
Analysis and Prediction of 911 Calls based on Location using Spark Big 
Data Platform 

 
Project Report for Course IS 789 (Big Data Fundamentals and Techniques), Fall 2019 

Team 1: Ketki Deshpande, Shruti Pandey, Sukhada Deshpande 

Faculty Mentor: Jianwu Wang 
Department of Information Systems, University of Maryland, Baltimore County 

 
Abstract 

Proper management of critical resources like Police Force and Ambulance Services is the key to 
establish peace quickly in times of crisis. When a police district receives a 911 call, quick 
response can be the difference between quiet handling and full riots in any area. Through this 
project, we have tried to determine frequent patterns for establishing association between day 
and time of the week, police district-based location and the reason for the call. We have also 
tried to predict the number of calls from a particular location (using longitude and latitude data). 
This data will help us manage police resources and put them to apt use as and when required.  
We have used Spark based algorithm known as FP-Growth for finding the frequent patterns in 
the calls and a couple of Regression algorithms Decision Tree and Random Forest for the 
prediction of calls based on location. Results show that weekend evenings are the busiest time 
for the emergency services, as most of the calls are made in the evenings of Friday, Saturday and 
Sunday. Also, Northwestern, Southwestern and Northeastern Police Districts get most of the 
calls in the evening. Based on the existing training data, we were able to predict new calls for a 
particular location.  
 

1. Introduction  
The crime rates have been increasing in recent times and so is the volume of 911 calls made. In 
such circumstance, a quick response to any 911 call is crucial. Time is of essence and an 
effective response is dependent on many factors including but not limited to the availability of 
police force and emergency vehicles. Keeping this in mind, it becomes critical to quickly and 
correctly process any 911 calls made and be ready for any kind of situations.  
This can be achieved by finding out patterns between time and day of the week and the type of 
calls made. Also predicting what location might have the most calls using past data can be very 
effective. Since accuracy of the algorithm and speed of analysis are important factors, it is 
essential to use the right processing technique to empower our forces with the correct 
information in anticipation of any situation that might need immediate attention. For the 
purposes of this experimental project, the 911 records for Baltimore county have been used. This 
record set is publicly available and updated multiple times daily. 
This report focuses on establishing patterns using the FP Growth algorithm. Multiple patterns 
were established between the calls and time of a day and day of the week. There is also an 
attempt to predict 911 calls from a given location based on latitude and longitude using 
Regression techniques. Solving this critical problem of management of resources can be made a 
lot simpler by using the best available technology in the most efficient way which is suitable for 
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our dataset. From the selection of algorithm to managing the number of executors and cores used 
to perform the calculations, these decisions will help us in providing an accurate estimate of how 
to distribute our resources to better handle emergency or non-emergency 911 calls at any point in 
time and from any location.  
The later sections of this report talk in detail about the FP Growth algorithm and why it was a 
better choice for the Baltimore county 911 calls dataset instead of the more popular Apriori 
algorithm. Further arguments are made in comparison of decision trees versus the ensemble 
Random Forest Method which gives more accurate results than the former and their performance 
with respect to this data. To conclude, the effect of number of cores and executors on the 
execution time of an algorithm is scrutinized. This project was run on the UMBC High 
Performance Computing Facility (HPCF) provided by UMBC and all calculations and algorithm 
executions were made over the available Hadoop cluster. Spark was used for all implementations 
and that also is part of the reason for why one algorithm was more favored over another. This 
will be discussed in further detail in the upcoming sections.  

2. Dataset 
For understanding the call types, and predicting the location of any 911 calls, the publicly 
available dataset for 911 calls in Baltimore county was used. It was downloaded from Baltimore 
police department’s website [1]. This dataset includes both emergency and non-emergency calls 
and consists of about 6.7 million records and 17 attributes at the time it was downloaded. The 
dataset is updated multiple times in a day. 

2.1 Data Selection 
For project purposes, only the data from January 1, 2019 was used in all the executions. The size 
of the final dataset came to about 1 million rows which translated to 130MB approximately, 
making it a big data dataset. To effectively predict the time of call and mine the patterns, the 
datatype of ‘CallDateTime’ column was changed from String to ‘DateTime’. This was further 
broken down into Date and Time separately to mine the pattern between Day of the Week, Time 
of the Day (Morning, Afternoon, Evening, Night) and made in a format required by respective 
algorithms separately. Since all columns were not useful in our executions for predictions, the 
following columns were dropped- 
RecordId, District, PolicePost, CounsilDistrict, SheriffDistrict, Community_statistical_area, 
Census_Tracts, VRIZones 
This sliced dataset was loaded into HDFS environment made available by UMBC HPCF which 
is accessible by the Spark Programs. 
 
2.2 Exploratory Data Analysis 

Before making any predictions, the data was analyzed and explored to answer some common 
questions like the most common reason for calling 911, zip-codes making the most frequent 911 
calls and the number of non-emergency calls made. This exploratory analysis enables trying to 
look for patterns easier and also provides a benchmark for what locations are more probable of 
having emergencies requiring immediate response. 
The data exploration was performed by querying the data to get certain kind of information. SQL 
queries were written which extracted the required data from the Temporary View which was 
created on the Dataframe. Below command created the TempView required to query data 
directly using SQL: 
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df.createOrReplaceTempView("data_911") 
 
It was important to find out what is the most common reason to call emergency number, and 
above TempView was queried for the same using below query. 
 
sql("select Description, count(Description) from data_911 group by 
Description order by count(Description) desc").show() 
 
Below Bar Graph shows the output that above query generated.  
 

 
Figure 1: Plot of Number of 911 Calls per Description 

 

The output shows that most common few reasons for calling emergency number is actually not 
an emergency, the reasons are categorized as non-emergency. When filtered the data to drop 
‘non-emergency’ category and again queried for the most common reason, the output is 
represented by below Bar Graph: 
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Figure 2: Plot of Number of 911 Calls per Description (when Non-Emergency category was excluded) 

 
To get to know the count of ‘non-emergency’ calls that were made to 911 emergency number, 
below query was used: 
 
sql("Select Priority, count(Priority) from data_911 where Priority=='Non-
Emergency' group by Priority").show() 
  
The count came out to be 513407 which is almost over 50% of the total data that was selected for 
the purpose of this project. It was evident that half of the total calls that are made to emergency 
services are not for the emergency purposes. This information was useful in finding the Frequent 
Patterns in a given data. If all of data was used then most of Frequent Patterns were generated 
from the non-emergency section of the data with relations explaining reason of the call to its 
Priority. Knowing the count of ‘non-emergency’ calls was useful in limiting what data to use for 
finding Frequent Patterns and ultimately finding the correct patterns that were useful and 
interesting both. 
 
The data was also queried to find out from which Zip Code the emergency number received most 
calls. Below query was used to find out this information: 

sql("Select ZipCode, count(ZipCode) as ct from data_911 group by ZipCode 
order by ct desc").show() 
 
Below Bar Graph shows the output of the above query: 
 



 5 

Figure 3: Plot of Number of 911 Calls per Zip-code 

 

As this project aims to predict number of calls from a particular location, knowing which Zip 
Code gets the maximum calls was an important information to get a general idea about most 
busy zones for emergency services. 

 

3 Mining Frequent Patterns from Data 
Although most common use of Frequent Pattern Mining Algorithm [2] is for the ‘market-basket 
analysis’ [3], it is not limited only to this analysis. It might be interesting to find out Frequent 
Patterns in many other cases where data needs to be analyzed in a way to find out which two (or 
more) things occur together most frequently. Frequent Pattern Mining is a process to analyze the 
data with the aim to discover relations between the different attributes or associations between 
them.  This project aims to find out frequent patterns in Description of a Call (reason for calling 
911), Police District (used for location), Day of the Week and Time of the Day. It was a very 
useful information to know for example most of the calls for ‘Auto Accident’ were made in the 
evening. Identifying such patterns is useful in predicting where the police force might be needed 
most at a given time and hence help in better resource management. 
 
FP-Growth using Spark 
 
FP-Growth algorithm, where ‘FP’ stands for ‘Frequent Patterns’, was selected for the task of 
mining frequent patterns from the data over the popular algorithm Apriori [4]. The main 
difference between the Apriori and FP-Growth [5] is that FP-Growth creates FP-Tree, a suffix-
tree structure whereas Apriori generates increasing number of candidate item-sets for mining 
frequent patterns. Using tree structure, a large amount of data can be compressed into smaller 



 6 

data structure and the number of repeated database scans that Apriori performs can be avoided. 
The memory and time requirements for FP-Growth are also reduced as Apriori algorithm. So, 
considering the amount of data that was processed in this project for finding patterns in a data, a 
faster algorithm like FP-Growth was selected. It is designed to work best in distributed 
environment. 
Spark uses parallel version of FP-Growth algorithm known as PFP [6]. PFP distributes the work 
of FP-tree for implementing the algorithm in parallel. The work distribution is based on 
transaction suffixes and hence this algorithm is more scalable in distributed environment than 
single-machine implementation. Spark has both RDD based and Dataframe based APIs for using 
FP-Growth algorithm. This project uses both APIs, and compare their performances on the same 
input data. 
Spark’s Dataframe based API [7] takes three hyperparameters which are explained below: 

• minSupport – It is minimum support (minimum frequency) that is required by an 
itemset to be identified as frequent.  

• minConfidence – It is a minimum confidence (minimum probability that the 
association rule holds true) for generating association rules. This parameter is only used 
while generating association rules and not used for mining frequent patterns. 

• numPartitions – It is total number of partitions used for distribution of work. 

The model created using this API outputs frequent itemset, association rules and also generates 
predictions on the input data using the generated association rules. 
Spark’s RDD based API uses two of the above three hyperparameters which are minSupport 
and numPartitions. The main difference apart from the fact that Dataframe based API uses 
Dataframe as input and RDD based API uses RDD as input, RDD based API does not have 
minConfidence as hyperparameter and there is no direct method or function to generate 
association rules using Python. Java and Scala APIs do have a function for generating 
association rules. 
 
4 Regression for Predicting Count of Emergency Calls 

Regression is a supervised learning method that can be primarily used for predicting and 
forecasting a range of numeric values from the given dataset. Since it is a supervised learning 
method, the training dataset mentioning the predicting class (the label which we are going to 
predict) need to be provided to the model in advance. For the purposes of this project, regression 
has been used to predict the number of 911 calls received from a location (considering latitude 
and longitude). Predicting 911 calls based on the location help us manage the police force 
resources of that particular vicinity and put them to apt use as and when required. To predict the 
number of 911 calls from a geo-location, regression task has been implemented using the most 
used machine learning algorithms: Decision Tree algorithm and the Random Forest algorithm.  
 
4.1 Decision Tree 

Decision tree is a popular method for machine learning tasks of classification and regression. 
Decision tress are widely used since they are intuitive, easy to interpret, does not require scaling 
of data and able to capture non-linearities and feature interactions. [8] Decision tree is a 
flowchart-like structure that includes a root node, branches and leaf nodes. Each internal node 
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represents a “test” on an attribute, each branch represents the outcome of the test, and each leaf 
node represents a class label. [9] Decision tree identifies the best attribute from the dataset and 
place that attribute at the root of the tree. Then split the training set into subsets which can be 
made in such a way that each subset contains data with the same value for an attribute. We need 
to continue the splitting step until we find the leaf nodes in all branches of the tree. [9] 
Since decision trees are able to capture non-linearity, they are a good choice for this project. 
According to the Spark website, “decision tree is a greedy algorithm that performs a recursive 
binary partitioning of the feature space. The tree predicts the same label for each bottommost 
(leaf) partition. Each partition is chosen greedily by selecting the best split from a set of possible 
splits, in order to maximize the information gain at a tree node. In other words, the split chosen 
at each tree node is chosen from the set argmaxsIG(D,s) where IG(D,s) is the information gain 
when a split s is applied to a dataset D”.  

 
4.2 Random Forest 

Random forest is a Supervised Learning algorithm for classification and regression which uses 
ensemble learning method which combines the predictions from multiple machine learning 
algorithms together to make more accurate predictions than any individual model. In random 
forest multiple decision trees are combined to determine the final output rather than relying on 
single individual decision trees. The trees in random forests are run in parallel. There is no 
interaction between these trees while building the trees. [10] Random forest is one of the most 
accurate learning algorithms which runs efficiently on large datasets.  
In random forest method, sample data points are taken repeatedly form the training dataset so that 
each data point is having equal probability of getting selected and all the samples have same size 
as the original training data set. A random forest regressor model is trained at each bootstrap 
sample and a prediction is recorded for each sample. Now the ensemble prediction is calculated 
by averaging the predictions of the above trees producing the final prediction. [11] 

5 Data Pre-processing 

Data preprocessing is one of the important steps in machine learning to build an efficient and 
effective model. The dataset contains of about 6.7 million records and this amount of real-world 
data is always incomplete and consist of errors. Preprocessing transforms this raw data into an 
understandable format [12] 
 
5.1 Data Pre-processing for FP-Growth 

To enable the FP-Growth to determine patterns in the call data, the data was preprocessed and 
made available in a format that algorithm requires. An important factor that this project aims to 
predict is the time of call and the type of call. To enable this pattern finding, the Timestamp 
column was divided into two columns- day of week and time of day. The column was split such 
that each date was represented as the respective day of the week, for example Monday, Tuesday 
and so on. The time of day was divided into four different values: Morning, Afternoon, Evening 
and Night based on the time. The time 6 AM to less than 12 PM was classified as Morning, 12 
PM to less than 4 PM was classified as Afternoon, 4 PM to less than 9 PM was classified as 
Evening and time from 9 PM to less than 6 PM, full overnight time was classified as Night. 
These two columns were the primary inputs in all the pattern analysis executions. In addition to 
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these two columns, the columns Priority, Description, IncidentLocation (specifies rough area 
location or street address), ZipCode, Neighborhood, PoliceDistrict (used for location analysis) 
are joined together, comma separated into one column. This data was saved on HDFS as a .txt.  
The reason for saving the preprocessed data as a .txt is that both the RDD-based and Dataframe-
based APIs can read this data from the .txt right from HDFS. 
 
5.2  Data Pre-processing for Regression 

In the proposed analysis, we have performed few data preprocessing techniques to obtain our 
data in good structure and understandable format. The dataset used was the same as mentioned 
earlier, but as different methods need input in different forms, the data was converted to the 
required format. The primary step was to read the dataset as a .csv file from HDFS which was 
executed on UMBC’s HPCF. The rows with null or missing values for the columns 
‘PoliceDistrict’, ‘CallNumber’, ‘Priority’, ‘Description’, ‘Zipcode’, ‘IncidentLocation’, 
‘Neighborhood’ was dropped. Since the project aims at predicting calls from a geolocation, any 
rows that did not have the geolocation values specified were also dropped. Furthermore, the 
timestamp attribute was split into columns for year, month, dayofmonth, dayofweek, dayofyear, 
hour, minute, weekofyear. This splitting helps in predicting calls at a given time of a day from a 
given location. Followed by this, all attributes were converted to numeric since we are 
performing regression analysis on the dataset. This data was grouped by latitude, longitude, 
month, dayofmonth to get the current count of calls on a given day from a location. The data 
frame was then converted into an RDD and saved in ‘libsvm’ format to be fed into the algorithm 
implementations. The label value selected for both the algorithms was the ‘count of calls’ and the 
features were latitude, longitude, month, dayofmonth. 
For both the approaches- Decision Tree and Random Forest, the model was trained on 70% data 
and tested on the remaining 30%. Evaluation metrics considered were Root Mean Square Error 
and Mean Absolute Error.  
 
6 Experiments  

After analyzing and pre-processing the data, next step is to train a model and analyze the output 
it generates. For this project FP-Growth, Decision Tree and Random Forest algorithms were 
trained and their generated outputs were analyzed. Models were trained using different values of 
their hyperparameters to get the required output, an interesting pattern or required prediction. 
The code used for this project can be found at the GitHub1 link. 
 
6.1 Experiments for FP-Growth 

Experiments are performed to extract the frequent patterns in a data using different values of 
hyperparameters. Different combination of input values (different column values) would also 
result in different patterns. So, the experiments are conducted using different column values from 
the data as well as for the different values of hyperparameters. It was observed that both the APIs 
result in the same output for same data and same values of hyperparameters. Below is the sample 
output (frequent patterns in a data) when used hyperparameter value ‘minSupport = 0.1’ and 

                                                
1 https://github.com/ketkideshpande/911_call_analysis 
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input values from the columns Description (reason for call), PoliceDistrict (used for location), 
day of week and time of day. 
Sample output frequent itemset from Dataframe API: 
+---------------+------+ 
|items       |freq  | 
+---------------+------+ 
|[Mon]       |61225 | 
|[Northwestern] |45518 | 
|[911/NO  VOICE]|57995 | 
|[Morning]   |92226 | 
|[Wed]       |62671 | 
|[Southeastern] |52234 | 
|[Sat]       |63586 | 
|[Sun]       |57903 | 
|[Thu]       |61507 | 
|[Southwestern] |45898 | 
|[Afternoon] |96365 | 
|[DISORDERLY]   |58519 | 
|[Northeastern] |61078 | 
|[Central]   |57982 | 
|[Fri]       |65327 | 
|[Tue]       |62180 | 
|[Southern]  |51000 | 
|[Evening]   |127123| 
+---------------+------+ 
 
Sample output frequent itemset from RDD API: 
 
FreqItemset(items=['Mon'], freq=61225) 
FreqItemset(items=['Northwestern'], freq=45518) 
FreqItemset(items=['911/NO  VOICE'], freq=57995) 
FreqItemset(items=['Morning'], freq=92226) 
FreqItemset(items=['Wed'], freq=62671) 
FreqItemset(items=['Southeastern'], freq=52234) 
FreqItemset(items=['Sun'], freq=57903) 
FreqItemset(items=['Sat'], freq=63586) 
FreqItemset(items=['Thu'], freq=61507) 
FreqItemset(items=['Southwestern'], freq=45898) 
FreqItemset(items=['DISORDERLY'], freq=58519) 
FreqItemset(items=['Afternoon'], freq=96365) 
FreqItemset(items=['Northeastern'], freq=61078) 
FreqItemset(items=['Fri'], freq=65327) 
FreqItemset(items=['Central'], freq=57982) 
FreqItemset(items=['Southern'], freq=51000) 
FreqItemset(items=['Tue'], freq=62180) 
FreqItemset(items=['Evening'], freq=127123) 
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Format of the output may different but the sample frequent itemset that both Dataframe and 
RDD APIs generate is same. Below table represents the output association rules from Dataframe 
API for different values from input columns and hyperparameters. Table represents only a few 
interesting association rules that were generated from all the conducted experiments.  

 

Columns Used Hyperparameters Result 

Description, 
PoliceDistrict, 
Day of week, 
Time of day 

minSupport=0.025 
minConfidence=0.3
5 
 

DISORDERLY -> Evening 
0.4305282276373543 
NARCOTICS -> Evening 
0.4099707613161109 
AUTO ACCIDENT -> Evening 
0.36967832420938335 

Police 
District, Day 
of week, Time 
of Day 
 

minSupport=0.04 
minConfidence=0.4 
 

 

Northeastern -> 
Evening  0.42874946185394147 
Southwestern -> 
Evening  0.41580984637716223 
Northwestern -> 
Evening  0.40904667826497215 
 

Description, 
Police 
District, day 
of week 
 

minSupport=0.02 
minConfidence = 
0.15 
 

 

DISORDERLY -> 
Central  0.15715970667168083 
Central -> 
Fri  0.15290952364526922 
Northeastern -> 
Sat  0.1514456923933331 
 

Table 1: Association Rules with different inputs using FP-Growth Dataframe API 
 
The above table mentions about the column values that were used as input to FP-Growth while 
creating a model and hyperparameters that were used. The ‘Result’ column of the above table 
explains about the association rules that were generated. For example, in the rule ‘DISORDERLY 
-> Evening 0.4305282276373543’, the first word ‘disorderly’ is antecedent, second word 
‘evening’ is consequent and the number represents confidence. Antecedent is a term (or item) 
that is frequently found in an input data and consequent is a term (or item) which is present in a 
transaction along with the term antecedent with a confidence given in the result. 
 
6.2 Experiments for Decision Tree Regression 
 
Below is the output for Decision tree algorithm showing the label, features (latitude, longitude, 
month, dayofmonth), prediction, and prediction_label. The label is the count of calls which we 
are predicting from a particular location, features are the input to the model from which we are 
predicting the label, prediction is our predicted output and predicted_label is just a standardize 
column to the nearest whole number. 
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Output for Decision Tree Regressor 

 
From the above output, we can see that we are providing longitude, latitude, month, dayofmonth 
(in feature column) and label (1) and the model is correctly predicting the count of calls for some 
values in the dataset giving good accuracy. For example, in the first record, we are providing a 
label 1 to the model along with features and the model is correctly predicting the count of call as 
1 for that location. The feature column represents a number of features available, encoded form 
of features which is required for the algorithm, and the actual values of the features. Here 4 is the 
number of features that is latitude, longitude, month and dayofmonth, [0,1,2,3] are the encoded 
form of features which is required for the algorithm and from 39  onwards are the actual features.  
 
6.3 Experiments for Random Forest Regression  
 
Below is the output of Random forest algorithm showing the label, features (latitude, longitude, 
month, dayofmonth), indexedFeatures, prediction, and prediction_label. We have applied the 
input to random forest algorithm in the same way as we have applied the input to decision tree 
algorithm. The label is the count of calls which we are predicting from a particular location, 
features are the input to the model from which we are predicting the label, prediction is our 
predicted output and predicted_label is just a standardize column to the nearest whole number. 
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Output for Random Forest Regressor 

 
From the above table, we can say that the accuracy for the random forest algorithm is not good. 
The prediction is not as good as decision tree algorithm as we can see a lot of wrong predictions 
for some values in the dataset.   
We have also calculated the root mean square error and mean absolute error for both random 
forest and decision tree algorithms to get the accuracy result and we got below result mentioned 
in the table. 
 

Algorithms Runtime RMSE MAE 
Decision Tree 0m38.008s 0.0247515 1.16086 

Random Forest 0m44.746s 2.06309 1.14838 
Table 2: Comparison between Decision Tree and Random Forest approaches 

 
 

From the above table, it is seen that we got a better runtime for decision tree algorithm as 
compared to random forest algorithm. Also, root mean square error (RMSE) for the decision tree 
is way better than the random forest which means the accuracy of decision tree is better than 
random forest algorithm. There is not much difference in the mean absolute error (MAE) for 
decision tree and random forest.  
Usually random forest gives better result as it is an ensemble learning method. But here in our 
analysis we can see the random forest is not performing well as compared to decision tree 
algorithm.   
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7 Performance Evaluations 

All the experiments were conducted on the High-Performance Computing Facility (HPCF) 
provided by UMBC. HPCF has a Big Data Cluster consisting of a Management Node and eight 
Worker Nodes. Majority of the computing tasks are performed on the Worker Nodes, each of 
which has two 18-core Intel Xeon Gold 6140 Skylake CPUs, for a total of 36 cores per node 
[13]. Each node has 384 GB of memory and 48 TB SATA hard disks and are connected together 
by an Ethernet connection with a 10 Gb/s speed. Users can directly use/ work on an Edge/Login 
Node which is the only Node accessible SSH/SCP from outside of the cluster. The UMBC AFS 
storage can be accessed via Big Data Edge/Login Node. Apart from that, Edge/Login Node has a 
local directory named /scratch which is shared between all users and has a capacity of 800 GB. 
Data transfer to HDFS can be originated from /scratch directory. 
 
7.1 Performance Evaluation for FP-Growth 

As the Big Data Cluster is used for performing experiments, the performance is evaluated based 
on different combinations of Executors, Cores and Memory. We can manually specify then 
number of Executors, Cores and Memory and find out which combination works best for our 
program, the one that gets us a minimum execution time. The FP-Growth APIs, both Dataframe 
based and RDD based, have a hyperparameter called ‘numPartitions’ where we can specify 
how many partitions to use for distributing the work on. This hyperparameter has also been 
evaluated for the same input data.  
 
The table below shows the performance of our program for different number of Executors, Cores 
and Memory for Dataframe based API as well as RDD based API of FP-Growth algorithm: 
 

RDD API Dataframe API 

Executors Cores Memory Time Executors Cores Memory Time 
10 18 100g 0m19.229s 10 18 100g 0m24.598s 
10 24 10g 0m41.247s 10 24 10g 0m45.539s 
10 36 10g 0m40.989s 10 36 10g 0m48.505s 
10 36 100g 0m40.701s 10 36 100g 0m48.426s 
10 8 10g 0m19.627s 10 8 10g 0m26.995s 
10 4 10g 0m19.317s 10 4 10g 0m26.470s 
10 4 100g 0m21.146s 10 4 100g 0m27.716s 
2 4 10g 0m15.466s 2 4 10g 0m22.022s 
1 4 10g 0m15.942s 1 4 10g 0m21.265s 
4 4 10g 0m18.573s 4 4 10g 0m23.193s 
6 12 100g 0m17.137s 6 12 100g 0m23.198s 
8 12 100g 0m19.207s 8 12 100g 0m23.317s 

Table 3: Execution times for Dataframe based and RDD based APIs with different combinations of executors, cores and 
memory 

In the above table, the minimum execution time is highlighted. So, the general observation for 
the given input data is with a smaller number of executors, cores and memory the performance 
was improved. This might be due to the fact that input data is not big enough to actually use 
large number of cores and executors. 
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Below table explains the performance of Dataframe based and RDD based APIs for FP-Growth 
when the hyperparameter ‘numPartitions’ is used with different values: 
 

API Number of Partitions 
1 2 5 8 

Dataframe based 0m23.775s 0m24.004s 0m24.755s 0m26.429s 
RDD based 0m16.319s 0m16.864s 0m16.585s 0m17.551s 
Table 4: Execution times for Dataframe based and RDD based APIs with different number of partitions value of 

hyperparameter 
 
The observations show that performance is better when smaller number of partitions are used. 
Another interesting observation is that the RDD-based API performed much faster with the same 
amount of data as the Dataframe-based API. This contrasts with the general performance of 
RDD-based versus Dataframe-based APIs since the Dataframe-based APIs are known to perform 
better for most use cases.  
One argument that can be made in view of these observations is that depending on the data, since 
the algorithm being run is not taking columns from the dataset but arrays of data that have been 
designed to mine patterns, it is more efficient for the RDD-based API.  
 
 
7.2 Performance Evaluation for Regression 

The table below shows the performance of our program for different number of Executors, Cores 
and Memory for Decision Tree algorithm and Random Forest algorithm: 
 

Decision Tree Random Forest 
Executor Core Memory Time Executor Core Memory Time 

10 18 100g 0m32.278s 10 18 100g 0m45.616s 
10 24 10g 0m33.422s 4 18 100g 0m45.197s 
10 36 10g 0m33.878s 4 36 100g 0m47.301s 
10 36 100g 0m32.191s 4 10 100g 0m43.229s 
10 8 10g 0m35.828s 4 10 50g 0m46.173s 
10 4 10g 0m35.967s 10 10 10g 0m44.360s 
10 4 100g 0m33.163s 4 4 100g 0m43.445s 
2 4 10g 0m35.323s 10 10 100g 0m42.599s 
1 4 10g 0m34.222s 20 10 100g 0m44.089s 
4 36 100g 0m36.567s 25 25 100g 0m43.969s 
6 24 20g 0m31.946s 25 36 100g 0m42.513s 
6 36 100g 0m31.570s 36 36 100g 0m45.153s 
4 36 100g 0m33.889s 20 36 100g 0m44.923s 
8 36 50g 0m35.898s 30 36 100g 0m43.878s 

Table 5: Execution times for Decision Tree and Random Forest with different combinations of executors, cores and memory 
 
The observations show that performance is better when a greater number of cores and more 
memory is used. Another interesting observation is that the Decision Tree algorithm is faster 
than the Random Forest algorithm. This contrasts with the general concept that Random Forest is 
faster since it is an ensemble method.  
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8 Conclusion 

FP Growth works faster with a smaller number of cores and executors. Reason could be that, FP 
Growth is a tree algorithm and each node require root node. So even when implemented a 
parallel version of FP Growth, it may require more time. Also, the data that was used FP Growth 
RDD API produces faster result with same amount of data compared with Dataframe API. Even 
though Random Forest is an ensemble method and generally gives higher accuracy, for our 
dataset we could get lower RMSE value by Decision Tree. Increasing or decreasing the counts of 
executors, cores and memory does not seem to have more effect on the time of execution but still 
with higher number of executors and cores, we could get minimum execution time.  
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