 61 98
4 56 76 76 91 153
5 107 104 98 132 132
6 181 188 131 199 286
7 302 305 232 273 252
8 494 492 368 433 629
9 673 678 400 577 511
10 1,075 995 597 816 1,406

(b) Peak coupling strength
N Grouped Split Grouped Layered Middle Layered Split Equally Distributed
2 81 86 22 56 24
3 67 57 70 41 41
4 63 67 56 56 42
5 55 67 73 59 61
6 91 66 66 82 98
7 134 94 195 148 135
8 324 249 210 242 230
9 354 345 306 378 321
10 993 576 552 508 487

(c) Leveled coupling strength
N Grouped Split Grouped Layered Middle Layered Split Equally Distributed
2 94 92 48 98 92
3 91 82 107 90 104
4 98 82 71 107 126
5 99 76 76 75 180
6 95 114 139 114 139
7 116 124 174 162 214
8 184 160 296 318 322
9 278 217 405 342 398
10 686 466 551 560 545

29

even tightening the error tolerance on this solver does not resolve this problem.
This is a cautionary tale about applying a non-stiff solver to a stiff problem.
The error estimated in this well-known and reliable solver is not able to detect
that it is producing garbage. For simulations that did not run out of memory,
ode113 has a greater runtime than any of the numerical methods using ode15s.
This demonstrates dramatically the need for a stiff solver for this model. Among
the stiff solvers, we observe that the original ode15s can run out of memory for
larger N . For the cases where it does not run out of memory, providing the AD
Jacobian often achieves a slightly faster runtime. Providing the sparsity pattern
of the Jacobian to the original ode15s achieves yet faster runtimes for small N ,
though as N increases the runtime also generally increases in comparison to
AD Jacobian. In fact, for the synchronization coupling strength for N = 7 the
AD Jacobian has a runtime of approximately 2 days whereas the run where
the sparsity pattern is provided takes longer than the maximum time of 5 days
allowed on our system. But clearly, neither providing the sparsity pattern of
the Jacobian nor providing the AD Jacobian fixes the fundamental problem of
the original ode15s running out of memory. This necessitates the use of the
memory modified ode15s. Already with a numerical Jacobian, the modified
ode15s is significantly faster, in addition to never running out of memory, also
for cases, where the original ode15s does not run out of memory. In turn, both
providing the sparsity pattern of the Jacobian and providing an AD Jacobian

Table 8: Runtimes in seconds for the seven variable model for the equally distributed islet
structure using all available numerical methods, where O.M. signifies a simulation that ran
out of memory, E.T. signifies a simulation that ran for over 5 days, and I.S. represents a
simulation that provided an invalid solution.

(a) Synchronization coupling strength

Original ode15s Memory modified ode15s ode45 ode113
N num. Jac. pattern AD num. Jac. pattern AD

2 171 152 261 72 62 166 I.S. 302
3 1,092 1,083 1,166 99 70 98 I.S. 3,993
4 6,830 7,240 7,071 283 108 153 I.S. 26,226
5 18,630 18,869 18,222 616 112 132 I.S. 78,473
6 68,546 72,427 66,111 2,279 192 286 I.S. O.M.
7 182,047 E.T. 190,144 3,431 216 252 I.S. O.M.
8 O.M. O.M. O.M. 11,698 381 629 I.S. O.M.
9 O.M. O.M. O.M. 14,383 408 511 I.S. O.M.
10 O.M. O.M. O.M. 45,500 694 1,406 I.S. O.M.

(b) Peak coupling strength

Original ode15s Memory modified ode15s ode45 ode113
N num. Jac. pattern AD num. Jac. pattern AD

2 24 23 31 16 17 24 I.S. 75
3 158 136 162 37 25 41 I.S. 1,029
4 770 728 769 92 35 42 I.S. 5,644
5 3,365 2,996 2,992 341 53 61 I.S. 20,006
6 10,102 8,447 9,366 1,015 83 98 I.S. 72,840
7 35,069 31,575 29,591 2,486 121 135 I.S. O.M.
8 58,785 58,057 51,590 6,401 180 230 I.S. O.M.
9 O.M. E.T. 81,200 14,087 254 321 I.S. O.M.
10 O.M. O.M. O.M. 29,243 356 487 I.S. O.M.

(c) Leveled coupling strength

Original ode15s Memory modified ode15s ode45 ode113
N num. Jac. pattern AD num. Jac. pattern AD

2 43 36 108 32 24 92 I.S. 1,066
3 217 169 240 77 30 104 I.S. 24,187
4 890 727 763 224 40 126 I.S. 168,222
5 2,687 2,293 2,281 673 56 180 I.S. O.M.
6 12,498 13,166 11,750 1,428 118 139 I.S. O.M.
7 39,893 34,844 36,075 3,768 152 214 I.S. O.M.
8 79,623 70,794 78,744 9,563 221 322 I.S. O.M.
9 O.M. O.M. O.M. 16,971 312 398 I.S. O.M.
10 O.M. O.M. O.M. 38,551 438 545 I.S. O.M.

30

to the memory modified ode15s achieves dramatically faster runtimes, both
essentially on the same order of magnitude. Thus, with the combination of an
AD provided Jacobian or the sparsity pattern of the Jacobian with the memory
modified ode15s, we can solve problems for all desired values of N and do so
in very reasonable times even for the largest islet and across the full range of
coupling strengths.

To conclude, Table 9 contains the observed memory usage for the same
cases as studied in Table 8. We study the memory usage here, since many of
our simulations run out of memory and to provide some indication what size
of memory might be needed to perform simulations for the full seven variable
model. As expected, the largest improvement in memory usage is observed by
using the memory modified ode15s instead of the original one. The improvement
is so large that unlike when using the original ode15s, we are now able to run
all simulations without running out of memory. The memory usage is smallest
for the memory modified ode15s with AD Jacobian or sparsity pattern of the
Jacobian. This demonstrates that there is also a memory advantage to providing
a Jacobian function or sparsity pattern to the ODE solver.

Table 9: Observed memory usage in GB for the seven variable model for the equally distributed
islet structure using all available numerical methods, where O.M. signifies a simulation that
ran out of memory, E.T. signifies a simulation that ran for over 5 days, and I.S. represents a
simulation that provided an invalid solution.

(a) Synchronization coupling strength

Original ode15s Memory modified ode15s ode45 ode113
N num. Jac. pattern AD num. Jac. pattern AD

2 1.6 1.5 1.3 1.2 1.1 1.0 I.S. 1.8
3 1.9 2.6 2.6 1.3 1.3 1.1 I.S. 2.6
4 4.0 5.9 5.4 1.8 1.5 1.5 I.S. 10.0
5 8.8 8.4 8.4 2.4 2.6 1.7 I.S. 17.9
6 16.4 15.7 15.9 3.6 3.1 2.2 I.S. O.M.
7 23.5 E.T. 23.0 4.6 4.1 4.2 I.S. O.M.
8 O.M. O.M. O.M. 6.2 7.5 5.1 I.S. O.M.
9 O.M. O.M. O.M. 8.3 6.1 6.0 I.S. O.M.
10 O.M. O.M. O.M. 11.7 8.2 8.2 I.S. O.M.

(b) Peak coupling strength

Original ode15s Memory modified ode15s ode45 ode113
N num. Jac. pattern AD num. Jac. pattern AD

2 1.3 1.2 1.2 1.2 1.1 1.1 I.S. 1.8
3 1.7 1.6 1.6 1.3 1.2 1.2 I.S. 2.6
4 2.7 2.4 1.8 1.6 1.3 1.3 I.S. 5.3
5 4.4 4.1 4.1 1.8 1.5 1.5 I.S. 9.8
6 7.3 6.7 6.9 2.2 1.8 1.8 I.S. 16.8
7 11.2 10.7 10.5 2.8 2.3 2.3 I.S. O.M.
8 15.8 15.4 15.7 3.7 2.8 2.9 I.S. O.M.
9 O.M. E.T. 22.6 5.6 4.0 3.6 I.S. O.M.
10 O.M. O.M. O.M. 8.0 6.5 5.2 I.S. O.M.

(c) Leveled coupling strength

Original ode15s Memory modified ode15s ode45 ode113
N num. Jac. pattern AD num. Jac. pattern AD

2 1.3 1.2 1.2 1.2 1.0 1.0 I.S. 2.6
3 1.8 1.7 1.6 1.4 1.2 1.2 I.S. 8.9
4 2.1 2.4 2.4 1.5 1.3 1.3 I.S. 21.9
5 3.9 3.8 3.8 1.8 1.6 1.6 I.S. O.M.
6 7.9 7.6 7.6 2.4 1.8 2.0 I.S. O.M.
7 11.9 11.1 11.3 3.0 2.4 2.3 I.S. O.M.
8 20.2 17.5 19.3 4.0 3.2 2.8 I.S. O.M.
9 O.M. O.M. O.M. 5.6 3.6 4.2 I.S. O.M.
10 O.M. O.M. O.M. 8.1 4.5 5.7 I.S. O.M.

31

6. Discussion

The most important summaries of the numerical performance results in Sec-
tion 5 are in Table 6 for the three variable model and Table 8 for the seven
variable model. These tables compare the runtimes of all numerical methods
that are available for the respective models. Both tables drive home the need for
using an appropriate ODE solver designed for stiff problems, since both popular
non-stiff solvers (ode45 and ode113) may not be able to handle the problem or
are exceedingly inefficient eventually, when the problem becomes complex, such
as the seven variable model that we are really interested in.

For the three variable model, where timing results for all numerical methods
are available for values of N considered, the greatest improvement in runtime
over a numerically approximated Jacobian results from having a sparse Jacobian
matrix to use. This is true for any of the three methods that provide this. It
is interesting that providing the sparsity pattern of the Jacobian, which gives a
numerically approximated Jacobian, is faster than the true Jacobian functions,
whether hand-coded sparse or AD provided. These comparisons among the
methods apply both to the original ode15s and to the memory modified ode15s,
but much more so to the latter, where the methods with a sparse Jacobian
are all two orders of magnitude faster than with using a numerical Jacobian.
However, the overriding observation from Table 6 has to be that all cases of the
memory modified ode15s are faster than any using the original ode15s, with
runtimes of hours being eventually reduced to a few minutes. This points to
the crucial importance of memory management to solve large problems, which
is one important purpose of studying the seven variable model.

For the seven variable model, the results make it clear that the memory
modified ode15s is necessary to solve problems for large islets with 1,000 or
more cells and that this modified solver also improves the runtime significantly
in all cases. Additional dramatic improvement in runtimes can be observed when
providing the sparsity pattern of the Jacobian or the AD provided Jacobian in
the memory modified ode15s. For instance for 1,000 cells, Table 8 shows that
with these tools, simulation times on the order of a 10 minutes (600 seconds)
suffice to obtain solutions with the same fidelity as with simulations taking
10 hours (36,000 seconds). Thus, simulations for sophisticated models, for which
it is unworkable to manually program the Jacobian, are possible in Matlab, a
language that additionally has the benefit to allow for reliable programming of
complicated model equations.

For comparison, Pu et al. [17, page 7] report a runtime of 26 hours for a
simulation with 1,000 cells up to 2,000 s. Our simulations in Table 8 have a
final time of 500,000 ms or 500 s, so note one fourth of 26 hours as 6.5 hours or
23,400 s, when comparing to the corresponding N = 10 results in Table 8. The
results of [17] using LSODE programmed in Fortran 90 need to be compared
then to the memory modified ode15s with numerical Jacobian, since LSODE
does not store results at all time steps. The Matlab results in Table 8 can then
be observed to be on the order of a factor of two slower than the LSODE results
in [17]. This demonstrates that the algorithm in Matlab’s ode15s can be an

32

efficient simulation tool, even with a numerical Jacobian, i.e., without the user
providing a Jacobian function, provided its memory management is improved.
When combining the memory modified ode15s with the AD Jacobian, it clearly
outperforms LSODE in Fortran 90, by being faster on the order of 20 times.
This in turn indicates the wide applicability of our conclusions concerning an
AD provided Jacobian as a method, since also LSODE could perform faster, if
the user provided it with a Jacobian function. This would be possible in the
same way as described here for Matlab by using automatic differentiation tools
for source-code languages Fortran or C.

The most important summaries of the physiological results in Section 4 are
in Figure 4 for the three variable model and Figure 7 for the seven variable
model. The non monotonic average burst period between fast and slow cells for
increasing coupling agrees with the coupled cell work of Sherman and Rinzel
[21]. Figures 4 (f) and 7 (f) show that interestingly, the arrangement of the
connected fast and slow heterogeneous cells impacts the peak bursting period
monotonically. For increasing connection heterogeneity from low, segregated, to
high, connected only to opposite cell type, the peak bursting period decreases.

Recent work has shown an interesting result that modified KATP channels
can be compensated for by gap junctional coupling knockdown [12]. We can
make a similar comparison with a change in connection heterogeneity compen-
sating with an altered gap junctional coupling strength. For example, in beta
cell fission or neogenesis new beta cells incorporate into existing islet structures
[10]. To balance a change in the connectivity, as measured by the connection
heterogeneity, gap junctional coupling may be able to or may even need to
adjust to manage any altered average burst period. The local gap junctional
connectivity in this case may be critical, which can be adjusted in the model.
Our work suggests qualitatively if not quantitatively how changes in connection
heterogeneity and coupling strength can be compensatory.

While we selected fast and slow heterogeneity parameters to study the nu-
merical framework and coupling strengths and arrangements, we would expect
similar emergent behavior in the entire islet for a range of individual β-cell
bursting periods between fast and slow and with sufficiently strong coupling.
For weaker coupling, we might expect a loss of regular bursting pattern. Fur-
thermore, the arrangement of the heterogeneous cells along with individual cell
characteristics and coupling strength may play a key role in defining the emer-
gent islet behavior, especially when extended to other cell types such as α- and
δ-cells.

Acknowledgments

We thank the two anonymous referees for their thorough reviews and invalu-
able input.

The hardware used in the studies is part of the UMBC High Performance
Computing Facility (HPCF). The facility is supported by the U.S. National
Science Foundation through the MRI program (grant nos. CNS–0821258 and

33

CNS–1228778) and the SCREMS program (grant no. DMS–0821311), with ad-
ditional support from the University of Maryland, Baltimore County (UMBC).
See www.umbc.edu/hpcf for more information on HPCF and the projects using
its resources.

34

References

[1] I. Ajmera, M. Swat, C. Laibe, N. L. Novere, and V. Chelliah. The impact
of mathematical modeling on the understanding of diabetes and related
complications. CPT: pharmacomet. syst. pharmacol., 2, 2013.

[2] R. Bertram and A. Sherman. A calcium-based phantom bursting model for
pancreatic islets. Bull. Math. Biol., 66:1313–1344, 2004.

[3] R. Bertram, A. Sherman, and L. S. Satin. Metabolic and electrical oscil-
lations: partners in controlling pulsatile insulin secretion. Am. J. Physiol.
Endocrinol. Metab., 293(4):E890–900, 2007.

[4] C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch, and A. Vehreschild. Com-
bining source transformation and operator overloading techniques to com-
pute derivatives for MATLAB programs. In Proceedings of the Second
IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2002), pages 65–72, Los Alamitos, CA, USA, 2002. IEEE Com-
puter Society.

[5] Centers for Disease Control and Prevention. National diabetes fact sheet:
national estimates and general information on diabetes and prediabetes
in the United States, 2011. http://www.cdc.gov/diabetes/pubs/pdf/

ndfs_2011.pdf, accessed November 06, 2014.

[6] T. R. Chay and J. Keizer. Minimal model for membrane oscillations in the
pancreatic beta-cell. Biophys. J., 42(2):181–190, 1983.

[7] S. Conde, T. Lebair, C. Raastad, V. Smith, K. Stern, D. Trott, M. K. Gob-
bert, B. E. Peercy, and A. Sherman. Enabling physiologically representa-
tive simulations of pancreatic beta cells. Technical Report HPCF–2010–
21, UMBC High Performance Computing Facility, University of Maryland,
Baltimore County, 2010.

[8] G. de Vries, A. Sherman, and H.-R. Zhu. Diffusively coupled bursters:
Effects of cell heterogeneity. Bull. Math. Biol., 60:1167–1200, 1998.

[9] G. Gearhart, S. Jiang, T. J. May, J. Pan, S. Khuvis, M. K. Gobbert, B. E.
Peercy, and A. Sherman. Dynamics of computational islet simulations:
Islets with majority mutated open KATP channels retain bursting. Letters
in Biomathematics, 2014. [Invited paper for the inaugural issue of this
journal, published originally in the Proceedings of the Sixth Symposium
on BEER 2013].

[10] J. Jo, G. Kilimnik, A. Kim, C. Guo, V. Periwal, and M. Hara. Formation of
pancreatic islets involves coordinated expansion of small islets and fission
of large interconnected islet-like structures. Biophys. J., 101(3):565–574,
2011.

35

[11] S. Khuvis. Efficiency improvements in numerical methods for studying
connectivity in a model of a pancreatic islet of heterogeneous beta cells.
M.S. thesis, University of Maryland, Baltimore County, 2013.

[12] L. M. Nguyen, M. Pozzoli, T. H. Hraha, and R. K. P. Benninger. Decreasing
Cx36 gap junction coupling compensates for overactive KATP channels to
restore insulin secretion and prevent hyperglycemia in a mouse model of
neonatal diabetes. Diabetes, 63(5):1685–1697, 2014.

[13] A. Nittala, S. Ghosh, and X. Wang. Investigating the role of islet cytoar-
chitecture in its oscillation using a new beta-cell cluster model. PLoS ONE,
2(10):e983, 10 2007.

[14] C. S. Nunemaker, J. F. Dishinger, S. B. Dula, R. Wu, M. J. Merrins, K. R.
Reid, A. Sherman, R. T. Kennedy, and L. S. Satin. Glucose metabolism,
islet architecture, and genetic homogeneity in imprinting of [Ca2+]i and
insulin rhythms in mouse islets. PLoS ONE, 4(12):e8428, 12 2009.

[15] C. S. Nunemaker and L. S. Satin. A tale of two rhythms: a comparative
review of the pulsatile endocrine systems regulating insulin and GnRH
secretion. Cellscience Reviews, 2(1):92–126, 2005.

[16] J. Pan, G. Gearhart, S. Jiang, and T. J. May. Loss of metabolic oscillations
in a multicellular computational islet of the pancreas. UMBC Review:
Journal of Undergraduate Research, 15:31–53, 2014.

[17] Y. Pu, S. Lee, D. Samuels, L. Watson, and Y. Cao. The effect of unhealthy
beta-cells on insulin secretion in pancreatic islets. BMC Medical Genomics,
6(Suppl 3):S6, 2013.

[18] P. Rorsman and G. Trube. Calcium and delayed potassium currents in
mouse pancreatic beta-cells under voltage-clamp conditions. J. Physiol,
374:531–550, 1986.

[19] L. F. Shampine and M. W. Reichelt. The MATLAB ODE suite. SIAM J.
Sci. Comput., 18(1):1–22, 1997.

[20] A. Sherman. Contributions of modeling to understanding stimulus-
secretion coupling in pancreatic beta-cells. Am. J. Physiol. Endocrinol.
Metab., 271(2):E362–372, 1996.

[21] A. Sherman and J. Rinzel. Rhythmogenic effects of weak electrotonic cou-
pling in neuronal models. Proceedings of the National Academy of Sciences
of the United States of America, 89:2471–2474, 1992.

[22] A. Sherman, L. Xu, and C. Stokes. Estimating and eliminating junctional
current in coupled cell populations by leak subtraction. a computational
study. The Journal of Membrane Biology, 143(1):79–87, 1995.

36

[23] P. Smolen. A model for glycolytic oscillations based on skeletal muscle
phosphofructokinase kinetics. J. Theor. Biol., 174(2):137–148, 1995.

[24] K. Tsaneva-Atanasova and A. Sherman. Accounting for near-normal glu-
cose sensitivity in Kir6.2[AAA] transgenic mice. Biophys. J., 97(9):2409–
2418, 2009.

37

