
Analysis and Prediction of 911 Calls based on Location using Spark Big
Data Platform

Project Report for Course IS 789 (Big Data Fundamentals and Techniques), Fall 2019

Team 1: Ketki Deshpande, Shruti Pandey, Sukhada Deshpande

Faculty Mentor: Jianwu Wang
Department of Information Systems, University of Maryland, Baltimore County

Abstract

Proper management of critical resources like Police Force and Ambulance Services is the key to
establish peace quickly in times of crisis. When a police district receives a 911 call, quick
response can be the difference between quiet handling and full riots in any area. Through this
project, we have tried to determine frequent patterns for establishing association between day
and time of the week, police district-based location and the reason for the call. We have also
tried to predict the number of calls from a particular location (using longitude and latitude data).
This data will help us manage police resources and put them to apt use as and when required.
We have used Spark based algorithm known as FP-Growth for finding the frequent patterns in
the calls and a couple of Regression algorithms Decision Tree and Random Forest for the
prediction of calls based on location. Results show that weekend evenings are the busiest time
for the emergency services, as most of the calls are made in the evenings of Friday, Saturday and
Sunday. Also, Northwestern, Southwestern and Northeastern Police Districts get most of the
calls in the evening. Based on the existing training data, we were able to predict new calls for a
particular location.

1. Introduction
The crime rates have been increasing in recent times and so is the volume of 911 calls made. In
such circumstance, a quick response to any 911 call is crucial. Time is of essence and an
effective response is dependent on many factors including but not limited to the availability of
police force and emergency vehicles. Keeping this in mind, it becomes critical to quickly and
correctly process any 911 calls made and be ready for any kind of situations.
This can be achieved by finding out patterns between time and day of the week and the type of
calls made. Also predicting what location might have the most calls using past data can be very
effective. Since accuracy of the algorithm and speed of analysis are important factors, it is
essential to use the right processing technique to empower our forces with the correct
information in anticipation of any situation that might need immediate attention. For the
purposes of this experimental project, the 911 records for Baltimore county have been used. This
record set is publicly available and updated multiple times daily.
This report focuses on establishing patterns using the FP Growth algorithm. Multiple patterns
were established between the calls and time of a day and day of the week. There is also an
attempt to predict 911 calls from a given location based on latitude and longitude using
Regression techniques. Solving this critical problem of management of resources can be made a
lot simpler by using the best available technology in the most efficient way which is suitable for

 2

our dataset. From the selection of algorithm to managing the number of executors and cores used
to perform the calculations, these decisions will help us in providing an accurate estimate of how
to distribute our resources to better handle emergency or non-emergency 911 calls at any point in
time and from any location.
The later sections of this report talk in detail about the FP Growth algorithm and why it was a
better choice for the Baltimore county 911 calls dataset instead of the more popular Apriori
algorithm. Further arguments are made in comparison of decision trees versus the ensemble
Random Forest Method which gives more accurate results than the former and their performance
with respect to this data. To conclude, the effect of number of cores and executors on the
execution time of an algorithm is scrutinized. This project was run on the UMBC High
Performance Computing Facility (HPCF) provided by UMBC and all calculations and algorithm
executions were made over the available Hadoop cluster. Spark was used for all implementations
and that also is part of the reason for why one algorithm was more favored over another. This
will be discussed in further detail in the upcoming sections.

2. Dataset
For understanding the call types, and predicting the location of any 911 calls, the publicly
available dataset for 911 calls in Baltimore county was used. It was downloaded from Baltimore
police department’s website [1]. This dataset includes both emergency and non-emergency calls
and consists of about 6.7 million records and 17 attributes at the time it was downloaded. The
dataset is updated multiple times in a day.

2.1 Data Selection
For project purposes, only the data from January 1, 2019 was used in all the executions. The size
of the final dataset came to about 1 million rows which translated to 130MB approximately,
making it a big data dataset. To effectively predict the time of call and mine the patterns, the
datatype of ‘CallDateTime’ column was changed from String to ‘DateTime’. This was further
broken down into Date and Time separately to mine the pattern between Day of the Week, Time
of the Day (Morning, Afternoon, Evening, Night) and made in a format required by respective
algorithms separately. Since all columns were not useful in our executions for predictions, the
following columns were dropped-
RecordId, District, PolicePost, CounsilDistrict, SheriffDistrict, Community_statistical_area,
Census_Tracts, VRIZones
This sliced dataset was loaded into HDFS environment made available by UMBC HPCF which
is accessible by the Spark Programs.

2.2 Exploratory Data Analysis

Before making any predictions, the data was analyzed and explored to answer some common
questions like the most common reason for calling 911, zip-codes making the most frequent 911
calls and the number of non-emergency calls made. This exploratory analysis enables trying to
look for patterns easier and also provides a benchmark for what locations are more probable of
having emergencies requiring immediate response.
The data exploration was performed by querying the data to get certain kind of information. SQL
queries were written which extracted the required data from the Temporary View which was
created on the Dataframe. Below command created the TempView required to query data
directly using SQL:

 3

df.createOrReplaceTempView("data_911")

It was important to find out what is the most common reason to call emergency number, and
above TempView was queried for the same using below query.

sql("select Description, count(Description) from data_911 group by
Description order by count(Description) desc").show()

Below Bar Graph shows the output that above query generated.

Figure 1: Plot of Number of 911 Calls per Description

The output shows that most common few reasons for calling emergency number is actually not
an emergency, the reasons are categorized as non-emergency. When filtered the data to drop
‘non-emergency’ category and again queried for the most common reason, the output is
represented by below Bar Graph:

 4

Figure 2: Plot of Number of 911 Calls per Description (when Non-Emergency category was excluded)

To get to know the count of ‘non-emergency’ calls that were made to 911 emergency number,
below query was used:

sql("Select Priority, count(Priority) from data_911 where Priority=='Non-
Emergency' group by Priority").show()

The count came out to be 513407 which is almost over 50% of the total data that was selected for
the purpose of this project. It was evident that half of the total calls that are made to emergency
services are not for the emergency purposes. This information was useful in finding the Frequent
Patterns in a given data. If all of data was used then most of Frequent Patterns were generated
from the non-emergency section of the data with relations explaining reason of the call to its
Priority. Knowing the count of ‘non-emergency’ calls was useful in limiting what data to use for
finding Frequent Patterns and ultimately finding the correct patterns that were useful and
interesting both.

The data was also queried to find out from which Zip Code the emergency number received most
calls. Below query was used to find out this information:

sql("Select ZipCode, count(ZipCode) as ct from data_911 group by ZipCode
order by ct desc").show()

Below Bar Graph shows the output of the above query:

 5

Figure 3: Plot of Number of 911 Calls per Zip-code

As this project aims to predict number of calls from a particular location, knowing which Zip
Code gets the maximum calls was an important information to get a general idea about most
busy zones for emergency services.

3 Mining Frequent Patterns from Data
Although most common use of Frequent Pattern Mining Algorithm [2] is for the ‘market-basket
analysis’ [3], it is not limited only to this analysis. It might be interesting to find out Frequent
Patterns in many other cases where data needs to be analyzed in a way to find out which two (or
more) things occur together most frequently. Frequent Pattern Mining is a process to analyze the
data with the aim to discover relations between the different attributes or associations between
them. This project aims to find out frequent patterns in Description of a Call (reason for calling
911), Police District (used for location), Day of the Week and Time of the Day. It was a very
useful information to know for example most of the calls for ‘Auto Accident’ were made in the
evening. Identifying such patterns is useful in predicting where the police force might be needed
most at a given time and hence help in better resource management.

FP-Growth using Spark

FP-Growth algorithm, where ‘FP’ stands for ‘Frequent Patterns’, was selected for the task of
mining frequent patterns from the data over the popular algorithm Apriori [4]. The main
difference between the Apriori and FP-Growth [5] is that FP-Growth creates FP-Tree, a suffix-
tree structure whereas Apriori generates increasing number of candidate item-sets for mining
frequent patterns. Using tree structure, a large amount of data can be compressed into smaller

 6

data structure and the number of repeated database scans that Apriori performs can be avoided.
The memory and time requirements for FP-Growth are also reduced as Apriori algorithm. So,
considering the amount of data that was processed in this project for finding patterns in a data, a
faster algorithm like FP-Growth was selected. It is designed to work best in distributed
environment.
Spark uses parallel version of FP-Growth algorithm known as PFP [6]. PFP distributes the work
of FP-tree for implementing the algorithm in parallel. The work distribution is based on
transaction suffixes and hence this algorithm is more scalable in distributed environment than
single-machine implementation. Spark has both RDD based and Dataframe based APIs for using
FP-Growth algorithm. This project uses both APIs, and compare their performances on the same
input data.
Spark’s Dataframe based API [7] takes three hyperparameters which are explained below:

• minSupport – It is minimum support (minimum frequency) that is required by an
itemset to be identified as frequent.

• minConfidence – It is a minimum confidence (minimum probability that the
association rule holds true) for generating association rules. This parameter is only used
while generating association rules and not used for mining frequent patterns.

• numPartitions – It is total number of partitions used for distribution of work.

The model created using this API outputs frequent itemset, association rules and also generates
predictions on the input data using the generated association rules.
Spark’s RDD based API uses two of the above three hyperparameters which are minSupport
and numPartitions. The main difference apart from the fact that Dataframe based API uses
Dataframe as input and RDD based API uses RDD as input, RDD based API does not have
minConfidence as hyperparameter and there is no direct method or function to generate
association rules using Python. Java and Scala APIs do have a function for generating
association rules.

4 Regression for Predicting Count of Emergency Calls

Regression is a supervised learning method that can be primarily used for predicting and
forecasting a range of numeric values from the given dataset. Since it is a supervised learning
method, the training dataset mentioning the predicting class (the label which we are going to
predict) need to be provided to the model in advance. For the purposes of this project, regression
has been used to predict the number of 911 calls received from a location (considering latitude
and longitude). Predicting 911 calls based on the location help us manage the police force
resources of that particular vicinity and put them to apt use as and when required. To predict the
number of 911 calls from a geo-location, regression task has been implemented using the most
used machine learning algorithms: Decision Tree algorithm and the Random Forest algorithm.

4.1 Decision Tree

Decision tree is a popular method for machine learning tasks of classification and regression.
Decision tress are widely used since they are intuitive, easy to interpret, does not require scaling
of data and able to capture non-linearities and feature interactions. [8] Decision tree is a
flowchart-like structure that includes a root node, branches and leaf nodes. Each internal node

 7

represents a “test” on an attribute, each branch represents the outcome of the test, and each leaf
node represents a class label. [9] Decision tree identifies the best attribute from the dataset and
place that attribute at the root of the tree. Then split the training set into subsets which can be
made in such a way that each subset contains data with the same value for an attribute. We need
to continue the splitting step until we find the leaf nodes in all branches of the tree. [9]
Since decision trees are able to capture non-linearity, they are a good choice for this project.
According to the Spark website, “decision tree is a greedy algorithm that performs a recursive
binary partitioning of the feature space. The tree predicts the same label for each bottommost
(leaf) partition. Each partition is chosen greedily by selecting the best split from a set of possible
splits, in order to maximize the information gain at a tree node. In other words, the split chosen
at each tree node is chosen from the set argmaxsIG(D,s) where IG(D,s) is the information gain
when a split s is applied to a dataset D”.

4.2 Random Forest

Random forest is a Supervised Learning algorithm for classification and regression which uses
ensemble learning method which combines the predictions from multiple machine learning
algorithms together to make more accurate predictions than any individual model. In random
forest multiple decision trees are combined to determine the final output rather than relying on
single individual decision trees. The trees in random forests are run in parallel. There is no
interaction between these trees while building the trees. [10] Random forest is one of the most
accurate learning algorithms which runs efficiently on large datasets.
In random forest method, sample data points are taken repeatedly form the training dataset so that
each data point is having equal probability of getting selected and all the samples have same size
as the original training data set. A random forest regressor model is trained at each bootstrap
sample and a prediction is recorded for each sample. Now the ensemble prediction is calculated
by averaging the predictions of the above trees producing the final prediction. [11]

5 Data Pre-processing

Data preprocessing is one of the important steps in machine learning to build an efficient and
effective model. The dataset contains of about 6.7 million records and this amount of real-world
data is always incomplete and consist of errors. Preprocessing transforms this raw data into an
understandable format [12]

5.1 Data Pre-processing for FP-Growth

To enable the FP-Growth to determine patterns in the call data, the data was preprocessed and
made available in a format that algorithm requires. An important factor that this project aims to
predict is the time of call and the type of call. To enable this pattern finding, the Timestamp
column was divided into two columns- day of week and time of day. The column was split such
that each date was represented as the respective day of the week, for example Monday, Tuesday
and so on. The time of day was divided into four different values: Morning, Afternoon, Evening
and Night based on the time. The time 6 AM to less than 12 PM was classified as Morning, 12
PM to less than 4 PM was classified as Afternoon, 4 PM to less than 9 PM was classified as
Evening and time from 9 PM to less than 6 PM, full overnight time was classified as Night.
These two columns were the primary inputs in all the pattern analysis executions. In addition to

 8

these two columns, the columns Priority, Description, IncidentLocation (specifies rough area
location or street address), ZipCode, Neighborhood, PoliceDistrict (used for location analysis)
are joined together, comma separated into one column. This data was saved on HDFS as a .txt.
The reason for saving the preprocessed data as a .txt is that both the RDD-based and Dataframe-
based APIs can read this data from the .txt right from HDFS.

5.2 Data Pre-processing for Regression

In the proposed analysis, we have performed few data preprocessing techniques to obtain our
data in good structure and understandable format. The dataset used was the same as mentioned
earlier, but as different methods need input in different forms, the data was converted to the
required format. The primary step was to read the dataset as a .csv file from HDFS which was
executed on UMBC’s HPCF. The rows with null or missing values for the columns
‘PoliceDistrict’, ‘CallNumber’, ‘Priority’, ‘Description’, ‘Zipcode’, ‘IncidentLocation’,
‘Neighborhood’ was dropped. Since the project aims at predicting calls from a geolocation, any
rows that did not have the geolocation values specified were also dropped. Furthermore, the
timestamp attribute was split into columns for year, month, dayofmonth, dayofweek, dayofyear,
hour, minute, weekofyear. This splitting helps in predicting calls at a given time of a day from a
given location. Followed by this, all attributes were converted to numeric since we are
performing regression analysis on the dataset. This data was grouped by latitude, longitude,
month, dayofmonth to get the current count of calls on a given day from a location. The data
frame was then converted into an RDD and saved in ‘libsvm’ format to be fed into the algorithm
implementations. The label value selected for both the algorithms was the ‘count of calls’ and the
features were latitude, longitude, month, dayofmonth.
For both the approaches- Decision Tree and Random Forest, the model was trained on 70% data
and tested on the remaining 30%. Evaluation metrics considered were Root Mean Square Error
and Mean Absolute Error.

6 Experiments

After analyzing and pre-processing the data, next step is to train a model and analyze the output
it generates. For this project FP-Growth, Decision Tree and Random Forest algorithms were
trained and their generated outputs were analyzed. Models were trained using different values of
their hyperparameters to get the required output, an interesting pattern or required prediction.
The code used for this project can be found at the GitHub1 link.

6.1 Experiments for FP-Growth

Experiments are performed to extract the frequent patterns in a data using different values of
hyperparameters. Different combination of input values (different column values) would also
result in different patterns. So, the experiments are conducted using different column values from
the data as well as for the different values of hyperparameters. It was observed that both the APIs
result in the same output for same data and same values of hyperparameters. Below is the sample
output (frequent patterns in a data) when used hyperparameter value ‘minSupport = 0.1’ and

1 https://github.com/ketkideshpande/911_call_analysis

 9

input values from the columns Description (reason for call), PoliceDistrict (used for location),
day of week and time of day.
Sample output frequent itemset from Dataframe API:
+---------------+------+
|items |freq |
+---------------+------+
[Mon]	61225
[Northwestern]	45518
[911/NO VOICE]	57995
[Morning]	92226
[Wed]	62671
[Southeastern]	52234
[Sat]	63586
[Sun]	57903
[Thu]	61507
[Southwestern]	45898
[Afternoon]	96365
[DISORDERLY]	58519
[Northeastern]	61078
[Central]	57982
[Fri]	65327
[Tue]	62180
[Southern]	51000
[Evening]	127123
+---------------+------+

Sample output frequent itemset from RDD API:

FreqItemset(items=['Mon'], freq=61225)
FreqItemset(items=['Northwestern'], freq=45518)
FreqItemset(items=['911/NO VOICE'], freq=57995)
FreqItemset(items=['Morning'], freq=92226)
FreqItemset(items=['Wed'], freq=62671)
FreqItemset(items=['Southeastern'], freq=52234)
FreqItemset(items=['Sun'], freq=57903)
FreqItemset(items=['Sat'], freq=63586)
FreqItemset(items=['Thu'], freq=61507)
FreqItemset(items=['Southwestern'], freq=45898)
FreqItemset(items=['DISORDERLY'], freq=58519)
FreqItemset(items=['Afternoon'], freq=96365)
FreqItemset(items=['Northeastern'], freq=61078)
FreqItemset(items=['Fri'], freq=65327)
FreqItemset(items=['Central'], freq=57982)
FreqItemset(items=['Southern'], freq=51000)
FreqItemset(items=['Tue'], freq=62180)
FreqItemset(items=['Evening'], freq=127123)

 10

Format of the output may different but the sample frequent itemset that both Dataframe and
RDD APIs generate is same. Below table represents the output association rules from Dataframe
API for different values from input columns and hyperparameters. Table represents only a few
interesting association rules that were generated from all the conducted experiments.

Columns Used Hyperparameters Result

Description,
PoliceDistrict,
Day of week,
Time of day

minSupport=0.025
minConfidence=0.3
5

DISORDERLY -> Evening
0.4305282276373543
NARCOTICS -> Evening
0.4099707613161109
AUTO ACCIDENT -> Evening
0.36967832420938335

Police
District, Day
of week, Time
of Day

minSupport=0.04
minConfidence=0.4

Northeastern ->
Evening 0.42874946185394147
Southwestern ->
Evening 0.41580984637716223
Northwestern ->
Evening 0.40904667826497215

Description,
Police
District, day
of week

minSupport=0.02
minConfidence =
0.15

DISORDERLY ->
Central 0.15715970667168083
Central ->
Fri 0.15290952364526922
Northeastern ->
Sat 0.1514456923933331

Table 1: Association Rules with different inputs using FP-Growth Dataframe API

The above table mentions about the column values that were used as input to FP-Growth while
creating a model and hyperparameters that were used. The ‘Result’ column of the above table
explains about the association rules that were generated. For example, in the rule ‘DISORDERLY
-> Evening 0.4305282276373543’, the first word ‘disorderly’ is antecedent, second word
‘evening’ is consequent and the number represents confidence. Antecedent is a term (or item)
that is frequently found in an input data and consequent is a term (or item) which is present in a
transaction along with the term antecedent with a confidence given in the result.

6.2 Experiments for Decision Tree Regression

Below is the output for Decision tree algorithm showing the label, features (latitude, longitude,
month, dayofmonth), prediction, and prediction_label. The label is the count of calls which we
are predicting from a particular location, features are the input to the model from which we are
predicting the label, prediction is our predicted output and predicted_label is just a standardize
column to the nearest whole number.

 11

Output for Decision Tree Regressor

From the above output, we can see that we are providing longitude, latitude, month, dayofmonth
(in feature column) and label (1) and the model is correctly predicting the count of calls for some
values in the dataset giving good accuracy. For example, in the first record, we are providing a
label 1 to the model along with features and the model is correctly predicting the count of call as
1 for that location. The feature column represents a number of features available, encoded form
of features which is required for the algorithm, and the actual values of the features. Here 4 is the
number of features that is latitude, longitude, month and dayofmonth, [0,1,2,3] are the encoded
form of features which is required for the algorithm and from 39 onwards are the actual features.

6.3 Experiments for Random Forest Regression

Below is the output of Random forest algorithm showing the label, features (latitude, longitude,
month, dayofmonth), indexedFeatures, prediction, and prediction_label. We have applied the
input to random forest algorithm in the same way as we have applied the input to decision tree
algorithm. The label is the count of calls which we are predicting from a particular location,
features are the input to the model from which we are predicting the label, prediction is our
predicted output and predicted_label is just a standardize column to the nearest whole number.

 12

Output for Random Forest Regressor

From the above table, we can say that the accuracy for the random forest algorithm is not good.
The prediction is not as good as decision tree algorithm as we can see a lot of wrong predictions
for some values in the dataset.
We have also calculated the root mean square error and mean absolute error for both random
forest and decision tree algorithms to get the accuracy result and we got below result mentioned
in the table.

Algorithms Runtime RMSE MAE
Decision Tree 0m38.008s 0.0247515 1.16086

Random Forest 0m44.746s 2.06309 1.14838
Table 2: Comparison between Decision Tree and Random Forest approaches

From the above table, it is seen that we got a better runtime for decision tree algorithm as
compared to random forest algorithm. Also, root mean square error (RMSE) for the decision tree
is way better than the random forest which means the accuracy of decision tree is better than
random forest algorithm. There is not much difference in the mean absolute error (MAE) for
decision tree and random forest.
Usually random forest gives better result as it is an ensemble learning method. But here in our
analysis we can see the random forest is not performing well as compared to decision tree
algorithm.

 13

7 Performance Evaluations

All the experiments were conducted on the High-Performance Computing Facility (HPCF)
provided by UMBC. HPCF has a Big Data Cluster consisting of a Management Node and eight
Worker Nodes. Majority of the computing tasks are performed on the Worker Nodes, each of
which has two 18-core Intel Xeon Gold 6140 Skylake CPUs, for a total of 36 cores per node
[13]. Each node has 384 GB of memory and 48 TB SATA hard disks and are connected together
by an Ethernet connection with a 10 Gb/s speed. Users can directly use/ work on an Edge/Login
Node which is the only Node accessible SSH/SCP from outside of the cluster. The UMBC AFS
storage can be accessed via Big Data Edge/Login Node. Apart from that, Edge/Login Node has a
local directory named /scratch which is shared between all users and has a capacity of 800 GB.
Data transfer to HDFS can be originated from /scratch directory.

7.1 Performance Evaluation for FP-Growth

As the Big Data Cluster is used for performing experiments, the performance is evaluated based
on different combinations of Executors, Cores and Memory. We can manually specify then
number of Executors, Cores and Memory and find out which combination works best for our
program, the one that gets us a minimum execution time. The FP-Growth APIs, both Dataframe
based and RDD based, have a hyperparameter called ‘numPartitions’ where we can specify
how many partitions to use for distributing the work on. This hyperparameter has also been
evaluated for the same input data.

The table below shows the performance of our program for different number of Executors, Cores
and Memory for Dataframe based API as well as RDD based API of FP-Growth algorithm:

RDD API Dataframe API

Executors Cores Memory Time Executors Cores Memory Time
10 18 100g 0m19.229s 10 18 100g 0m24.598s
10 24 10g 0m41.247s 10 24 10g 0m45.539s
10 36 10g 0m40.989s 10 36 10g 0m48.505s
10 36 100g 0m40.701s 10 36 100g 0m48.426s
10 8 10g 0m19.627s 10 8 10g 0m26.995s
10 4 10g 0m19.317s 10 4 10g 0m26.470s
10 4 100g 0m21.146s 10 4 100g 0m27.716s
2 4 10g 0m15.466s 2 4 10g 0m22.022s
1 4 10g 0m15.942s 1 4 10g 0m21.265s
4 4 10g 0m18.573s 4 4 10g 0m23.193s
6 12 100g 0m17.137s 6 12 100g 0m23.198s
8 12 100g 0m19.207s 8 12 100g 0m23.317s

Table 3: Execution times for Dataframe based and RDD based APIs with different combinations of executors, cores and
memory

In the above table, the minimum execution time is highlighted. So, the general observation for
the given input data is with a smaller number of executors, cores and memory the performance
was improved. This might be due to the fact that input data is not big enough to actually use
large number of cores and executors.

 14

Below table explains the performance of Dataframe based and RDD based APIs for FP-Growth
when the hyperparameter ‘numPartitions’ is used with different values:

API Number of Partitions
1 2 5 8

Dataframe based 0m23.775s 0m24.004s 0m24.755s 0m26.429s
RDD based 0m16.319s 0m16.864s 0m16.585s 0m17.551s
Table 4: Execution times for Dataframe based and RDD based APIs with different number of partitions value of

hyperparameter

The observations show that performance is better when smaller number of partitions are used.
Another interesting observation is that the RDD-based API performed much faster with the same
amount of data as the Dataframe-based API. This contrasts with the general performance of
RDD-based versus Dataframe-based APIs since the Dataframe-based APIs are known to perform
better for most use cases.
One argument that can be made in view of these observations is that depending on the data, since
the algorithm being run is not taking columns from the dataset but arrays of data that have been
designed to mine patterns, it is more efficient for the RDD-based API.

7.2 Performance Evaluation for Regression

The table below shows the performance of our program for different number of Executors, Cores
and Memory for Decision Tree algorithm and Random Forest algorithm:

Decision Tree Random Forest
Executor Core Memory Time Executor Core Memory Time

10 18 100g 0m32.278s 10 18 100g 0m45.616s
10 24 10g 0m33.422s 4 18 100g 0m45.197s
10 36 10g 0m33.878s 4 36 100g 0m47.301s
10 36 100g 0m32.191s 4 10 100g 0m43.229s
10 8 10g 0m35.828s 4 10 50g 0m46.173s
10 4 10g 0m35.967s 10 10 10g 0m44.360s
10 4 100g 0m33.163s 4 4 100g 0m43.445s
2 4 10g 0m35.323s 10 10 100g 0m42.599s
1 4 10g 0m34.222s 20 10 100g 0m44.089s
4 36 100g 0m36.567s 25 25 100g 0m43.969s
6 24 20g 0m31.946s 25 36 100g 0m42.513s
6 36 100g 0m31.570s 36 36 100g 0m45.153s
4 36 100g 0m33.889s 20 36 100g 0m44.923s
8 36 50g 0m35.898s 30 36 100g 0m43.878s

Table 5: Execution times for Decision Tree and Random Forest with different combinations of executors, cores and memory

The observations show that performance is better when a greater number of cores and more
memory is used. Another interesting observation is that the Decision Tree algorithm is faster
than the Random Forest algorithm. This contrasts with the general concept that Random Forest is
faster since it is an ensemble method.

 15

8 Conclusion

FP Growth works faster with a smaller number of cores and executors. Reason could be that, FP
Growth is a tree algorithm and each node require root node. So even when implemented a
parallel version of FP Growth, it may require more time. Also, the data that was used FP Growth
RDD API produces faster result with same amount of data compared with Dataframe API. Even
though Random Forest is an ensemble method and generally gives higher accuracy, for our
dataset we could get lower RMSE value by Decision Tree. Increasing or decreasing the counts of
executors, cores and memory does not seem to have more effect on the time of execution but still
with higher number of executors and cores, we could get minimum execution time.

Acknowledgement

The hardware in the UMBC High Performance Computing Facility (HPCF) is supported by the
U.S. National Science Foundation through the MRI program (grant nos. CNS–0821258, CNS–
1228778, and OAC–1726023) and the SCREMS program (grant no. DMS–0821311), with
additional substantial support from the University of Maryland, Baltimore County (UMBC). See
hpcf.umbc.edu for more information on HPCF and the projects using its resources.

The project team would like to thank Dr. Jianwu Wang for his guidance and mentorship. This
project would not have been possible without the infrastructure provided by UMBC’s High
Performance Computing Facility (HPCF).

References

[1] B. P. Department, "911 Police Calls for Service," 2019. [Online]. Available:

https://data.baltimorecity.gov/Public-Safety/911-Police-Calls-for-Service/xviu-ezkt.
[Accessed 24 November 2019].

[2] A. C. Agarwal R.C., "Efficient Algorithms for Mining Long Patterns in Scientific Data
Sets," Grossman R.L., Kamath C., Kegelmeyer P., Kumar V., Namburu R.R. (eds) Data
Mining for Scientific and Engineering Applications. Massive Computing, vol 2. Springer,
Boston, MA, vol. vol 2., 2001.

[3] A. R. Ltd., "Market Basket Analysis," 2019. [Online]. Available:
https://www.albionresearch.com/data_mining/market_basket.php. [Accessed 12 December
2019].

[4] Wikipedia, "Apriori algorithm," 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Apriori_algorithm. [Accessed 11 December 2019].

[5] J. Han, J. Pei and Y. Yin, "Mining frequent patterns without candidate generation," ACM
SIGMOD Record, vol. 29, no. 2, pp. 1-12, 2000.

[6] H. Li, Y. Wang, D. Zhang, M. Zhang and E. Y. Chang, "Pfp: parallel fp-growth for query
recommendation," in Proceedings of the 2008 ACM conference on Recommender systems,
Lausanne, Switzerland, 2008.

 16

[7] A. Spark, "Frequent Pattern Mining," Apache, [Online]. Available:
https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html. [Accessed 05
December 2019].

[8] "Spark 2.4.4 Documentation," [Online]. Available: https://spark.apache.org/docs/latest/ml-
classification-regression.html#decision-trees.

[9] "Medium," [Online]. Available: https://medium.com/greyatom/decision-trees-a-simple-
way-to-visualize-a-decision-dc506a403aeb.

[10] T. D. Science. [Online]. Available: https://towardsdatascience.com/random-forest-and-its-
implementation-71824ced454f.

[11] GDCoder. [Online]. Available: https://gdcoder.com/random-forest-regressor-explained-in-
depth/.

[12] "Towards Data Science," [Online]. Available: https://towardsdatascience.com/data-pre-
processing-techniques-you-should-know-8954662716d6.

[13] U. o. M. B. County, "Description of the Big Data Cluster," UMBC, [Online]. Available:
https://hpcf.umbc.edu/system-description-of-the-big-data-cluster/. [Accessed 10 December
2019].

