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• J. Schäfer, X. Huang, S. Kopecz, P. Birken, M. Gobbert, and A. Meister. A

Memory-Efficient Finite Volume Method for Advection-Diffusion-Reaction

Systems with Non-Smooth Sources. Numerical Methods for Partial

Differential Equations.

• X. Huang, S. Khuvis, S. Askarian, M. K. Gobbert, and B. E. Peercy. Coupled

PDEs with Initial Solution from Data in COMSOL 4. COMSOL Conference

2013.

• N. K. Neerchal, J. G. Morel, X. Huang, and A. Moluh, (2014). A Stepwise

Algorithm for Generalized Linear Mixed Models. Proceedings of SAS Global

Forum 2014.

• X. Huang and M. K. Gobbert. Parallel Performance Studies for a

Three-Species Application Problem on the Cluster maya. Technical Report

number HPCF–2015–8, UMBC High Performance Computing Facility,

University of Maryland, Baltimore County, 2015

• O. Adenikinju, J. Gilyard, J. Massey, T. Stitt, J. Graf, X. Huang, S. Khuvis,

M. K. Gobbert, Y. Wang, and M. Olano. Real Time Global Illumination

Solutions to the Radiosity Algorithm using Hybrid CPU/GPU Nodes.

ii



Technical Report number HPCF–2014–15, UMBC High Performance

Computing Facility, University of Maryland, Baltimore County, 2014.

• A. Cunningham, G. Payton, J. SlettebakU, J. Wolfson-PouU, J. Graf, X.

Huang, S. Khuvis, M. K. Gobbert, T. Salter, and D. J. Mountain. Pushing the

Limits of the Maya Cluster. Technical Report number HPCF–2014–14, UMBC

High Performance Computing Facility, University of Maryland, Baltimore

County, 2014.

• X. Huang and M. K. Gobbert. Parallel Performance Studies for a

Three-Species Application Problem on maya 2013. Technical Report number

HPCF–2014–8, UMBC High Performance Computing Facility, University of

Maryland, Baltimore County, 2014.

• N. Mistry, J. Ramsey, B. Wiley, J. Yanchuck, X. Huang, A. Raim, M. K.

Gobbert, N. K. Neerchal, and P. J. Farabaugh. Clustering of Multidimensional

Data Sets with Applications to Spatial Distributions of Ribosomal Proteins.

Technical Report number HPCF–2013–10, UMBC High Performance

Computing Facility, University of Maryland, Baltimore County, 2013.

Presentations:

• GPU Technology Conference 2015, Poster presentation, Long-time Simulation

of Advection-Diffusion-Reaction System using FEM and FVM on Hybrid

CPU/GPU Nodes.

• SIAM Annual Meeting 2014, Contributed talk, Simulation of Calcium Waves

in a Heart Cell on Modern Parallel Architectures.

• DELMAR Numerics Day 2014, Challenges and Opportunities in Long-Time

Simulations of PDEs on Modern Parallel Computing Platforms.

iii



• COMSOL Conference 2013 Boston, User Presentation, Coupled PDEs with

Initial Solution from Data in COMSOL 4.

• SIAM Conference on Computational Science and Engineering 2013,

Contributed talk, Efficient Time-Stepping for Parabolic Reaction-Diffusion

Equations.

• Graduate Research Conference at UMBC, Poster presentation, A

two-dimensional model for calcium flow in a heart cell.

• Differential Equations Seminar, University of Maryland, Baltimore County, A

Memory-Efficient Finite Volume Method for Advection-Diffusion-Reaction

Systems.

iv



ABSTRACT

Title of Thesis: An MPI-CUDA Implementation of a Model for
Calcium Induced Calcium Release in a
Three-Dimensional Heart Cell on a
Hybrid CPU/GPU Cluster

Xuan Huang, Doctor of Philosophy, 2015

Thesis directed by: Dr. Matthias K. Gobbert, Professor
Department of Mathematics and Statistics
University of Maryland, Baltimore County

A model for Calcium Induced Calcium Release (CICR) in a heart cell describes

a physiological process where calcium is able to activate calcium release from the

sarcoplasmic reticulum into the cytosol, which is crucial for excitation-contraction

coupling in the cardiac muscle. It is modeled by a system of coupled, non-linear, time-

dependent advection-diffusion-reaction equations that can be solved by a method of

lines approach. The finite element method only solves the equation system without

advection, while the finite volume method can also capture advection. Through nu-

merical convergence studies we show that the finite volume method has the same

convergence order as the finite element method when there is no advection. We also

discuss appropriate discretizations of the advection term for different source terms.

We present parallel performance studies for two parallel implementations, one using

MPI and running on CPU only nodes, the other using CUDA and MPI together and

running on hybrid CPU/GPU nodes. We first establish strong and weak scalability of

the implementation using MPI. Then with an extended implementation using CUDA

and MPI, we show how to combine several hybrid CPU/GPU nodes successfully in

a multi-node distributed-memory compute cluster with high performance intercon-

nect. We present results for a combination of different spatial discretizations and

different linear solvers, all showing good speedup and outperforming the CPU only

implementation.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Advection-diffusion-reaction equations occur in a wide variety of applications, for

instance fluid flow, heat transfer, spread of pollutants, and transport-chemistry prob-

lems. We consider a very general framework of this problem as a testbed to investigate

the choices of numerical methods in the face of Dirac delta distributions among the

source terms. We also demonstrate the ability of memory-efficient parallel implemen-

tations of these methods to solve the problem on extremely fine meshes efficiently

using a cluster with state-of-the-art CPU nodes and cutting-edge hybrid CPU/GPU

nodes. Our consideration of this problem is inspired by the need to simulate Calcium

Induced Calcium Release (CICR) in a heart cell [7, 9, 26]. CICR describes a physi-

ological process within a cell where calcium is able to activate calcium release from

the sarcoplasmic reticulum into the cytosol, which is crucial for excitation-contraction

coupling in the cardiac muscle.

The general model we consider is a system of coupled, non-linear, time-dependent

advection-diffusion-reaction equations

u
(i)
t −∇ ·

(
D(i)∇u(i)

)
+ β(i) ·

(
∇u(i)

)
= q(i), i = 1, . . . , ns, (1.1.1)

with functions u(i) = u(i)(x, t), i = 1, . . . , ns, of space x ∈ Ω ⊂ R3 and time 0 ≤ t ≤ tfin

representing the concentrations u(i) of the ns species. The diagonal diffusivity matrices

D(i) = diag (D
(i)
11 , D

(i)
22 , D

(i)
33 ) ∈ R3×3 consist of positive entries and are assumed to

dominate the advection velocity vectors β(i) ∈ R3, so that numerical methods for

parabolic problems are always justified. The right-hand side q(i) is written in a way

1



2

that distinguishes the different dependencies and effects as

q(i)(u(1), . . . , u(ns),x, t) = s(i)(u(i),x, t) + r(i)(u(1), . . . , u(ns)) + f (i)(x, t). (1.1.2)

For the calcium species i = 1, the terms s(1)(u(1),x, t) in (1.1.2) contains many thou-

sands of point sources modeled by Dirac delta distributions on a large lattice through-

out the cell. This crucial feature of the model is responsible for many of the chal-

lenges: The numerical method used as spatial discretization will not be convergent

to as high an order as conventional, since the source functions are not sufficiently

smooth. However the point sources are the crucial driver of the physiological effects,

and the domain of the cell needs to be discretized with a very fine mesh to accommo-

date the large number of point sources. For application problems involving chemical

reactions, the system in (1.1.2) conserves total mass, so the numerical method should

have this property, as well.

In (1.1.2), the reaction terms r(i) = r(i)(u(1), . . . , u(ns)) are, in general, non-linear

autonomous functions of all species and couple the reaction equations in the system

(1.1.1). In (1.1.2), the term q(i) also includes the function f (i) = f (i)(x, t), so that

the scalar linear test problem ut − ∇ · (D∇u) + β · ∇u = f(x, t) is incorporated in

the formulation. This combined formulation of the problems allows one to switch

the code from one problem to the other by turning on and off terms and is useful

in testing correctness of the code and convergence of the numerical methods in the

testbed. These terms will be discussed in detail in Section 2.1.

Gobbert [7] (see also [9] for details) gives a matrix-free Newton-Krylov method

for the simulation of calcium flow in a heart cell. The underlying model of calcium

flow is given by a system of three coupled diffusion-reaction equations, in which the

occurring source terms can be divided into linear and non-linear parts, as well as point

sources. Due to the shape of a heart cell, a rectangular domain with a structured

grid is a natural choice. The method is based on a finite element discretization and
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implemented in a matrix-free manner. The convergence of the finite element method

in the presence of the measure valued source terms which occur in the calcium model

was rigorously shown in [27].

In [26], a finite volume method for advection-diffusion-reaction systems with smooth

and non-smooth sources was introduced. The finite volume method is designed for

transport problems, since it satisfies mass conservation in the discretized equations.

Moreover, since we intend to consider a more general class of equation systems of

advection-diffusion-reaction (ADR) type, the finite volume method becomes a natural

choice as opposed to finite element methods which would need additional stabiliza-

tion terms [24]. However, it is not clear whether a higher order discretization of the

advection term is necessary at the cost of more MPI communication among processes.

The main contributions of this work are:

(i) We first extend the physiological example in [26] by adding the effect of ad-

vection in the advection-diffusion-reaction system (1.1.1). We demonstrate this effect

in three-dimensional long-time simulation of the CICR model. Different advection

speeds of the calcium waves are observed, which in turn shows our numerical meth-

ods produce physiologically sensible results.

(ii) In the absence of a rigorous convergence theory for the finite volume method for

problems involving non-smooth sources, we demonstrate convergence of the method

numerically and compare the results to those obtained in [7] by the finite element

method. We show convergence for scalar test problems with choices between smooth

versus non-smooth source terms and first-order versus second-order discretization for

advection term, in both two and three dimensional mesh spacing. These results are

compared to simulations using the finite element method in situations where there is

no advection.

(iii) Next we discuss parallel implementations that can greatly speed up the com-
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putation. In the future, our existing CICR model needs to be extended to incorporate

one or two additional species and then should be solved up to a larger final time to

be better comparable to laboratory experiments that might take a final time of one

minute or more. Thus, our numerical methods and their parallel implementation need

to demonstrate the potential to scale up. A conventional performance study in [26]

demonstrates good strong scalability by generally halving computing time when us-

ing twice as many resources. However, the fixed problem size in that study does not

reflect the effectiveness in solving larger problems. We introduce here weak scalability

studies for a scalar test problem as well as CICR simulation with advection. Our code

demonstrates the ability to handle larger problems with the same efficiency.

(iv) This work is particularly dedicated to using GPUs (graphics processing units)

in conjunction with CPUs as tools to enable the faster simulations necessitated by

the application. Specifically, we show how to combine several compute nodes in a

multi-node distributed-memory compute cluster with high performance interconnect

successfully, and we study the performance using several possible combinations of the

CPUs and GPUs of the hybrid CPU/GPU nodes.

To proceed, we first explain the hardware and software in the computational en-

vironment in detail in Section 1.2, before discussing the motivation for using GPUs

in detail in Section 1.3. Section 1.4 points to related work, and Section 1.5 provides

an outline of the remainder of this thesis.

1.2 Computational Environment

The UMBC High Performance Computing Facility (HPCF) is the community-

based, interdisciplinary core facility for scientific computing and research on parallel

algorithms at UMBC. Started in 2008 by more than 20 researchers from ten academic

departments and research centers from all three colleges, it is supported by faculty
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contributions, federal grants, and the UMBC administration. The facility is open

to UMBC researchers at no charge. Researchers can contribute funding for long-

term priority access. System administration is provided by the UMBC Division of

Information Technology, and users have access to consulting support provided by

dedicated full-time graduate assistants. See www.umbc.edu/hpcf for more information

on HPCF and the projects using its resources.

Released in Summer 2014, the machine in HPCF is the 240-node distributed-

memory cluster maya. The newest components of the cluster are the 72 nodes in

maya 2013 with two eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB

memory that include 19 hybrid nodes with two high-end NVIDIA K20 GPUs designed

for scientific computing and 19 hybrid nodes with two cutting-edge 60-core Intel Phi

5110P accelerators. These new nodes are connected along with the 84 nodes in maya

2009 with two quad-core 2.6 GHz Intel Nehalem X5550 CPUs and 24 GB memory

by a high-speed quad-data rate (QDR) InfiniBand network for research on parallel

algorithms. The remaining 84 nodes in maya 2010 with two quad-core 2.8 GHz

Intel Nehalem X5560 CPUs and 24 GB memory are designed for fastest number

crunching and connected by a dual-data rate (DDR) InfiniBand network. All nodes

are connected via InfiniBand to a central storage of more than 750 TB.

The computational studies in Section 4.1, Section 4.3, and Section 4.4 are obtained

using the maya 2013 portion of the cluster. The studies in Section 2.3, Section 3.2.3,

Section 3.4, and Section 4.2 are obtained using the maya 2009 portion of the cluster.

Each node of maya 2013 contains two eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge

CPUs and 64 GB memory. Figure 1.2.1 shows the architecture of one node containing

two CPUs. Each core of each CPU has dedicated 32 kB of L1 and 256 kB of L2 cache.

All cores of each CPU share 20 MB of L3 cache. The 64 GB of the node’s memory is

the combination of eight 8 GB DIMMs, four of which are connected to each CPU with
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dedicated memory channels. The two CPUs of a node are connected to each other

by two QPI (quick path interconnect) links. Nodes are connected by a quad-data

rate InfiniBand interconnect. The InfiniBand is very efficient for data communication

between nodes, a detailed throughput study of the InfiniBand interconnect can be

found in [21] and [22]. Also, a detailed test of the cluster using both benchmark and

application code can be found in [6]. Efficient use of these nodes is demonstrated in

Figure 1.2.1: Schematics of node with two Intel E5-2650v2 Ivy Bridge CPUs.

strong and weak scalability studies in Chapter 4.

There are 19 hybrid nodes with GPUs, one of them is a user node, the rest are

compute nodes, see Figure 1.2.2. In addition to two eight-core 2.6 GHz Intel E5-

2650v2 Ivy Bridge CPUs, each CPU is connected to one high-end NVIDIA K20 GPU

via PCIe interface.

The NVIDIA K20 is a powerful general purpose graphics processing unit (GPGPU)
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Figure 1.2.2: Schematics of hybrid nodes with GPUs.

with 2,496 computational cores designed for efficient double-precision calculation.

GPU accelerated computing has become popular in recent years due to the GPU’s

ability to achieve high performance in computationally intensive portions of code

beyond a general purpose CPU. The NVIDIA K20 GPU has 5 GB of memory. A

schematic of the NVIDIA K20 GPU is shown in Figure 1.2.3. Performance of an

implementation using the hybrid nodes is presented in Chapter 4, and is compared

to CPU only results.

The cluster maya runs the Linux operating system, specifically RedHat EL6. The

bash shell is the default. SLURM is used as job scheduler. We use the 64 bit Intel

C compiler with version number 15.0. We use two MPI libraries for best perfor-

mance: In the parallel implementation using MPI described in Section 3.3.1 we use

the 64 bit Intel MPI compiler with version number 4.1.3/049. In the parallel im-

plementation using CUDA and MPI described in Section 3.3.2 we use the 64 bit

MVAPICH2 with version number 2.0b. To program the NVIDIA GPUs, we use
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Figure 1.2.3: Schematics of NVIDIA Tesla K20 GPU.

the latest CUDA compilers with version 6.5. CUDA, which stands for Compute

Unified Device Architecture, is developed by NVIDIA to enable the programming

of their GPUs. It is a parallel computing platform and programming model in-

vented by NVIDIA. An excellent general introduction to CUDA can be found at

http://www.nvidia.com/object/cuda_home_new.html. A large number of training

materials for programming with CUDA including presentations and sample codes can

be found at https://developer.nvidia.com/cuda-education.

A free on-line course on the introduction to parallel programming using CUDA can

be found at https://www.udacity.com/course/cs344.

1.3 Motivation of using GPUs as Accelerators

GPUs have been developed to perform data-parallel computation using multiple

cores. Using GPUs to perform computations that traditionally have been done on

CPUs is referred to as General-Purpose Computation on Graphics Processing Unit

(GPGPU). The motivations behind our approach of using GPUs as accelerators are
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multifold. First of all, the models that we have are becoming more and more com-

plicated. We need to solve the complicated problem with finer meshes, larger (cell)

domain, longer simulation time. We also need to prepare for more species which means

more PDEs coupled. Furthermore, we might run into situations where thousands of

simulations are required for certain studies [3]. The degree of freedom (DOF) as well

as computational burden will increase substantially as the model increases complex-

ity. And the implementation using MPI that runs on multi-core CPU cluster will

reach a limit. This implementation has good scalability provided you have access to

large number of compute nodes with cutting-edge CPUs. However, it is not always

easy to have access to a large number of nodes for a reasonably long time. On the

other hand, general-purpose computation on GPUs is becoming more and more pop-

ular. A GPU is well suited to accomplish single instruction multiple data (SIMD)

parallelism. While the CPUs are optimized for low latency, the GPUs are optimized

for high throughput. A typical NVIDIA K20 GPU in our cluster has a peak double

precision floating point performance of 1.17 Tflops. We have tested the potential of

GPU programming with our cluster and were able to speed up a linear solver in the

radiosity algorithm: details can be found in [1].

Our problem is suitable for GPU computation for the following reasons: The

program is computationally intensive, heavy computation can be done on the GPU

with few data transfers. The program is also massively parallel with similar tasks

performed repeatedly on different data. Also, from the cost effective aspect, a high-

end GPU card is much cheaper to acquire than an up-to-date CPU node, while

providing comparable or more throughput. Hence, offloading to accelerators such as

GPUs is considered a natural choice.
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1.4 Related Work

This work is not the first time GPUs have been used to solve similar problems,

since general purpose computing with GPUs is getting more and more popular. A

problem of reaction-diffusion type is solved in [19], where the authors compare dif-

ferent time-integration methods with a 2D model using one GPU. A Jacobian-Free

Newton-Krylov (JFNK) method with GPU acceleration is discussed in [23], where the

problem size is limited by using one GPU. A Jacobian-Free Newton-Krylov solver for

a one-dimensional particle-in-cell method using hybrid CPU–GPU implementation is

introduced in [4], where the JFNK solver is kept on the CPU in double precision (DP),

while the particle mover is implemented on a GPU in single precision. A matrix-free

Rosenbrock-Krylov method applied to the shallow water equations using CUDA ac-

celeration is presented in [33]. The authors use a Krylov subspace method to solve the

linear system on one GPU. The matrix-free implementation saves memory usage, but

the authors acknowledge that the size of one GPU memory limits the problem size

that can be solved. A CUDA implementation of a Navier-Stokes solver on multi-GPU

desktop platforms for incompressible flows is introduced in [31]. Speedups against a

single core AMD or Intel processor are observed using one or more GPUs. However,

the multi-GPU desktop platform implementation can only scale within the GPUs

connected to one CPU, and cannot benefit from multiple nodes.

Our method solves a system of PDEs on a three-dimensional domain with more

than 25 million degrees of freedom on one hybrid CPU/GPU node using one GPU,

with potential to solve larger problem on multiple nodes. Calculations on both CPUs

and GPUs are in double precision to meet the requirements of numerical tolerances.

We use performance on one state-of-the-art node with 16 cores in two CPUs as base-

line for speedup computation, rather than just serial performance on one core. Our

implementation with MPI/CUDA is scalable to multiple nodes with multiple GPUs.
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1.5 Outline

Chapter 2 is devoted to a detailed explanation of the calcium induced calcium

release (CICR) model. Special attention will be given to the probabilistic term that

models the superposition of calcium injection into the cell at calcium release units

(CRUs). A detailed discussion of two scalar test problems reduced from the applica-

tion problem follows. These test problems are used in numerical convergence studies

in Section 3.4. Simulations of the application problem with advection are presented

as part of Chapter 2.

Chapter 3 will explain the numerical methods used to solve the problem. Using

either the finite element method (FEM) or the finite volume method (FVM), we can

take advantage of the constant diffusion coefficients by solving the problem over a

regular spatial mesh. Using a matrix free approach, we can eliminate the storage

requirements of the system matrix, which makes computations feasible even with

one GPU for reasonably fine mesh. The parallel implementation is then derived by

using an implicit time discretization. One implementation uses MPI and runs on

CPU only nodes, the other uses CUDA and MPI that runs on hybrid nodes. Two

levels of parallelism in the second implementation will be discussed. One level with

MPI distributes work among CPU nodes and processes, manages data communication

among processes and launches GPU tasks. The second level of parallelism is within

each GPU card, where thousands of cores perform calculations on its own chunk of

data. Algorithms are designed to keep the data structure inherited from the MPI

implementation, which are also optimized to take advantage of the GPU’s capability

of large throughput, while avoiding the cost of data communication between CPU

and GPU as much as possible. This implementation carefully utilizes the structure

of data to allow finer numerical meshes and to scale up with more computer nodes.

A full convergence study is presented to demonstrate the reliability of the numerical
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methods.

In Chapter 4, it will be demonstrated that the first implementation using CPU

nodes is efficient and can maintain good scalability. Then the performance of the

parallel MPI-CUDA implementation will be presented, to illustrate how effective the

MPI-CUDA parallel method is in terms of improving performance. It can be noted

from the results that the parallel method using a hybrid node delivers much faster

performance than with a single CPU node. The MPI-CUDA approach is also scalable

on multiply hybrid nodes.

Chapter 5 summarizes our conclusions.



CHAPTER 2

MODEL

This chapter starts with detailed description of the Calcium Induced Calcium

Release (CICR) model in Section 2.1, followed by the scalar test cases in Section 2.2.

Then, Section 2.3 demonstrates the CICR simulations with advection.

2.1 Calcium Induced Calcium Release with Advection

Calcium Induced Calcium Release (CICR) describes a physiological process where

calcium is able to activate calcium release into the cytosol, which is crucial for

excitation-contraction coupling in the cardiac muscle. This CICR model described in

(1.1.1)–(1.1.2) was originally introduced in [14,16], extended in [15], and its numerics

discussed in [7,9,26,27]. The problem can be modeled by the system of time-dependent

advection-reaction-diffusion equations (1.1.1)–(1.1.2) coupled by non-linear reaction

terms. We consider the rectangular spatial domain

Ω = (−6.4 µm, 6.4 µm)× (−6.4 µm, 6.4 µm)× (−32.0 µm, 32.0 µm) ⊂ R3

which captures the essential size and elongated shape of a heart cell. This model

consists of ns = 3 equations corresponding to calcium (i = 1), an endogenous calcium

buffer (i = 2), and a fluorescent indicator dye (i = 3). The model uses no-flux

boundary conditions

n ·
(
D(i)∇u(i)

)
= 0 for x ∈ ∂Ω, 0 < t ≤ tfin (2.1.1)

and provides initial conditions

u(i)(x, 0) = u
(i)
ini(x) for x ∈ Ω, t = 0. (2.1.2)

The values of the initial concentrations are listed in Table 2.1.1. The values of u
(i)
ini for

i = 2, 3 are calculated, such that the reaction terms r(i) on the right-hand side 1.1.2

13
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cancel for the calcium concentration at basal level of u
(i)
ini = 0.1 µM.

We describe the terms on the right hand side (1.1.2) as follows:

In the present model, the term s(i)(u(i),x, t) applies only to the calcium species

i = 1, which is implemented using the Kronecker delta function δi1 in the definition

s(i)(u(i),x, t) =
(
JSR(u(1),x, t)− Jpump(u(1)) + Jleak

)
δi1, i = 1, . . . , ns. (2.1.3)

The key term JSR houses the stochastic aspect of the model, since it models how

calcium is released from the sarcoplasmic reticulum (SR) into the cytosol. The calcium

release units (CRUs) which represent release sites on the sarcoplasmic reticulum are

arranged discretely on a three-dimensional lattice. Each CRU has a probability of

opening depending on the concentration of calcium present at that site. This process

takes the form

JSR(u(1),x, t) =
∑
x̂∈Ωs

g Sx̂(u(1), t) δ(x− x̂). (2.1.4)

The equation models the superposition of calcium injection into the cell at CRUs,

which are modeled as point sources at all x̂ in the set of CRU locations Ωs. The

Dirac delta distribution δ(x− x̂) together with the constant flux density g models a

point source at a CRU located at x̂ ∈ Ωs. Sx̂ is an indicator function, its value is

either 1 or 0 indicating whether the CRU at x̂ is open or closed. The value of Sx̂ is

determined by comparing a uniform random number to the value of the probability

distribution

Jprob(u(1)) =
Pmax (u(1))nprob

(Kprob)nprob + (u(1))nprob
. (2.1.5)

If the value of the probability distribution is higher than the random number, then

the CRU switches on by setting Sx̂ = 1, otherwise it remains closed by Sx̂ = 0.

When the CRU is open, it stays open for 5 ms, then it remains closed for 100 ms. In

our physiological simulations, we study the self-initiation of calcium waves without
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stimulation, therefore, the comparison of Jprob to the uniform random number is the

only mechanism available in the model to start a calcium wave.

The term s(i)(u(i),x, t) also houses the non-linear pump term

Jpump(u(1)) =
Vpump(u

(1))npump

(Kpump)npump + (u(1))npump
(2.1.6)

and the constant balance term Jleak. By design, these terms balance out as Jleak =

Jpump(0.1) ≡ constant (see Table 2.1.1) for the calcium concentration at basal level

0.1 µM.

The reaction terms are

r(i)(u(1), . . . , u(ns)) :=


ns∑
j=2

R(j)(u(1), u(j)), for i = 1,

R(i)(u(1), u(i)), for i = 2, . . . , ns,

(2.1.7)

where the reaction rates are given by

R(i) = −k+
i u

(1)u(i) + k−i
(
ui − u(i)

)
for i = 2, . . . , ns, (2.1.8)

are modeled as autonomous non-linear functions of the different species and couple

the equations in the general system (1.1.1)–(1.1.2). Since the only sources/drains for

the species i = 2, 3 are the terms that model the binding/unbinding reactions with

calcium, the no-flow boundary conditions assure that the total concentration of these

species bound and not bound with calcium remains constant, and this constant is

denoted by ūi.

The term f (i) = f (i)(x, t) is not physiological, but allows for the scalar test prob-

lems described in Section 2.2. For the CICR problem, we set f (i) ≡ 0 for all i.

Similarly, to demonstrate the effect of advection, we extend the model by artifi-

cially adding advection to the right in the z-direction, i.e., setting β(i) = (0, 0, β
(i)
3 )T ,

i = 1, . . . , ns, with β
(i)
3 > 0. The application boundary condition is then modified

accordingly to a homogeneous Neumann condition, such that, the species flow in from
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Table 2.1.1: Table of parameters for the CICR model.

Parameter Description Values/Units

t Time ms

x Position µm

ui Concentration µM

Ω Rectangular domain in µm (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0)

D(1) Calcium diffusion coefficient diag(0.15, 0.15, 0.30) µm2/ ms

D(2) Mobile buffer diffusion coefficient diag(0.01, 0.01, 0.02) µm2/ ms

D(3) Stationary buffer diffusion coefficient diag(0.00, 0.00, 0.00) µm2/ ms

β(i) Advection velocity µm / ms

u
(1)
ini Initial calcium concentration 0.1 µM

u
(2)
ini Initial mobile buffer concentration 45.9184 µM

u
(3)
ini Initial stationary buffer concentration 111.8182 µM

∆xs CRU spacing in x-direction 0.8 µm

∆ys CRU spacing in y-direction 0.8 µm

∆zs CRU spacing in z-direction 0.2 µm

g Flux density distribution 110.0 µM µm3 / ms

Pmax Maximum probability rate 0.3 / ms

Kprob Probability sensitivity 0.2 µM

nprob Probability Hill coefficient 4.0

∆ts CRU time step 1.0 ms

topen CRU opening time 5.0 ms

tclosed CRU refractory period 100 ms

k+2 Forward reaction rate 0.08 / (µM ms)

k−2 Backward reaction rate 0.09 / ms

ū2 Total of bound and unbound indicator 50.0 µM

k+3 Forward reaction rate 0.10 / (µM ms)

k−3 Backward reaction rate 0.10 / ms

ū3 Total bound and unbound buffer 123.0 µM

Vpump Maximum pump strength 4.0 µM / ms

Kpump Pump sensitivity 0.184 µM

npump Pump Hill coefficient 4

Jleak Leak term 0.320968365152510 µM / ms

the left and leave to the right end of the domain [26]. A complete list of the model’s

parameter values is given in Table 2.1.1.
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2.2 Scalar Test Cases

To demonstrate convergence and show weak scalability, we consider two scalar test

problems, which are simplifications of the system (1.1.1). Here, we only consider the

advection-diffusion-reaction equation, where there is only one species, hence we drop

the superscripts. The domain Ω is chosen to be the same as in the calcium problem,

and the diffusion coefficient matrix D = D(1) = diag(0.15, 0.15, 0.30). The advection

velocity is designed as product of a weight ω and vector (0.15, 0.15, 0.30)T of the form

β = β(1) = ω (0.15, 0.15, 0.30)T such that we can control the magnitude of advection

by varying the constant ω. For ω = 0, there is no advection, and for ω = 1, diffusion

and advection are of the same order of magnitude. To test the effect on accuracy

of the spatial discretization, the boundary condition is then modified accordingly to

a homogeneous Neumann condition, such that, the species flow in from the left and

leave to the right end of the domain [26]. These scalar test problems are used in

Sections 3.4 and 4.2.

2.2.1 Smooth Source Term

With respect to the right-hand side, we set r ≡ 0 and s ≡ 0. The initial condition

uini and right-hand side f are chosen such that the true solution is exactly known as

u(x, y, z, t) =
1 + cos(λxx)e−Dxλ2

xt

2

1 + cos(λyy)e−Dyλ2
yt

2

1 + cos(λzz)e−Dzλ2
zt

2
(2.2.1)

with λx = λy = π/6.4 and λz = π/32.

2.2.2 Non-smooth Source Term

To show the method’s convergence even in the presence of point sources, we con-

sider setting f ≡ 0, r ≡ 0, and Jpump ≡ Jleak ≡ 0. The intention is to simplify

the calcium problem by modeling a single CRU in the center of the domain, which

opens at time t = 1 and remains open afterwards. Therefore, we set Ωs = {(0, 0, 0)},
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s ≡ s(1) = g Sx̂(u, t) δ(x− x̂) with x̂ ∈ Ωs and g from Table 2.1.1, and control manu-

ally Sx̂(u, t) = 0 for t < 1 and Sx̂(u, t) = 1 for t ≥ 1. The true solution is not available

for this test problem.

The simplified two-dimensional test problems are set up the same as the three-

dimensional cases except that the y-dimension is dropped from the domain and model

parameters.

2.3 CICR Simulations with Advection

The study in this section is part of [13].

We solve the model of CICR from Section 2.1 given by the system of coupled,

time-dependent advection-reaction-diffusion equations (1.1.1)–(1.1.2), where the cal-

cium injection is modeled by (2.1.4) with a constant uniform CRU flux density g. The

parameters are given in Table 2.1.1. This section analyzes the influence of increasing

advection in (1.1.1). The initial conditions are as specified in Section 2.1. All stud-

ies use the same seed to the random number sequence to allow for a physiological

comparison of the simulations.

We first take the case where there are no advection effects, as in [7] and [5], to

show three ways to visualize the simulation results. In this case, we have several waves

self initiate and propagate throughout the cell, in both orientations of the z-direction.

The first plotting method is called a CRU Plot, shown in Figure 2.3.1. The long-time

simulations of the CICR model go up to the large final time (tfin = 1,000 ms, as

noted in Section 2.1). The plots in this figure show which CRUs are open at each

time step during the simulation. We see that at t = 100 a few CRUs are open, the

wave mostly spreads along x and y dimensions at this point. Later on we see that

the CRUs have begun to open on both sides of the cell and spread across it. During

our simulation of 1,000 ms, several waves have been generated and run across the
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cell, with similar speed on both ways of the z-direction. The second plotting method

is called an Isosurface Plot, shown in Figure 2.3.2. The plots in the figure take the

same time steps as in the CRU plots, but they show calcium concentration instead of

open CRUs. The Isosurface Plots give us a 3-dimensional representation of how the

calcium diffuses through the cell based on the concentration of calcium species u1.

The different shades of blue, red and yellow indicate the level of calcium concentration

throughout the cell as the simulation, while red indicates higher concentration, blue

indicates lower. There is a critical value associated with our plots, ucrit = 65µM.

Inside the plotted region, the concentration is higher than ucrit, while outside the

plotted area the concentration is lower than ucrit. On the boundary of the plotted

area inside the cell the concentration is equal to ucrit, and the color is blue. However on

the boundary of the cell domain, the concentration might be higher than ucrit, hence

the color is more red. Again, we see that when t = 100 in Figure 2.3.2 there is a small

amount of calcium in the cell. As time advances, we see that the amount of calcium

in the cell increases and diffuses throughout the cell. The third plotting method is

called a Confocal Image Plot, shown in Figure 2.3.3. The confocal images are meant

to replicate what scientists see in the laboratory experiments using florescent dye to

bind to the calcium in the heart cell. The lighter of green shades indicate higher

calcium concentrations, while the darker green shades indicate lower concentrations

of calcium. When t = 100, we see calcium start to diffuse across the cell as shown in

Figure 2.3.3.

The key motivation to expand the current model to include advection effects comes

from work such as [2] that details several mechanisms for intracellular calcium pathol-

ogy and [30] that discusses mechanisms for intracellular calcium waves to impact

multi-cellular electrical arrhythmias. This paper introduces a simple advection affect

with constant advection velocity vectors β(i) in (1.1.1) (i) to demonstrate that the
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model behaves correctly with advection and (ii) to test the convergence of the numer-

ical method for the advection term in Section 3.4. We study advection in the elongated

z-direction of the cell by setting β(i) = (0, 0, β
(i)
3 ), i = 1, . . . , ns, in the general sys-

tem (1.1.1). We vary the value of the z-component β
(i)
3 = 0.01, 0.03, 0.05, 0.1, 0.2.

Figures 2.3.4, 2.3.5, 2.3.6, 2.3.7, and 2.3.8 show CRU plots for these values of β3,

analogous to Figure 2.3.1 without advection. These plots show that with larger β3

the effect of advection is stronger, as demonstrated by the waves been pushed pro-

gressively more in the positive z-direction.

To demonstate the effect of advection, Figures 2.3.9 and 2.3.10 show line scan

plots of the calcium concentration along the longitudinal axis of the cell. Each line

scan plot shows the concentration at fixed values of x and y, for −32 ≤ z ≤ 32 on the

vertical and 0 ≤ t ≤ 1,000 on the horizontal axis. The color represents the calcium

concentration, with different shades of blue, yellow, and red indicating the level of

calcium concentration, where blue indicates a lower concentration and red indicates

a higher one.

Figure 2.3.9 shows line scan plots along the line segment for x = y = 0. Fig-

ure 2.3.9 (a) shows line scan plots when there is no advection. At t = 0 ms, we see

constant blue, which represents the initial condition. At around t = 50 ms, we see

lighter blue at some point P close to the center of the line segment, which means the

calcium concentration is higher at this point. As t gets larger, we observe that the

concentrations at neighboring points of P increase, and then the concentrations at

the points further away increase, and so on. These points form two symmetric skew

lines, capturing the propagation of the calcium waves along the line segment. We

observe several pairs of symmetric skew lines, representing several waves, which we

have observed in Figures 2.3.1, 2.3.2, and 2.3.3. The slopes of the lines are the speeds

at which the calcium waves travel. In the case with no advection, the calcium wave
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travels at the same speed along the positive and negative z-direction, hence the skew

lines are symmetric about the starting point P .

Figures 2.3.9 (b)–(f) show line scan plots with the z-component of advection

velocity vector β
(i)
3 = 0.01, 0.03, 0.05, 0.1, 0.2, respectively. We observe from Fig-

ure 2.3.9 (b) that the slopes of the skew lines on the positive side of P are slightly

increased, meanwhile the slopes of the skew lines on the negative side of P are slightly

decreased, compare to Figure 2.3.9 (a). This means that, as we add the effect of advec-

tion on the positive z-direction, the calcium wave traveling in the positive z-direction

is faster, and the wave traveling in the negative z-direction is slower. We also observe

from Figure 2.3.9 (c) that as we increase advection, the slopes of the skew lines on

the positive side of P are further increased, and the concentrations on the skew lines

are also higher. In the meantime, the slopes of the skew lines on the negative side of

P decreased significantly, and the lines are much shorter. This indicates that the cal-

cium waves cannot propagate to the far negative side of the domain. The CRUs there

cannot open due to low calcium concentration. As the β
(i)
3 gets larger and larger, we

observe from Figures 2.3.9 (d)–(f) that the slopes of the skew lines on the positive

side of P gets larger and larger, indicating the speed at which calcium waves travel

along the positive z-direction gets faster and faster. The calcium concentration on

the skew lines are getting higher and higher as well. We also observe that fewer waves

are generated. No lines are observed on the negative side of P . These plots match

our observations from Figures 2.3.4, 2.3.5, 2.3.6, 2.3.7, and 2.3.8, and they clearly

demonstrate the impact of advection on the speed of calcium waves.

Figure 2.3.10 shows line scan plots along the line segment for x = y = 5.6, which

is near the edge of the domain Ω. In Figures 2.3.10 (a)–(f), We observe similar

patterns just like Figures 2.3.9 (a)–(f), respectively, but the calcium concentrations

are generally lower due to the position of the line segment in the domain. These plots



22

confirm that we capture the effect of advection on calcium waves in the whole domain,

not just along any single line segment.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

Figure 2.3.1: Open calcium release units throughout the cell using the finite volume

method without advection on mesh size 32× 32× 128.



24

t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

Figure 2.3.2: Isosurface plots of the calcium concentration using the finite volume

method without advection on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

Figure 2.3.3: Confocal image plots of the calcium concentration using the finite volume

method without advection on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

Figure 2.3.4: Open calcium release units throughout the cell using finite volume

method with β(i) = (0, 0, 0.01), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

Figure 2.3.5: Open calcium release units throughout the cell using finite volume

method with β(i) = (0, 0, 0.03), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

Figure 2.3.6: Open calcium release units throughout the cell using finite volume

method with β(i) = (0, 0, 0.05), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

Figure 2.3.7: Open calcium release units throughout the cell using finite volume

method with β(i) = (0, 0, 0.1), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

Figure 2.3.8: Open calcium release units throughout the cell using finite volume

method with β(i) = (0, 0, 0.2), i = 1, . . . , ns, on mesh size 32× 32× 128.
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(a) no advection (b) β(i) = (0, 0, 0.01)

(c) β(i) = (0, 0, 0.03) (d) β(i) = (0, 0, 0.05)

(e) β(i) = (0, 0, 0.1) (f) β(i) = (0, 0, 0.2)

Figure 2.3.9: Time evolution of the longitudinal line scan showing the calcium con-

centration along the line x = y = 0 µm, 0 ≤ t ≤ 1,000 ms.
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(a) no advection (b) β(i) = (0, 0, 0.01)

(c) β(i) = (0, 0, 0.03) (d) β(i) = (0, 0, 0.05)

(e) β(i) = (0, 0, 0.1) (f) β(i) = (0, 0, 0.2)

Figure 2.3.10: Time evolution of the longitudinal line scan showing the calcium con-

centration along the line x = y = 5.6 µm, 0 ≤ t ≤ 1,000 ms.



CHAPTER 3

NUMERICAL METHOD

In this chapter, we describe the numerical methods for the solution of the system

(1.1.1)–(1.1.2). Section 3.1 discusses two spatial discretizations to be used in a method

of lines approach, namely the finite element method and the finite volume method.

Using both methods, we obtain large stiff ODE systems which need to be solved

by an implicit ODE solver. Brief descriptions of the time integration, the non-linear

solver, and the linear solvers are given in Section 3.2. Section 3.3 discusses the parallel

implementation using MPI and the parallel implementation using CUDA with MPI.

Section 3.4 contains results of a thorough convergence study of the finite volume

method, which provide insights for the choices of discretization of the advection term

under different circumstances.

3.1 Spatial Discretization

In Section 3.1.1, we give an outline of the finite element space discretization. In

Section 3.1.2 the finite volume space discretization is explained. This also includes a

discussion of the treatment of Dirac delta sources.

In order to numerically simulate the calcium spark model, a numerical method

must be designed that is very efficient in memory use. The uniform rectangular CRU

lattice gives a naturally induced regular numerical mesh. Additionally, the model

uses constant diffusion coefficients. Using a finite element method (FEM) or finite

volume method (FVM) with these properties (constant coefficients, regular mesh) will

allow for system matrices whose components can be computed by analytical formulas.

Therefore routines, specifically the matrix-vector product, can be designed without

an explicitly stored system matrix. A matrix-free method dramatically reduces the

33
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memory requirements of the method, thereby making computations on very fine mesh

feasible.

The convergence of the finite element method in presence of measure valued source

terms was rigorously shown in [27], and numerical results agree well with the theo-

retical predictions [7]. In addition, it is demonstrated in [26] that the FVM can also

resolve the discontinuous forcing term in (1.1.1)–(1.1.2), despite the lack of theory on

the numerical performance in this case. In fact, the integral definition of the Dirac

delta distribution lends itself to a clean discrete formulation of the JSR function.

Without considering advection, the finite element method is applied. Since we intend

to consider systems with advection, this is done for the more general class of equation

systems of advection-diffusion-reaction (ADR) type. For this type of problems, the

finite volume method is a natural choice as opposed to the finite element method.

3.1.1 Spatial Discretization using the Finite Element Method

The method of lines approach using finite elements is appropriate for the system

(1.1.1) without the advection term β(i) ·
(
∇u(i)

)
.

This approach takes advantage of the regular shape of the domain Ω and uses a

uniform mesh of 3-D brick elements of size ∆x∆y∆z. To derive the finite element

discretization, we interpret the PDE for u(i)(x, t) for 0 < t ≤ tfin in a weak sense.

Integrating (1.1.1) without the advection term β(i) ·
(
∇u(i)

)
against all test functions

v(x), we obtain∫
Ω

v
∂u(i)

∂t
dx−

∫
Ω

v∇ ·
(
D(i)∇u(i)

)
dx =

∫
Ω

v q(i) dx for all v ∈ V . (3.1.1)

Using Green’s theorem, (3.1.1) becomes∫
Ω

v
∂u(i)

∂t
dx+

∫
Ω

∇v ·
(
D(i)∇u(i)

)
dx−

∫
∂Ω

v n·
(
D(i)∇u(i)

)
dS =

∫
Ω

q(i) v dx, (3.1.2)

where the term n ·
(
D(i)∇u(i)

)
= 0 due to the no-flow boundary condition (2.1.1).
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Hence, we obtain the weak form:

Find u(i)(x, t) ∈ V for 0 < t ≤ tfin such that∫
Ω

v
∂u(i)

∂t
dx +

∫
Ω

∇v ·
(
D(i)∇u(i)

)
dx =

∫
Ω

q(i) v dx for all v ∈ V . (3.1.3)

In order to to approximate u(i)(x, t) ∈ V by a FEM solution u
(i)
h (x, t) ∈ Vh, we pick

a finite-dimensional subspace Vh ⊂ V . Then we obtain the approximate weak form:

Find u
(i)
h (x, t) ∈ Vh for 0 < t ≤ tfin such that∫

Ω

v
∂u

(i)
h

∂t
dx +

∫
Ω

∇v ·
(
D(i)∇u(i)

h

)
dx =

∫
Ω

q(i) v dx for all v ∈ Vh. (3.1.4)

Since Vh is a finite-dimensional function space, it has a basis of finitely many basis

functions {ϕk(x)}k=1,...,N . This means concretely for the approximate weak form we

have the expansion of the FEM solution u
(i)
h (x, t) =

∑N
`=1 u

(i)
` (t)ϕ`(x) with coefficient

functions u
(i)
` (t).

Thus, finding the FEM solution u
(i)
h (x, t) ∈ Vh is equivalent to finding all the coefficient

functions u
(i)
` (t), ` = 1, . . . , N . Meanwhile, integrating against all test functions

v ∈ Vh is equivalent to considering v = ϕk(x) for k = 1, . . . , N .

Therefore, the approximate weak form (3.1.4) can be rewritten as:

Find all u
(i)
` (t), ` = 1, . . . , N , for 0 < t ≤ tfin such that∫

Ω

ϕk
∂

∂t

(
N∑
`=1

u
(i)
` ϕ`

)
dx +

∫
Ω

∇ϕk ·

(
D(i)∇

(
N∑
`=1

u
(i)
` ϕ`

))
dx =

∫
Ω

q(i) ϕk dx

(3.1.5)

for all k = 1, . . . , N . Reorder terms in the approximate weak form (3.1.5), we obtain:

Find all u
(i)
` (t), ` = 1, . . . , N , for 0 < t ≤ tfin such that

N∑
`=1

∫
Ω

ϕk ϕ` dx
du

(i)
`

dt
+

N∑
`=1

∫
Ω

∇ϕk ·
(
D(i)∇ϕ`

)
dxu

(i)
` =

∫
Ω

q(i) ϕk dx (3.1.6)

for all k = 1, . . . , N .

Let us define the unknown vector u(i)(t) = (u
(i)
` (t)), the (lumped) mass matrices

M̂ (i) = (M̂
(i)
k` ) =

(∫
Ω

ϕk ϕ` dx

)
, (3.1.7)
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the stiffness matrices

K(i) = (K
(i)
k` ) =

(∫
Ω

∇ϕk ·
(
D(i)∇ϕ`

)
dx

)
, (3.1.8)

and the vector on the right hand side

q(i) = (q
(i)
k ) =

(∫
Ω

q(i) ϕk dx

)
. (3.1.9)

Then we can further simplify the approximate weak form to be:

Find u(i)(t) ∈ RN for 0 < t ≤ tfin such that

M̂ (i) du
(i)

dt
+K(i) u(i) = q(i) (3.1.10)

In the currently implemented model we have ns = 3 species. Also, let us define

y =


u(1)

u(2)

u(3)

 , M̂ =


M̂ (1)

M̂ (2)

M̂ (3)

 , K =


K(1)

K(2)

K(3)

 , q =


q(1)

q(2)

q(3)

 ,
(3.1.11)

to collect the approximate weak forms (3.1.10) for all species 1 ≤ i ≤ 3 into one

system of ODEs for y(t) ∈ R3N . The result is the canonical initial value problem with

mass matrix

M
dy

dt
= f ode(t, y), 0 < t ≤ tfin, y(0) = yini, (3.1.12)

with M := M̂ and f ode(t, y) := −K y + q.

This approach to discretizing the time-dependent PDE is the finite element me-

thod. The solution to the resulting stiff ODE system will be discussed in Section 3.2.
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3.1.2 Spatial Discretization using the Finite Volume Method

The finite volume method (FVM) is appropriate for problems that contain both

advection and diffusion [18].

To derive the finite volume discretization, let Th = {K1, . . . , KM} be a mesh such

that Ω =
⋃M
l=1 K l. Each Kl ∈ Th is an open subset of Ω, referred to as a cell or

control volume. Integrating (1.1.1) over an arbitrary cell Kl ∈ Th and applying the

divergence theorem yields

d

dt

∫
Kl

u(i) dx−
∫
∂Kl

(D(i)∇u(i) − u(i)β(i)) · nl dS =

∫
Kl

q(i) dx, (3.1.13)

where ∂Kl denotes the boundary of Kl and nl its outward unit normal vector. This

is the equation we are actually trying to solve, since it imposes less regularity on the

solution than (1.1.1). In particular, solutions with discontinuities are now admissible.

Denoting the volume of Kl by |Kl|, the spatial mean value of u(i) over Kl is given by

ū
(i)
l (t) :=

1

|Kl|

∫
Kl

u(i)(x, t) dx. (3.1.14)

With this notation, (3.1.13) can be rewritten as

d

dt
ū

(i)
l −

1

|Kl|

∫
∂Kl

(D(i)∇u(i) − u(i)β(i)) · nl dS =
1

|Kl|

∫
Kl

q(i) dx. (3.1.15)

This is a system of ordinary differential equations for the temporal evolution of the

mean values ū
(i)
l . With this expression, the crucial issues are to compute the boundary

fluxes in terms of neighboring mean values, as well as the volume integral on the right

hand side.

We now introduce the mesh which is used for this discretization. In [7] a regular

mesh Ωh ⊂ Ω with constant mesh spacings ∆x, ∆y, and ∆z was used for the finite

element space discretization. Here we employ the corresponding dual mesh Th, which

is constructed by connecting all centers of mesh cubes of Ωh with lines parallel to

the coordinate axes and extending these lines in a straight manner to the boundary.
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The dual mesh is a rectilinear mesh and each inner node of Ωh is the center of a

cell of Th with volume ∆x∆y∆z. Furthermore, the volume of a cell is reduced to

∆x∆y∆z/2, ∆x∆y∆z/4, or ∆x∆y∆z/8, if this cell has a common face, edge or

corner, respectively, with the boundary ∂Ω. The exterior views of a simple regular

mesh and the corresponding dual mesh are depicted in Figures 3.1.1 (a) and (b),

respectively.

(a)

(b)

Figure 3.1.1: (a) Regular mesh of mesh resolution 4× 4× 8 and (b) its dual mesh.

By construction the number of nodes of Ωh equals the number of cells in Th. In

the following, we assume that Th consists of M = MxMyMz control volumes, with

Mx, My, and Mz denoting the number of cells in each direction and introduce the
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enumeration scheme

l = i+ (j − 1)Mx + (k − 1)MxMy (3.1.16)

for 1 ≤ i ≤ Mx, 1 ≤ j ≤ My, and 1 ≤ k ≤ Mz. Thus, a control volume Kl has the

neighbors Kl−1 and Kl+1 in the x-direction, Kl−Mx and Kl+Mx in the y-direction, and

Kl−MxMy and Kl+MxMy in the z-direction.

For a given control volume Kl = (xL, xR)× (yL, yR)× (zL, zR) ∈ Th with spacings

∆xl = xR − xL,∆yl = yR − yL,∆zl = zR − zL, and β = (β1, β2, β3), the boundary

fluxes from (3.1.13) can be written as∫
∂Kl

(D∇u− uβ) · nl dS (3.1.17)

=

∫ zR

zL

∫ yR

yL

(D11∂xu− β1u)|x=xR − (D11∂xu− β1u)|x=xL dy dz

+

∫ zR

zL

∫ xR

xL

(D22∂yu− β2u)|y=yR − (D22∂yu− β2u)|y=yL dx dz

+

∫ yR

yL

∫ xR

xL

(D33∂zu− β3u)|z=zR − (D33∂zu− β3u)|z=zL dx dy.

Here we have exploited the fact that the faces of Kl are parallel to the planes defined

by the coordinate axes, so only one entry of the corresponding normal vectors is non-

zero. The superscripts (i) were dropped for readability. Note that the above equation

is valid for each of the ns species of the system.

In order to approximate the advective flux βju(xl+1) in terms of the mean values

ūl, we introduce a numerical flux function H = H(û+
l , û

−
l+1). The values û+

l and û−l+1

are approximations to the unknown values of u on either side of xl+1. Assuming that

βj ≥ 0 as before, either a first-order or second-order accurate upwind flux function

can be defined:

• Assuming a constant distribution of u in Kl leads to the first-order discretization

Ha,j(û
+
l , û

−
l+1) = βjû

+
l , j = 1, 2, 3, û+

l = ūl. (3.1.18)
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• Since the advection term is linear, no non-linear discretization is necessary, as

would be standard for non-linear fluid mechanics. To obtain the second-order

discretization via a linear representation of the solution, we define a slope within

the cell by

Ha,j(û
+
l , û

−
l+1) = βjû

+
l , j = 1, 2, 3, û+

l = ūl +
ūl − ūl−1

ml −ml−1

(xl+1 −ml),

(3.1.19)

where ml and ml−1 denote the barycenters of the cells belonging to ūl and ūl−1,

respectively.

To approximate the diffusive flux Djj∂lu(xl+1), we use a central difference of the

neighboring mean values and define the diffusive flux function as

Hd,j(ūl, ūl+1) = Djj
ūl+1 − ūl
ml+1 −ml

. (3.1.20)

In this case, the mean values on either side of xl+1 are sufficient to obtain a scheme

of second order. Now we can approximate the boundary fluxes as∫
∂Kl

(D∇u− uβ) · nl dS (3.1.21)

≈ ∆yl∆zl
(
Hd,1(ūl, ūl+1)−Ha,1(û1,+

l , û1,−
l+1)
)

−∆yl∆zl
(
Hd,1(ūl−1, ūl)−Ha,1(û1,+

l−1, û
1,−
l )
)

+ ∆xl∆zl
(
Hd,2(ūl, ūl+Mx)−Ha,2(û2,+

l , û2,−
l+Mx

)
)

−∆xl∆zl
(
Hd,2(ūl−Mx , ūl)−Ha,2(û2,+

l−Mx
, û2,−

l )
)

+ ∆xl∆yl
(
Hd,3(ūl, ūl+MxMy)−Ha,3(û3,+

l , û3,−
l+MMMy

)
)

−∆xl∆yl
(
Hd,3(ūl−MxMy , ūl)−Ha,3(û3,+

l−MxMy
, û3,−

l )
)
,

where the enumeration scheme (3.1.16) was used to describe the location of the input

data of the flux functions. The notation ûj,±l indicates that the approximation to the
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value of u lives in Kl and belongs to the face which is between Kl and its neighbor of

positive or negative side.

The last step of the discretization is the treatment of the volume integral on the

right hand side of (3.1.13). This can be approximated adequately by the midpoint

rule ∫
Kl

q(u(1), . . . , u(ns),x, t) dx ≈ |Kl| q(ū(1)
l , . . . , ū

(ns)
l ,ml, t), (3.1.22)

with ml denoting the barycenter of Kl. In the special case of a Dirac delta distribution

as source term, i.e., q = δ(x− x̂), the volume integral can be computed exactly. The

Dirac delta distribution is defined by requiring δ(x − x̂) = 0 for all x 6= x̂ and∫
R3 ψ(x)δ(x− x̂) dx = ψ(x̂) for any function ψ ∈ C∞0 (R3). Thus, we obtain

∫
Kl

q(x) dx =

∫
Kl

δ(x− x̂) · 1 dx =


1, x̂ ∈ Kl,

0, x̂ 6∈ Kl.

(3.1.23)

This completes the description of the finite volume discretization and, after divi-

sion by the local volume |Kl| = ∆xl∆yl∆zl, (3.1.15) can now be written as

d

dt
ūl −

1

∆xl

(
Hd,1(ūl, ūl+1)−Ha,1(û1,+

l , û1,−
l+1)
)

(3.1.24)

+
1

∆xl

(
Hd,1(ūl−1, ūl)−Ha,1(û1,+

l−1, û
1,−
l )
)

− 1

∆yl

(
Hd,2(ūl, ūl+Mx)−Ha,2(û2,+

l , û2,−
l+Mx

)
)

+
1

∆yl

(
Hd,2(ūl−Mx , ūl)−Ha,2(û2,+

l−Mx
, û2,−

l )
)

− 1

∆zl

(
Hd,3(ūl, ūl+MxMy)−Ha,3(û3,+

l , û3,−
l+MxMy

)
)

+
1

∆zl

(
Hd,3(ūl−MxMy , ūl)−Ha,3(û3,+

l−MxMy
, û3,−

l )
)

= q(ū
(1)
l , . . . , ū

(ns)
l ,ml, t).

(3.1.25)
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Let ū(i) = (ū
(i)
1 , . . . , ū

(i)
M )T ,q(i) = (q

(i)
1 , . . . , q

(i)
M )T , q

(i)
l = q(i)(ū

(1)
l , . . . , ū

(ns)
l ,ml, t),

(3.1.24) now reads

d

dt
ū(i) =

(
H

(i)
diff −H

(i)
adv

)
ū(i) + q(i)(ū(1), . . . , ū(n)), (3.1.26)

where Hdiff,Hadv ∈ RM×M are the flux matrices, built from terms containing Hd,j

and Ha,j in the system of equations (3.1.24). Finally, collecting all ns vectors ū(i) in

Ū ∈ RnsM the system (3.1.26) can be written as

d

dt
Ū(t) = fode(t, Ū(t)) (3.1.27)

with fode = (f (1), . . . , f (n))T ∈ RnsM and components

f (i) = A(i)ū(i) + q(i)(ū(1), . . . , ū(ns)), (3.1.28)

with

A(i) = H
(i)
diff −H

(i)
adv. (3.1.29)

3.2 Other Numerical Components

Both spatial discretization approaches yield large stiff ODE systems (3.1.12) and

(3.1.27), respectively. This section gives a brief description of the time integration,

the non-linear solver, and the linear solver.

3.2.1 Time Integration and Matrix-Free Implementation

The spatial discretization of the application problem (3.1.27) with ns = 3 species

using the finite volume method with M = MxMyMz control volumes results in a

system of non-linear ordinary differential equations (ODEs) with neq = nsM degrees

of freedom (DOF). A method of lines discretization of advection-diffusion-reaction

equations with second-order spatial derivatives results necessarily in a stiff ODE sys-

tem, since the time step size restrictions due to the CFL condition are considered too

severe to allow for explicit time-stepping methods. To reach the very large final times
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demanded to simulate laboratory time scales of the CICR application, we need to be

able to take fairly large time steps whenever possible. This necessitates the use of

a sophisticated ODE solver such as the family of numerical differentiation formulas

(NDFk) with variable order 1 ≤ k ≤ 5 and adaptively chosen time step size [28, 29].

This method is also used for a method of lines discretization using finite elements

in [7]. We use relative and absolute tolerances of 10−6 and 10−8, respectively, for the

error estimator of the NDFk method. In studies for the CICR problem, the time step

sizes vary widely, with fine step sizes on the order of 10−5 ms immediately after CRUs

open or close. Since the parabolic system is smooth away from these times, the time

steps increase steadily up to the order of 10−2 ms, while the error controller ensures

that the total error incurred from the time-stepping remains bounded by the selected

tolerances. This high variation in step size allows the solver to reach the desired final

time of 1,000 ms in under 90,000 time steps for the finest mesh. The average method

order observed is 3, showing that we are profiting significantly from the variable order

method.

We use the numerical differentiation formulas (NDFk) with variable order 1 ≤ k ≤

5 and adaptively chosen time step size, see [28, 29] for details. This implicit method

demands the solution of a non-linear system in each time step. For its solution,

a matrix-free method is applied, which means that results of the Jacobian-vector

products needed in the Krylov subspace method are provided directly without storing

the Jacobian. The purpose of this approach is to save memory and hence to allow

for computations on very fine meshes. In addition, the usage of the exact Jacobian

should lead to quadratic convergence of the Newton method. Furthermore, a matrix-

free implementation of diffusive and advective flux matrices is implemented to take

advantage of the structured mesh.
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3.2.2 The Non-linear Solver

The implicit ODE method needed for a stiff problem demands the solution of a

non-linear system Fnewt(Ū) = 0 of neq equations at every time step. The Newton

method is used with Jacobian Jnewt(Ū) = ∇ŪF
newt(Ū). This method profits from

the low-order spatial discretization on a uniform mesh used, because we are able to

compute analytically all the matrices in (3.1.24), as originally demonstrated in [9]

for the method of lines using finite elements. The purpose of this approach is to

save memory and hence allow for computations on very fine meshes. In addition,

the usage of the exact Jacobian should lead to quadratic convergence of the Newton

method. The iteration is stopped if ‖Ūnew‖ < εnewt‖Ūnew − Ūold‖ . We use the

tolerance of εnewt = 10−4 and maximum number of Newton iterations of 4. Since the

matrix-vector products in Krylov subspace methods [25] used as linear solvers below

are implemented in matrix-free form, this Jacobian is automatically evaluated at the

current Newton iteration without any additional cost.

3.2.3 Krylov Subspace Methods

The comparison of Krylov subspace methods below is part of the work that sup-

ports our choice of using BiCGSTAB as linear solver in [26] and [13].

At each Newton iteration, we need to solve a linear system with a non-symmetric

system matrix for the neq unknowns. Numerical experiments demonstrate that the

biconjugate gradient stabilized method (BiCGSTAB) is preferable over GMRES as

well as to QMR, the latter one being used with the finite element method in [7].

We stop the iteration within the linear solver if the residual r satisfies the condition

‖r‖2 < εlin‖b‖2 with b denoting the right-hand side of the linear system and a given

tolerance εlin. We use a tolerance of εlin = 10−6.

The essential part of the method described in Section 3.2 (or [7]) is the solution
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of the linear systems within the Newton method. Here we investigate the perfor-

mance of different Krylov subspace methods simulating the calcium flow in heart

cells, introduced in Section 2.1.

In [7], QMR is used to solve the linear systems, and thus, the availability of the

transpose of the Jacobian is essential. This is not an issue in [7], since the sub-blocks

of the corresponding Jacobian are symmetric. In the situation of Section 3.1.2, this

becomes an important issue, since the advective and diffusive flux matrices are not

symmetric. Hence, the coding of the matrix-free transpose is as hard to implement

as the original matrix.

In [15], another method for the solution of the calcium model is described. Therein

also Newton’s method is used to solve the non-linear systems and a preconditioned

version of GMRES was chosen to solve the linear systems.

Table 3.2.1 and Table 3.2.2 show comparisons of different Krylov subspace methods

used in long time simulations of the CICR model. See Table 2.1.1 for all parameters

of the simulations. The data in Table 3.2.1 comes from simulations using the finite

element method of [7], Table 3.2.2 stems from finite volume simulations. Both tables

show the wall clock times of the simulations, as well as the average number of iterations

per linear solve, i.e., the total sum of linear iterations divided by the number of

linear systems, for various meshes. Both tables show that BiCGSTAB is faster than

the variants of GMRES and clearly preferable over QMR. This also shows that the

extra effort of an implementation of the transpose of the Jacobian is not necessary,

since BiCGSTAB and GMRES obtain better results without requiring matrix-vector

products with the transpose.
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Table 3.2.1: Comparison of linear solvers in the finite element method.

(a) Wall clock time

BiCGSTAB GMRES(5) GMRES(10) GMRES(20) QMR

16× 16× 64 00:00:24 00:00:25 00:00:24 00:00:23 00:00:32

32× 32× 128 00:13:00 00:15:39 00:15:29 00:15:18 00:19:17

64× 64× 256 01:18:41 01:35:14 01:30:15 01:30:26 01:59:30

128× 128× 512 74:18:23 90:49:36 90:57:59 88:15:39 113:50:44

(b) Average iteration count per linear solve

BiCGSTAB GMRES(5) GMRES(10) GMRES(20) QMR

16× 16× 64 3.4835 6.1124 5.527 5.401 5.231

32× 32× 128 2.0602 3.4426 3.3792 3.3792 3.1082

64× 64× 256 2.3252 4.0419 3.8977 3.8927 3.6152

128× 128× 512 2.6836 4.7638 4.7638 4.6338 4.2298

Table 3.2.2: Comparison of linear solvers in the finite volume method.

(a) Wall clock time

BiCGSTAB GMRES(5) GMRES(10) GMRES(20) QMR

16× 16× 64 00:01:19 00:01:35 00:01:35 00:01:34 00:01:53

32× 32× 128 00:06:57 00:08:38 00:08:37 00:08:38 00:10:24

64× 64× 256 01:01:44 01:15:27 01:15:23 01:15:15 01:34:42

128× 128× 512 40:01:06 90:50:26 90:49:09 88:12:30 113:51:38

(b) Average iteration count per linear solve

BiCGSTAB GMRES(5) GMRES(10) GMRES(20) QMR

16× 16× 64 1.0585 1.8064 1.8017 1.8017 1.8589

32× 32× 128 1.0964 1.7944 1.7944 1.7944 1.8475

64× 64× 256 1.2272 2.0169 2.0158 2.0159 2.0669

128× 128× 512 1.5131 4.7638 4.7638 4.6338 4.2298
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3.3 Parallel Implementation

This section introduces two parallel implementations. The first implementation

uses MPI for parallel communications and runs on CPU only nodes. The second

implementation uses CUDA with MPI and runs on hybrid CPU/GPU nodes.

3.3.1 Parallel Implementation with MPI

Parallel computing breaks a problem into smaller ones, which are then solved

concurrently. The implementation using MPI has two key advantages: (i) It enables

the simulations on fine meshes and (ii) it speeds up the computations sufficiently to

enable simulations up to large final times within a reasonable amount of wall clock

time.

The code is written in C with MPI commands for the parallel communications for

maximum portability. We split the domain Ω into non-overlapping sub-domains, with

one on each of the p parallel processes, by cutting in the (long) z dimension of Ω. As

a result, the (Nz + 1) mesh points are block-distributed to the p parallel processes.

This choice makes the x-y planes of nodes whose values need to be exchanged between

neighboring processes as small as possible, i.e., it is the optimal decomposition in

a graph partitioning sense. Our code is capable of using any number of parallel

processors within a limit determined by the mesh size. Since each process must have

at least one mesh point in the z-direction, the number of processes p must not be

larger than the number of (Nz + 1) mesh points. In other words, combinations of p

and Nz with p > (Nz + 1) are not feasible.

The communications between neighboring processes occur in each matrix-vector

product needed in the Krylov subspace method. They are implemented by non-

blocking MPI_Isend and MPI_Irecv commands. These have proven to be faster

than blocking communication commands and as fast as any other MPI point-to-
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point communication commands available. MPI_Allreduce commands are needed

for all norm computations as well as for various diagnostic quantities such as mini-

mum and maximum values of the solutions. The wall clock times are measured using

MPI_Barrier and MPI_Wtime in sequence at the beginning and end of the run. We

use the genrand() function from [20], with different seeds on each parallel process,

to generate sequences of uniformly distributed pseudo-random numbers.

Table 3.3.1 summarizes several key parameters of the MPI implementation solved

with the finite element method. The first three columns show the spatial mesh reso-

lution of Nx ×Ny ×Nz, the number of mesh points N = (Nx + 1)(Ny + 1)(Nz + 1),

and their associated numbers of unknowns nsN for the ns species that need to be

computed at every time step, commonly referred to as degrees of freedom (DOF).

The following column lists the number of time steps taken by the ODE solver, which

are significant and which increase with finer resolutions. The final two columns list

the memory usage in GB, both predicted by counting variables in the implementa-

tion and by observation provided in a memory log file produced from the performance

run. We notice that even the finest resolution fits comfortably in the memory of one

NVIDIA K20 GPU. The same degrees of freedom (DOF) applies to the finite volume

method, and also time steps using the finite volume method are comparable.

Results using this implementation are reported in Section 4.1 and Section 4.2.

3.3.2 Parallel Implementation using CUDA and MPI

This section is an extension of parallel implementation using CUDA and MPI

in [11] and [8].

In the CUDA programming language, the CPU and the system’s memory are re-

ferred to as host, and the GPU and its memory are referred to as device. Figure 3.3.1

explains how threads are grouped into blocks, and blocks grouped into grids. Threads
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Table 3.3.1: Sizing study listing the mesh resolution Nx×Ny×Nz, the number of mesh

points N = (Nx+1)(Ny+1)(Nz+1), the number of degrees of freedom (DOF = nsN)

for the CICR problem with ns = 3 species, the number of time steps taken by the

ODE solver, and the predicted and observed memory usage in MB for a one-process

run.

Nx ×Ny ×Nz N DOF = 3 N number of memory usage (GB)

time steps predicted observed

32× 32× 128 140,481 421,443 58,416 0.05 0.08
64× 64× 256 1,085,825 3,257,475 73,123 0.41 0.48

128× 128× 512 8,536,833 25,610,499 89,088 3.24 3.68

Figure 3.3.1: Schematic of blocks and threads.

unite into thread blocks – one-, two-, or three-dimensional grids of threads that in-

teract with each other via shared memory and synchpoints. A program (kernel) is

executed over a grid of thread blocks. One grid is executed at a time. Each block

can also be one-, two-, or three-dimensional in form. This gives much flexibility in

launching kernels with different structure of the data. However, there are still limita-

tions such as the maximum dimension size of a thread block is (1024, 1024, 64), and

the maximum number of threads per block is 1024 for the K20 GPU we have.

The parallel implementation in this section is an extension of the one described in
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Section 3.3.1, which uses MPI for parallel communications. Therefore, it inherited the

main structure of the C program. However, to enable efficient calculations on GPU,

almost all calculations have been redesigned to take advantage of GPU parallelism.

While inputs are still managed by the host, C structs are shared by host and device.

Large arrays are allocated directly on the device memory before numerical iterations,

hence to prevent frequent communications between host and device. Functions are

written in CUDA format from the start, to keep consistency and allow for future

improvement. Since the host handles MPI communication and output to files, data

communications between host and device occur before and after these events. The

CUDA program has several levels, a detailed discussion is as follows:

The uppermost level is where computational resources are managed. First, MPI

processes are setup in main.cu. After detecting the number of CUDA capable devices

(NVIDIA GPUs) on each node, the main.cu function then sets the CUDA device for

each MPI process. The idea behind this setup is to allow each MPI process to have

access to a unique GPU device. If more than one MPI process is accessing the same

GPU, kernels will queue up and the performance will be degraded. In our cluster,

each GPU enabled node has two GPUs, each connected to a CPU socket via PCI

bus, as shown in Figure 1.2.3. This means the best approach is to request 2 processes

from each node and have each MPI process utilize a unique GPU. We can also run

the program in serial, with a single MPI process and one GPU. The 5 GB GPU

memory can hold the memory allocated for all large arrays for our current finest

mesh 128× 128× 512. After the computational resources are correctly allocated, the

main.cu program launches the program that does the actual computation. Lastly,

the main.cu program records the total memory used for each CPU node.

At the next level, the program selects the right solver based on a set of parameters.

The code is a package that can solve many different problems with one-dimensional,
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two-dimensional and three-dimensional domains. Including parabolic PDE systems,

the classic Poisson problem, the power method, etc. In the case of the CICR model,

main.cu call the function run_parabolic.cu, and the other model problems can be

programmed in the same fashion. Within problem_par_3d.cu, we first read param-

eters from one input file, set up C structs, allow them to be shared by both C and

CUDA code, and write arrays associated to the structs. These steps are achieved by

working with inputs.cu and struct_define.h. Parameters in Table 2.1.1 are read

in and set up in these steps. A crucial arrangement in the code is to put C struct

type definitions in one header file called struct_define.h. After the definition of

various struct data types, we need to declare each struct with extern. Just as we

declare all other functions with extern "C", this allows the mixture of C and CUDA

to work properly. This header file is then included by every other .cu file. However,

to be able to compile correctly, we also need to put regular struct declarations at the

beginning of main.cu. After the initialization of structs and parameters, the function

run_parabolic.cu then allocates memory for the solution for the PDE system on

the CPU memory.

At level three the ODE solver is called. The solver is based on numerical differenti-

ation formulas (NDFk) with variable order 1 ≤ k ≤ 5 and adaptively chosen time step

size. As described in Section 3.2, at each time step a nonlinear system is solved via

a matrix-free Newton method. The matrix-vector multiplication function therein has

many GPU kernels that can readily take data already existing on GPU memory, hence

be able to reduce the cost of transferring data between CPU and GPU memories. The

function cublasDdot is used for dot product with double precision. There are other

choices for reduce operation like atomicAdd function for double precision numbers,

but it is not natively supported by NVIDIA and is relatively slow compare to cublas.

While running with multiple MPI processes, data transfers between CPU and GPU
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memories are inevitable. Firstly, data has to be transferred back to the CPU memory

for output. Secondly, data needs to be transferred to CPU memory before MPI com-

munication, and transferred back to GPU memory for calculation. But it is expected

that the second level of parallelism on GPU will outperform CPU. The most crucial

technique to obtain speedup is to hide the time used for MPI communications behind

actual computation time on the GPUs. This is done through non-blocking MPI com-

munications. We split GPU kernel in the matrix-vector multiplication function into

two separate kernels, one does not require computation on MPI communicated data,

the other does. Since non-blocking MPI communication functions such as MPI_Isend

and MPI_Irecv return immediately, we can continue to execute the first kernel while

the MPI communication takes place. We put a MPI_Waitall only before the launch

of the second kernel, making sure the MPI communication is finished before accessing

these data.

Finally, it is vitally important to design kernels that can run with different mesh

sizes in Table 3.3.1, and also have room for finer mesh. The most crucial design in

kernels are the choice of block and grid sizes. As mentioned before, each block and

grid can have one, two or three-dimensions. This gives much flexibility in launching

kernels with different structure of the data. In the application problem here, the

number of threads in one block is determined by the mesh on x-direction Nx, as

dim3 threads(Nx, 1). This allows Nx to be as large as the limit of 1024 threads.

Moreover the number of blocks in one grid is determined by the mesh on y- and

z-directions Ny and l Nz, as dim3 blocks(Ny, l_Nz). l means local to the MPI

process. dim3 can be used to define arrays of up to three-dimensions. In this setup,

all utility functions and kernels that need to access large arrays on GPU can be

designed to use the same block thread structure, making it much easier to program

the actual kernels.
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3.4 Convergence Studies

The convergence studies in this section is part of [13].

This section presents numerical studies of convergence order of the spatial dis-

cretization for the two scalar test problems of Section 2.2. If the true solution is

denoted by u and its numerical approximation by uh, then classical results for the

spatial error in the L2-norm have the form

‖u(x, t)− uh(x, t)‖L2(Ω)
≤ C hq, as h→ 0, (3.4.1)

for all 0 < t ≤ tfin, where the constant C is independent of the mesh size h. The

number q is the convergence order of the spatial discretization. Here, the L2(Ω)-norm

is defined as

‖v‖
L2(Ω)

=

(∫
Ω

v2 dx

)1/2

.

For the finite element method, the classical theory for linear elements specifies

q = 2, which does not depend on space dimension, see, e.g., [32]. The classical theory

requires the source terms to be in the function space L2(Ω), which is not true for source

terms involving point sources modeled by the Dirac delta distribution. For the finite

element method, heuristic arguments and the computational results of [7] indicate that

q = 0.5 in three spatial dimensions and q = 1.0 in two spatial dimensions. Motivated

by these computational results, rigorous analysis in [27, Theorem 5.1] establishes

that (3.4.1) holds with q = 2 − d/2 − ε in dimensions d = 2, 3, which confirms the

computational results.

For the finite volume method, we are not aware of any rigorous theory for problems

involving non-smooth source terms. The purpose of this section is to analyze the

convergence order of the finite volume method numerically, analogous to [7], and

additionally (i) analyze the impact of increasing advection on the convergence order

and (ii) compare the first- and second-order discretization of the advection term in
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(3.1.18) and (3.1.19), respectively.

The results in this section are collected in 10 tables, with Tables 3.4.1 through 3.4.4

containing results for problems on the three-dimensional domain Ω ⊂ R3, Tables 3.4.5

through 3.4.8 results for problems on the two-dimensional domain Ω ⊂ R2, and Ta-

bles 3.4.9 and 3.4.10 providing summaries of the results. Specifically, we start with

Tables 3.4.1 and 3.4.2 considering the same method as in [26], using the second-order

discretization of the advection term (3.1.19). Then, Tables 3.4.3 and 3.4.4 provide the

comparison to using the first-order discretization of the advection term (3.1.18). The

two pairs of Tables 3.4.5 and 3.4.6 and Tables 3.4.7 and 3.4.8 repeat the comparison of

second- and first-order advection discretizations for the problems in two dimensions.

Each of the Tables 3.4.1 through 3.4.8 contains five subtables. The entries in each

subtable report the L2-norm of the error ‖u(·, t) − uh(·, t)‖L2(Ω) and in parentheses

a numerical estimate of the convergence order q from (3.4.1), for four progressively

finer meshes. Given numerical solutions on two meshes with mesh widths h and 2h,

the order q can be estimated using the formula

qest = log2

(
‖u(·, t)− u2h(·, t)‖L2(Ω)

‖u(·, t)− uh(·, t)‖L2(Ω)

)
. (3.4.2)

For problems, whose true solution u is not available, it is customary to use the nu-

merical solution on the finest available mesh as a reference solution in place of u in

the norm of the errors. This procedure is necessary for the non-smooth test problem.

For consistency, we apply this procedure also for the smooth test problem. Hence,

all tables in this section show errors against a reference solution. However, for the

smooth problem, we also obtained the analogous results of ‖u(·, t) − uh(·, t)‖L2(Ω)

and qest using the true solution and confirmed that the procedure with the reference

solution worked correctly in this case.

First, let us discuss results in three spatial dimensions. For instance, Table 3.4.1

reports error and convergence order against reference solution using second-order dis-
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cretization of the advection term. The first subtable 3.4.1 (a) reports the results

for the finite element method. Since this method is not suitable for problems with

advection, it is applied to the test problems without the advection term. The con-

vergence order results for the finite element method agree with those in [7] and are

included here to allow for a ready comparison. Recall from Section 2.2 and Ta-

ble 2.1.1 that the scalar test equations use the calcium diffusion coefficient matrix

D = D(1) = diag(0.15, 0.15, 0.30). The advection velocity is the product of the

weight ω and vector (0.15, 0.15, 0.30)T of the form β = β(1) = ω (0.15, 0.15, 0.30)T

such that we can control the magnitude of advection by varying the constant ω. For

ω = 0, there is no advection, and for ω = 1, diffusion and advection are on the

same order of magnitude. Subtables 3.4.1 (b)–(e) contain results for the finite volume

method with second-order discretization of advection term described in (3.1.19), with

ω = 0, 0.01, 0.1, 1. We observe that both FEM and FVM with second-order advection

discretization have a numerical convergence order of q = 2. Table 3.4.2 contains five

subtables for the test problem with non-smooth source term. Recall from Section 2.2

that the single CRU in the center of the domain opens at time t = 1 and remains

open afterwards. We observe a numerical convergence order of q = 0.5 for both FEM

and FVM with second-order advection discretization. Table 3.4.3 and Table 3.4.4

repeat the tests above but use the first-order advection discretization as described

in (3.1.18). Table 3.4.3 show that as we increase the weight of advection ω, the nu-

merical convergence order dropped from 2 to 1.5, indicating the convergence rate is

lower when using first-order advection discretization for the test problem with smooth

source term. From Table 3.4.4 we observe the numerical convergence order of q = 0.5

for both FEM and FVM with first-order advection discretization.

Notice that in Table 3.4.2 and Table 3.4.4 the actual observed errors have a mag-

nitude of 10+1. This is because the calcium release unit at the center of the domain is
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modeled by Dirac delta distribution, which is a highly non-smooth source term. Note

that the apparently large values for the error must be viewed in the context of the

large size of the domain Ω, which is (12.8)(12.8)(64) = 10, 485.76. In the meantime,

convergence studies in [7] have shown that the L2-norms have the magnitude from

10−1 to 10−3 and converge quadratically on the domain Ω with a small area centered

about the calcium release unit removed. This confirms that the non-smooth source

term is the reason of observed convergence order q = 0.5.

Now, let us move on to results in two spatial dimensions. Table 3.4.5 and Ta-

ble 3.4.6 show that with second-order discretization of the advection term, the nu-

merical convergence order q = 2 for finite volume method with smooth source term,

and q = 1 with non-smooth source term. Table 3.4.7 and Table 3.4.8 show that

with first-order discretization of advection term, q drops below 2 while increasing the

weight of advection with smooth source term, and q = 1 with non-smooth source

term. This shows that the convergence order is dependent on the space dimensions

while dealing with highly non-smooth source terms such as point sources here.
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Table 3.4.1: L2-error against reference solution (and estimated convergence order qest)

for scalar test problem with smooth source term in 3-D using a second-order advection

discretization in the finite volume method.

(a) FEM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 2.4322e–01 2.1725e–01 1.9453e–01

32× 32× 128 6.0327e–02 (2.0114) 5.3869e–02 (2.0119) 4.8182e–02 (2.0134)

64× 64× 256 1.4488e–02 (2.0579) 1.2954e–02 (2.0561) 1.1598e–02 (2.0546)

128× 128× 512 3.0194e–03 (2.2626) 2.7163e–03 (2.2536) 2.4465e–03 (2.2450)

(b) 2nd order FVM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 4.1596e–01 4.0106e–01 3.8575e–01

32× 32× 128 1.0682e–01 (1.9612) 1.0245e–01 (1.9689) 9.8285e–02 (1.9726)

64× 64× 256 2.6685e–02 (2.0011) 2.5573e–02 (2.0022) 2.4520e–02 (2.0030)

128× 128× 512 6.9077e–03 (1.9498) 6.6055e–03 (1.9529) 6.3208e–03 (1.9558)

(c) 2nd order FVM with ω = 0.01

t = 2 t = 3 t = 4

16× 16× 64 4.1588e–01 4.0096e–01 3.8564e–01

32× 32× 128 1.0683e–01 (1.9608) 1.0246e–01 (1.9684) 9.8294e–02 (1.9721)

64× 64× 256 2.6687e–02 (2.0011) 2.5574e–02 (2.0023) 2.4520e–02 (2.0031)

128× 128× 512 6.9076e–03 (1.9499) 6.6050e–03 (1.9530) 6.3202e–03 (1.9559)

(d) 2nd order FVM with ω = 0.1

t = 2 t = 3 t = 4

16× 16× 64 4.1551e–01 4.0076e–01 3.8570e–01

32× 32× 128 1.0699e–01 (1.9574) 1.0273e–01 (1.9639) 9.8654e–02 (1.9670)

64× 64× 256 2.6726e–02 (2.0011) 2.5638e–02 (2.0025) 2.4601e–02 (2.0037)

128× 128× 512 6.9112e–03 (1.9512) 6.6163e–03 (1.9542) 6.3338e–03 (1.9576)

(e) 2nd order FVM with ω = 1

t = 2 t = 3 t = 4

16× 16× 64 4.3888e–01 4.5043e–01 4.6647e–01

32× 32× 128 1.1749e–01 (1.9013) 1.2257e–01 (1.8777) 1.2900e–01 (1.8544)

64× 64× 256 2.9760e–02 (1.9811) 3.1218e–02 (1.9732) 3.3070e–02 (1.9638)

128× 128× 512 7.4323e–03 (2.0015) 7.5946e–03 (2.0393) 7.8554e–03 (2.0738)
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Table 3.4.2: L2-error against reference solution (and estimated convergence order

qest) for scalar test problem with non-smooth source term in 3-D using a second-order

advection discretization in the finite volume method.

(a) FEM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 5.4249e+01 5.0676e+01 5.0706e+01

32× 32× 128 3.6689e+01 (0.5643) 3.7651e+01 (0.4286) 3.7806e+01 (0.4235)

64× 64× 256 2.6378e+01 (0.4760) 2.6396e+01 (0.5124) 2.6400e+01 (0.5181)

128× 128× 512 1.6083e+01 (0.7138) 1.6083e+01 (0.7147) 1.6084e+01 (0.7149)

(b) 2nd order FVM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 7.6451e+01 8.5493e+01 8.8933e+01

32× 32× 128 6.4231e+01 (0.2513) 6.5344e+01 (0.3877) 6.5578e+01 (0.4395)

64× 64× 256 4.6063e+01 (0.4797) 4.6135e+01 (0.5022) 4.6152e+01 (0.5068)

128× 128× 512 3.0898e+01 (0.5761) 3.0903e+01 (0.5781) 3.0905e+01 (0.5786)

(c) 2nd order FVM with ω = 0.01

t = 2 t = 3 t = 4

16× 16× 64 7.6263e+01 8.5145e+01 8.8515e+01

32× 32× 128 6.4070e+01 (0.2513) 6.5172e+01 (0.3857) 6.5405e+01 (0.4365)

64× 64× 256 4.5999e+01 (0.4781) 4.6070e+01 (0.5004) 4.6087e+01 (0.5050)

128× 128× 512 3.0875e+01 (0.5751) 3.0880e+01 (0.5772) 3.0881e+01 (0.5776)

(d) 2nd order FVM with ω = 0.1

t = 2 t = 3 t = 4

16× 16× 64 7.4665e+01 8.2230e+01 8.5029e+01

32× 32× 128 6.2670e+01 (0.2527) 6.3683e+01 (0.3687) 6.3902e+01 (0.4121)

64× 64× 256 4.5425e+01 (0.4643) 4.5495e+01 (0.4852) 4.5512e+01 (0.4896)

128× 128× 512 3.0667e+01 (0.5668) 3.0672e+01 (0.5688) 3.0673e+01 (0.5693)

(e) 2nd order FVM with ω = 1

t = 2 t = 3 t = 4

16× 16× 64 6.5034e+01 6.6909e+01 6.7530e+01

32× 32× 128 5.2889e+01 (0.2982) 5.3328e+01 (0.3273) 5.3437e+01 (0.3377)

64× 64× 256 4.0584e+01 (0.3821) 4.0636e+01 (0.3921) 4.0648e+01 (0.3947)

128× 128× 512 2.8747e+01 (0.4975) 2.8751e+01 (0.4991) 2.8752e+01 (0.4995)
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Table 3.4.3: L2-error against reference solution (and estimated convergence order qest)

for scalar test problem with smooth source term in 3-D using a first-order advection

discretization in the finite volume method.

(a) FEM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 2.4322e–01 2.1725e–01 1.9453e–01

32× 32× 128 6.0327e–02 (2.0114) 5.3869e–02 (2.0119) 4.8182e–02 (2.0134)

64× 64× 256 1.4488e–02 (2.0579) 1.2954e–02 (2.0561) 1.1598e–02 (2.0546)

128× 128× 512 3.0194e–03 (2.2626) 2.7163e–03 (2.2536) 2.4465e–03 (2.2450)

(b) 1st order FVM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 4.1596e–01 4.0106-e-01 3.8575e–01

32× 32× 128 1.0682e–01 (1.9612) 1.0245e–01 (1.9689) 9.8285e–02 (1.9726)

64× 64× 256 2.6685e–02 (2.0011) 2.5573e–02 (2.0022) 2.4520e–02 (2.0030)

128× 128× 512 6.9077e–03 (1.9498) 6.6055e–03 (1.9529) 6.3208e–03 (1.9558)

(c) 1st order FVM with ω = 0.01

t = 2 t = 3 t = 4

16× 16× 64 4.1399e–01 3.9820e–01 3.8205e–01

32× 32× 128 1.0598e—01 (1.9658) 1.0122e–01 (1.9761) 9.6683e–02 (1.9824)

64× 64× 256 2.6350e–02 (2.0079) 2.5085e–02 (2.0126) 2.3890e–02 (2.0168)

128× 128× 512 6.8263e–03 (1.9486) 6.4894e–03 (1.9507) 6.1736e–03 (1.9522)

(d) 1st order FVM with ω = 0.1

t = 2 t = 3 t = 4

16× 16× 64 3.9932e–01 3.7901e–01 3.5979e–01

32× 32× 128 1.0109e–01 (1.9819) 9.5928e–02 (1.9822) 9.2084e–02 (1.9661)

64× 64× 256 2.5389e–02 (1.9934) 2.5096e–02 (1.9345) 2.5552e–02 (1.8495)

128× 128× 512 6.9876e–03 (1.8613) 7.2888e–03 (1.7837) 7.8148e–03 (1.7091)

(e) 1st order FVM with ω = 1

t = 2 t = 3 t = 4

16× 16× 64 5.4935e–01 7.1330e–01 8.7562e–01

32× 32× 128 2.4039e–01 (1.1923) 3.3733e–01 (1.0804) 4.2579e–01 (1.0401)

64× 64× 256 1.0429e–01 (1.2047) 1.4883e–01 (1.1805) 1.8866e–01 (1.1743)

128× 128× 512 3.5657e–02 (1.5484) 5.0768e–02 (1.5517) 6.4249e–02 (1.5541)
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Table 3.4.4: L2-error against reference solution (and estimated convergence order

qest) for scalar test problem with non-smooth source term in 3-D using a first-order

advection discretization in the finite volume method.

(a) FEM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 5.4249e+01 5.0676e+01 5.0706e+01

32× 32× 128 3.6689e+01 (0.5643) 3.7651e+01 (0.4286) 3.7806e+01 (0.4235)

64× 64× 256 2.6378e+01 (0.4760) 2.6396e+01 (0.5124) 2.6400e+01 (0.5181)

128× 128× 512 1.6083e+01 (0.7138) 1.6083e+01 (0.7147) 1.6084e+01 (0.7149)

(b) 1st order FVM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 7.6451e+01 8.5493e+01 8.8933e+01

32× 32× 128 6.4231e+01 (0.2513) 6.5344e+01 (0.3877) 6.5578e+01 (0.4395)

64× 64× 256 4.6063e+01 (0.4797) 4.6135e+01 (0.5022) 4.6152e+01 (0.5068)

128× 128× 512 3.0898e+01 (0.5761) 3.0903e+01 (0.5781) 3.0905e+01 (0.5786)

(c) 1st order FVM with ω = 0.01

t = 2 t = 3 t = 4

16× 16× 64 7.6299e+01 8.5218e+01 8.8596e+01

32× 32× 128 6.4101e+01 (0.2513) 6.5198e+01 (0.3863) 6.5426e+01 (0.4374)

64× 64× 256 4.6010e+01 (0.4784) 4.6080e+01 (0.5007) 4.6097e+01 (0.5052)

128× 128× 512 3.0881e+01 (0.5752) 3.0886e+01 (0.5772) 3.0887e+01 (0.5777)

(d) 1st order FVM with ω = 0.1

t = 2 t = 3 t = 4

16× 16× 64 7.4977e+01 8.2850e+01 8.5714e+01

32× 32× 128 6.2953e+01 (0.2522) 6.3918e+01 (0.3743) 6.4105e+01 (0.4191)

64× 64× 256 4.5538e+01 (0.4672) 4.5596e+01 (0.4873) 4.5609e+01 (0.4911)

128× 128× 512 3.0725e+01 (0.5676) 3.0729e+01 (0.5693) 3.0730e+01 (0.5697)

(e) 1st order FVM with ω = 1

t = 2 t = 3 t = 4

16× 16× 64 6.5199e+01 6.7564e+01 6.8367e+01

32× 32× 128 5.4115e+01 (0.2688) 5.4522e+01 (0.3094) 5.4708e+01 (0.3216)

64× 64× 256 4.1512e+01 (0.3825) 4.1587e+01 (0.3907) 4.1646e+01 (0.3936)

128× 128× 512 2.9290e+01 (0.5031) 2.9304e+01 (0.5050) 2.9316e+01 (0.5065)
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Table 3.4.5: L2-error against reference solution (and estimated convergence order qest)

for scalar test problem with smooth source term in 2-D using a second-order advection

discretization in the finite volume method.

(a) FEM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 1.5341e–01 1.4291e–01 1.3300e–01

32× 32× 128 3.7920e–02 (2.0164) 3.5316e–02 (2.0167) 3.2857e–02 (2.0172)

64× 64× 256 8.9647e–03 (2.0806) 8.3605e–03 (2.0787) 7.7914e–03 (2.0762)

128× 128× 512 1.8359e–03 (2.2878) 1.7270e–03 (2.2753) 1.6268e–03 (2.2598)

(b) 2nd order FVM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 1.3268e–01 1.2941e–01 1.2582e–01

32× 32× 128 3.4128e–02 (1.9589) 3.3101e–02 (1.9671) 3.2096e–02 (1.9709)

64× 64× 256 8.5443e–03 (1.9979) 8.2794e–03 (1.9993) 8.0214e–03 (2.0005)

128× 128× 512 2.2398e–03 (1.9316) 2.1654e–03 (1.9349) 2.0924e–03 (1.9387)

(c) 2nd order FVM with ω = 0.01

t = 2 t = 3 t = 4

16× 16× 64 1.3264e–01 1.2937e–01 1.2576e–01

32× 32× 128 3.4126e–02 (1.9586) 3.3097e–02 (1.9667) 3.2088e–02 (1.9706)

64× 64× 256 8.5434e–03 (1.9980) 8.2774e–03 (1.9994) 8.0183e–03 (2.0007)

128× 128× 512 2.2395e–03 (1.9317) 2.1649e–03 (1.9349) 2.0916e–03 (1.9387)

(d) 2nd order FVM with ω = 0.1

t = 2 t = 3 t = 4

16× 16× 64 1.3246e–01 1.2917e–01 1.2559e–01

32× 32× 128 3.4144e–02 (1.9558) 3.3128e–02 (1.9632) 3.2125e–02 (1.9670)

64× 64× 256 8.5449e–03 (1.9985) 8.2783e–03 (2.0006) 8.0182e–03 (2.0023)

128× 128× 512 2.2385e–03 (1.9326) 2.1635e–03 (1.9360) 2.0900e–03 (1.9398)

(e) 2nd order FVM with ω = 1

t = 2 t = 3 t = 4

16× 16× 64 1.4105e–01 1.4700e–01 1.5385e–01

32× 32× 128 3.7675e–02 (1.9046) 3.9556e–02 (1.8938) 4.1453e–02 (1.8920)

64× 64× 256 9.4614e–03 (1.9935) 9.8093e–03 (2.0117) 1.0087e–02 (2.0390)

128× 128× 512 2.3737e–03 (1.9949) 2.3841e–03 (2.0407) 2.4068e–03 (2.0673)
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Table 3.4.6: L2-error against reference solution (and estimated convergence order

qest) for scalar test problem with non-smooth source term in 2-D using a second-order

advection discretization in the finite volume method.

(a) FEM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 6.4814e+01 5.6294e+01 5.4132e+01

32× 32× 128 3.2145e+01 (1.0117) 3.1586e+01 (0.8337) 3.1433e+01 (0.7842)

64× 64× 256 1.9717e+01 (0.7051) 1.9524e+01 (0.6941) 1.9461e+01 (0.6917)

128× 128× 512 9.4765e+00 (1.0570) 9.4550e+00 (1.0461) 9.4477e+00 (1.0425)

(b) 2nd order FVM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 5.2421e+01 6.5340e+01 7.1232e+01

32× 32× 128 3.7185e+01 (0.4954) 3.9076e+01 (0.7417) 3.9606e+01 (0.8468)

64× 64× 256 1.9847e+01 (0.9058) 2.0017e+01 (0.9650) 2.0073e+01 (0.9805)

128× 128× 512 9.6699e+00 (1.0373) 9.6869e+00 (1.0471) 9.6926e+00 (1.0503)

(c) 2nd order FVM with ω = 0.01

t = 2 t = 3 t = 4

16× 16× 64 5.2229e+01 6.4951e+01 7.0739e+01

32× 32× 128 3.7048e+01 (0.4955) 3.8925e+01 (0.7387) 3.9452e+01 (0.8424)

64× 64× 256 1.9808e+01 (0.9033) 1.9978e+01 (0.9623) 2.0033e+01 (0.9777)

128× 128× 512 9.6608e+00 (1.0358) 9.6779e+00 (1.0456) 9.6835e+00 (1.0488)

(d) 2nd order FVM with ω = 0.1

t = 2 t = 3 t = 4

16× 16× 64 5.0582e+01 6.1664e+01 6.6600e+01

32× 32× 128 3.5859e+01 (0.4963) 3.7610e+01 (0.7133) 3.8115e+01 (0.8052)

64× 64× 256 1.9462e+01 (0.8817) 1.9630e+01 (0.9381) 1.9685e+01 (0.9533)

128× 128× 512 9.5802e+00 (1.0225) 9.5973e+00 (1.0324) 9.6029e+00 (1.0355)

(e) 2nd order FVM with ω = 1

t = 2 t = 3 t = 4

16× 16× 64 4.0331e+01 4.3925e+01 4.5555e+01

32× 32× 128 2.7520e+01 (0.5514) 2.8498e+01 (0.6242) 2.8846e+01 (0.6592)

64× 64× 256 1.6563e+01 (0.7326) 1.6710e+01 (0.7702) 1.6760e+01 (0.7834)

128× 128× 512 8.8417e+00 (0.9055) 8.8579e+00 (0.9156) 8.8632e+00 (0.9191)
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Table 3.4.7: L2-error against reference solution (and estimated convergence order qest)

for scalar test problem with smooth source term in 2-D using a first-order advection

discretization in the finite volume method.

(a) FEM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 1.5341e–01 1.4291e–01 1.3300e–01

32× 32× 128 3.7920e–02 (2.0164) 3.5316e–02 (2.0167) 3.2857e–02 (2.0172)

64× 64× 256 8.9647e–03 (2.0806) 8.3605e–03 (2.0787) 7.7914e–03 (2.0762)

128× 128× 512 1.8359e–03 (2.2878) 1.7270e–03 (2.2753) 1.6268e–03 (2.2598)

(b) 1st order FVM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 1.3268e–01 1.2941e–01 1.2582e–01

32× 32× 128 3.4128e–02 (1.9589) 3.3101e–02 (1.9671) 3.2096e–02 (1.9709)

64× 64× 256 8.5443e–03 (1.9979) 8.2794e–03 (1.9993) 8.0214e–03 (2.0005)

128× 128× 512 2.2398e–03 (1.9316) 2.1654e–03 (1.9349) 2.0924e–03 (1.9387)

(c) 1st order FVM with ω = 0.01

t = 2 t = 3 t = 4

16× 16× 64 1.3216e–01 1.2864e–01 1.2481e–01

32× 32× 128 3.3906e–02 (1.9626) 3.2769e–02 (1.9729) 3.1656e–02 (1.9792)

64× 64× 256 8.4566e–03 (2.0034) 8.1492e–03 (2.0076) 7.8502e–03 (2.0117)

128× 128× 512 2.2192e–03 (1.9300) 2.1353e–03 (1.9322) 2.0539e–03 (1.9344)

(d) 1st order FVM with ω = 0.1

t = 2 t = 3 t = 4

16× 16× 64 1.2828e–01 1.2350e–01 1.1877e–01

32× 32× 128 3.2633e–02 (1.9749) 3.1378e–02 (1.9767) 3.0445e–02 (1.9638)

64× 64× 256 8.2180e–03 (1.9895) 8.1770e–03 (1.9401) 8.3483e–03 (1.8667)

128× 128× 512 2.2688e–03 (1.8569) 2.3632e–03 (1.7908) 2.5289e–03 (1.7229)

(e) 1st order FVM with ω = 1

t = 2 t = 3 t = 4

16× 16× 64 1.6987e–01 2.1957e–01 2.7156e–01

32× 32× 128 7.1933e–02 (1.2397) 1.0169e–01 (1.1105) 1.3014e–01 (1.0612)

64× 64× 256 3.0802e–02 (1.2236) 4.4549e–02 (1.1908) 5.7368e–02 (1.1817)

128× 128× 512 1.0502e–02 (1.5523) 1.5167e–02 (1.5544) 1.9505e–02 (1.5564)



64

Table 3.4.8: L2-error against reference solution (and estimated convergence order

qest) for scalar test problem with non-smooth source term in 2-D using a first-order

advection discretization in the finite volume method.

(a) FEM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 6.4814e+01 5.6294e+01 5.4132e+01

32× 32× 128 3.2145e+01 (1.0117) 3.1586e+01 (0.8337) 3.1433e+01 (0.7842)

64× 64× 256 1.9717e+01 (0.7051) 1.9524e+01 (0.6941) 1.9461e+01 (0.6917)

128× 128× 512 9.4765e+00 (1.0570) 9.4550e+00 (1.0461) 9.4477e+00 (1.0425)

(b) 1st order FVM with ω = 0

t = 2 t = 3 t = 4

16× 16× 64 5.2421e+01 6.5340e+01 7.1232e+01

32× 32× 128 3.7185e+01 (0.4954) 3.9076e+01 (0.7417) 3.9606e+01 (0.8468)

64× 64× 256 1.9847e+01 (0.9058) 2.0017e+01 (0.9650) 2.0073e+01 (0.9805)

128× 128× 512 9.6699e+00 (1.0373) 9.6869e+00 (1.0471) 9.6926e+00 (1.0503)

(c) 1st order FVM with ω = 0.01

t = 2 t = 3 t = 4

16× 16× 64 5.2269e+01 6.5038e+01 7.0839e+01

32× 32× 128 3.7075e+01 (0.4955) 3.8942e+01 (0.7400) 3.9460e+01 (0.8441)

64× 64× 256 1.9811e+01 (0.9041) 1.9979e+01 (0.9628) 2.0032e+01 (0.9781)

128× 128× 512 9.6619e+00 (1.0360) 9.6785e+00 (1.0456) 9.6839e+00 (1.0487)

(d) 1st order FVM with ω = 0.1

t = 2 t = 3 t = 4

16× 16× 64 5.0941e+01 6.2423e+01 6.7459e+01

32× 32× 128 3.6108e+01 (0.4965) 3.7769e+01 (0.7249) 3.8200e+01 (0.8204)

64× 64× 256 1.9500e+01 (0.8888) 1.9641e+01 (0.9433) 1.9682e+01 (0.9567)

128× 128× 512 9.5911e+00 (1.0237) 9.6047e+00 (1.0321) 9.6088e+00 (1.0344)

(e) 1st order FVM with ω = 1

t = 2 t = 3 t = 4

16× 16× 64 4.0855e+01 4.5125e+01 4.7064e+01

32× 32× 128 2.8669e+01 (0.5110) 2.9562e+01 (0.6102) 3.0137e+01 (0.6431)

64× 64× 256 1.6990e+01 (0.7548) 1.7220e+01 (0.7797) 1.7454e+01 (0.7880)

128× 128× 512 8.9959e+00 (0.9173) 9.0551e+00 (0.9273) 9.1155e+00 (0.9371)



65

Tables 3.4.9 and 3.4.10 summarizes the observed convergence orders for smooth

and non-smooth source terms, respectively, with both 1st order and 2nd order ad-

vection discretization. The convergence orders are averages from the previous tables,

as noted in each column of Tables 3.4.9 and 3.4.10, of convergence rate at t = 2, 3, 4

on the finest mesh. First, we notice that using finite volume method without advec-

tion, the convergence orders are consistent with those using finite element method,

in 2-D and 3-D. Second, we notice that for the problem with smooth source term in

Table 3.4.9, the convergence order drops when increasing the weight of advection, if

using FVM with first-order discretization. This is clearly expected and is overcome

by using the second-order accurate advection discretization, which gives the optimal

convergence order of 2 in all cases in Table 3.4.9. Third, in Table 3.4.10 for the prob-

lem with non-smooth source term, the spatial dimension determines the convergence

orders of q = 1 for 2-D and q = 0.5 for 3-D, independent of discretization order and

strength of advection. Therefore, we gain no benefit by using second-order advection

discretization in the presence of non-smooth sources terms such as point source.

Our recommendations based on observations above: (i) For smooth source terms,

use FVM with 2nd order advection discretization, since it remains most accurate

despite increasingly dominant advection. (ii) For non-smooth source terms, use FVM

with 1st order advection discretization, since 2nd order advection discretization has

no advantage and 1st order advection discretization require less MPI communication.
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Table 3.4.9: Observed convergence orders for test problem with smooth source term.

Smooth source 1st order FVM 2nd order FVM

2-D 3-D 2-D 3-D

Table 3.4.7 Table 3.4.5 Table 3.4.3 Table 3.4.1

FEM with (ω = 0) 2.27 2.25 2.27 2.25

FVM with (ω = 0) 1.94 1.95 1.94 1.95

FVM with ω = 0.01 1.93 1.95 1.94 1.95

FVM with ω = 0.1 1.79 1.78 1.94 1.95

FVM with ω = 1 1.55 1.55 2.03 2.04

Table 3.4.10: Observed convergence orders for test problem with non-smooth source

term.

Non-smooth source 1st order FVM 2nd order FVM

2-D 3-D 2-D 3-D

Table 3.4.8 Table 3.4.6 Table 3.4.4 Table 3.4.2

FEM with (ω = 0) 1.05 0.71 1.05 0.71

FVM with (ω = 0) 1.04 0.58 1.04 0.58

FVM with ω = 0.01 1.04 0.58 1.04 0.58

FVM with ω = 0.1 1.03 0.57 1.03 0.57

FVM with ω = 1 0.93 0.50 0.91 0.50



CHAPTER 4

PARALLEL PERFORMANCE RESULTS

This chapter discusses the parallel performance for the solution of the CICR prob-

lem using parallel implementations introduced in Section 3.3.1 and Section 3.3.2. We

first demonstrate strong and weak scalability of the parallel implementation using

MPI in Section 4.1 and Section 4.2, respectively. Then we show the performance of

the parallel implementation using the hybrid CPU/GPU cluster. While Section 4.3

discusses single-node GPU performance, Section 4.4 elaborates multi-node GPU per-

formance.

4.1 Strong Scalability

This section describes the parallel performance studies for the solution of the CICR

problem on the 2013 portion of maya.

4.1.1 Strong Scalability with FEM

Table 4.1.1 collects the results of the performance study by number of nodes and

processes per node on maya 2013. The CICR problem described in Section 2.1 is

solved with the finite element method described in Section 3.1.1, with BiCGSTAB

as linear solver. The table summarizes the observed wall clock time (total time to

execute the code) in HH:MM:SS (hours:minutes:seconds) format. In situations where

wall clock times are not obtained, ET indicates “excessive time required” (more than

5 days), N/A indicates that the case is not feasible due to p > (Nz + 1), where Nz + 1

is the number of finite volume cells on the z-direction for spatial mesh resolution of

Nx ×Ny ×Nz.

We first discuss Table 4.1.1 (c) with mesh resolution of 64× 64× 256 in detail as

67
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example, since this subtable has all data possible. Reading along the first column of

this subtable, we observe that by doubling the number of processes from 1 to 2 we

approximately halve the runtime from each column to the next. We observe the same

improvement from 2 to 4 processes. We also observe that by doubling the number

of processes from 4 to 8 and from 8 to 16 there are still significant improvement in

runtime, although not the halving we observed previously.

Table 4.1.1 (d) reports the observed wall clock time in HH:MM:SS for the highest

mesh resolution 128×128×512 which results in a system of over 25 million equations

to be solved at every time step. Wall clock times are given for all possible combination

of numbers of nodes and processes per node (that are powers of 2), that is, for 1, 2,

4, 8, 16, 32, and 64 nodes and 1, 2, 4, 8, and 16 processes per node. We observe good

scalability while increasing the number of nodes or increasing the number of processes

per node.

Table 4.1.2 collects the results of the performance study by number of processes.

Each row lists the results for one problem size. Each column corresponds to the

number of parallel processes p used in the run. Mesh 1 represents 16 × 16 × 64,

Mesh 2 represents 32× 32× 128, Mesh 3 represents 64× 64× 256, Mesh 4 represents

128 × 128 × 512. ET indicates “excessive time required” (more than 5 days), N/A

indicates that the case is not feasible due to p > (Nz+1). For the 128×128×512 mesh,

we use the modified definition Sp = 4T4(N)/Tp(N). Data is based on 16 processes

per node, except for the cases p = 1, 2, 4, 8, where not all of the 16 cores of one node

are utilized. This table is intended to demonstrate strong scalability on maya 2013,

which is also one key motivation for parallel computing: The run times for a problem

of a given, fixed size can potentially be dramatically reduced by spreading the work

across a group of parallel processes. More precisely, the ideal behavior of code for a

fixed problem size using p parallel processes is that it be p times as fast. If Tp(N)
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denotes the wall clock time for a problem of a fixed size parameterized by N using

p processes, then the quantity Sp = T1(N)/Tp(N) measures the speedup of the code

from 1 to p processes, whose optimal value is Sp = p; for the finest resolution, where

data are only available starting with p = 4, this definition is extended by the formula

Sp = 4T4(N)/Tp(N). The efficiency Ep = Sp/p characterizes in relative terms how

close a run with p parallel processes is to this optimal value, for which Ep = 1.

Table 4.1.2 (b) shows the speedup observed. The speedup Sp is increasing signif-

icantly as we increase the number of processes. However, the ratio over the optimal

value of speedup p seems to decrease as we increase the number of processes. We

also observe that the speedup is better for larger problems. Table 4.1.2 (c) shows

the observed efficiency Ep. The primary decrease of efficiency is between p = 8 and

p = 16, similar to studies in [17] but not as severe. This suggests the bottleneck of

CPU memory channels we observed in [17] may still be affecting the scalability on the

CICR problem. The fundamental reason for the speedup and efficiency to trail off is

that simply too little work is performed on each process. Due to the one-dimensional

split in the z-direction into as many sub-domains as parallel processes p, eventually

only one or two x-y-planes of data are located on each process. This is not enough

calculation work to justify the cost of communicating between the processes. In effect,

this leads to a recommendation how many nodes to use for a particular Nx×Ny×Nz

mesh, with more nodes being justifiable for larger meshes.

The customary graphical representations of speedup and efficiency are presented

in Figures 4.1.1 (a) and (b), respectively. Figure 4.1.1 (a) shows the speedup pattern

as we observed in Table 4.1.2 (b) but more intuitively. The efficiency plotted in

Figure 4.1.1 (b) is directly derived from the speedup, but the plot is still useful

because it details interesting features for small values of p that are hard to discern in

the speedup plot. Here, we notice the consistency of most results for small p.
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Table 4.1.1: Performance study of the CICR problem solved with finite element

method on maya 2013 by number of nodes and processes per node. ET indicates

“excessive time required” (more than 5 days), N/A indicates that the case is not

feasible due to p > (Nz + 1).

(a) Mesh resolution Nx ×Ny ×Nz = 16× 16× 64, DOF = 56,355

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:03:56 00:02:09 00:01:05 00:00:42 00:00:25 00:00:18 00:00:25

2 processes per node 00:02:10 00:01:06 00:00:43 00:00:23 00:00:17 00:00:16 N/A

4 processes per node 00:01:10 00:00:41 00:00:27 00:00:19 00:00:16 N/A N/A

8 processes per node 00:00:47 00:00:26 00:00:19 00:00:15 N/A N/A N/A

16 processes per node 00:00:23 00:00:18 00:00:14 N/A N/A N/A N/A

(b) Mesh resolution Nx ×Ny ×Nz = 32× 32× 128, DOF = 421,443

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 04:12:42 02:05:35 01:03:55 00:33:26 00:18:04 00:10:36 00:07:01

2 processes per node 02:11:30 01:06:22 00:34:21 00:18:24 00:10:44 00:06:38 00:05:03

4 processes per node 01:12:39 00:36:50 00:19:32 00:11:09 00:06:50 00:04:49 N/A

8 processes per node 00:40:49 00:20:40 00:11:16 00:06:49 00:04:46 N/A N/A

16 processes per node 00:20:28 00:10:58 00:06:40 00:04:39 N/A N/A N/A

(c) Mesh resolution Nx ×Ny ×Nz = 64× 64× 256, DOF = 3,257,475

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 29:39:29 14:47:48 07:33:10 03:44:59 01:55:11 01:00:27 00:34:46

2 processes per node 15:33:52 07:51:21 03:56:31 01:58:21 01:02:16 00:34:14 00:21:01

4 processes per node 08:48:36 04:24:14 02:09:58 01:07:38 00:36:20 00:21:30 00:14:45

8 processes per node 05:17:38 02:35:59 01:15:55 00:39:56 00:22:46 00:14:32 N/A

16 processes per node 02:36:56 01:15:20 00:40:07 00:22:48 00:14:49 N/A N/A

(d) Mesh resolution Nx ×Ny ×Nz = 128× 128× 512, DOF = 25,610,499

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node ET ET ET 60:03:40 30:23:30 15:21:16 08:04:43

2 processes per node ET ET 62:58:07 31:45:39 16:18:36 08:26:48 04:37:13

4 processes per node ET 70:17:37 35:51:17 18:17:27 09:22:47 04:59:08 02:54:31

8 processes per node 82:31:01 41:48:36 21:29:59 11:10:15 05:47:37 03:11:25 01:59:34

16 processes per node 42:07:19 21:29:09 11:14:39 05:51:53 03:14:21 02:05:49 N/A
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Table 4.1.2: Performance study of the CICR problem solved with finite element

method on maya 2013 by number of processes. Data based on 16 processes per

node, except for the cases p = 1, 2, 4, 8.
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(a) Observed speedup Sp

(b) Observed efficiency Ep

Figure 4.1.1: Performance study of the CICR problem solved with finite element

method on maya 2013 by number of processes. Data based on 16 processes per node,

except for the cases p = 1, 2, 4, 8.
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4.1.2 Strong Scalability with FVM

This section is part of performance studies in [12] and [10].

Table 4.1.3 collects the results of the performance study by number of nodes and

processes per node on maya 2013. The table summarizes the observed wall clock

time (total time to execute the code) in HH:MM:SS (hours:minutes:seconds) format.

In situations where wall clock times are not obtained, ET indicates “excessive time

required” (more than 5 days), N/A indicates that the case is not feasible due to

p > (Nz + 1), where Nz + 1 is the number of finite volume cells on the z-direction for

spatial mesh resolution of Nx ×Ny ×Nz.

We first discuss Table 4.1.3 (c) with mesh resolution of 64× 64× 256 in detail as

example, since this subtable has all data possible. Reading along the first column of

this subtable, we observe that by doubling the number of processes from 1 to 2 we

approximately halve the runtime from each column to the next. We observe the same

improvement from 2 to 4 processes. We also observe that by doubling the number

of processes from 4 to 8 and from 8 to 16 there are still significant improvement in

runtime, although not the halving we observed previously. This is better than in the

study in [17], where only small improvements in runtime are observed by doubling

the number of processes from 8 to 16. This indicates our application problem is not

heavily memory bound as the test problem in [17].

Table 4.1.3 (d) reports the observed wall clock time in HH:MM:SS for the highest

mesh resolution 128×128×512 which results in a system of over 25 million equations to

be solved at every time step. Wall clock times are given for all possible combinations

of numbers of nodes and processes per node (that are powers of 2), that is, for 1, 2,

4, 8, 16, 32, and 64 nodes and 1, 2, 4, 8, and 16 processes per node. We observe good

scalability while increasing the number of nodes or increasing the number of processes

per node. Moreover, we observe that the serial run takes more than 5 days, while
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the run using either 32 or 64 nodes on maya 2013 can take less than 2 hours. These

results demonstrate the power of parallel computing, since jobs require excessive time

in serial can be achieved within hours using parallel computing.

Table 4.1.4 collects the results of the performance study by number of processes.

Each row lists the results for one problem size. Each column corresponds to the

number of parallel processes p used in the run. Mesh 1 represents 16 × 16 × 64,

Mesh 2 represents 32× 32× 128, Mesh 3 represents 64× 64× 256, Mesh 4 represents

128 × 128 × 512. ET indicates “excessive time required” (more than 5 days), N/A

indicates that the case is not feasible due to p > (Nz + 1). For the 128 × 128 × 512

mesh, we use the modified definition Sp = 4T4(N)/Tp(N).

Data is based on 16 processes per node, except for the cases p = 1, 2, 4, 8, where not

all of the 16 cores of one node are utilized. This table is intended to demonstrate strong

scalability on maya 2013, which is also one key motivation for parallel computing:

The run times for a problem of a given, fixed size can be potentially dramatically

reduced by spreading the work across a group of parallel processes. More precisely,

the ideal behavior of code for a fixed problem size using p parallel processes is that it

be p times as fast. If Tp(N) denotes the wall clock time for a problem of a fixed size

parameterized by N using p processes, then the quantity Sp = T1(N)/Tp(N) measures

the speedup of the code from 1 to p processes, whose optimal value is Sp = p; for the

finest resolution, where data are only available starting with p = 4, this definition is

extended by the formula Sp = 4T4(N)/Tp(N). The efficiency Ep = Sp/p characterizes

in relative terms how close a run with p parallel processes is to this optimal value, for

which Ep = 1.

Table 4.1.4 (b) shows the speedup observed. The speedup Sp is increasing signif-

icantly as we increase the number of processes. However, the ratio over the optimal

value of speedup p seems to decrease as we increase the number of processes. We
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also observe that the speedup is better for larger problems. Table 4.1.4 (c) shows

the observed efficiency Ep. The primary decrease of efficiency is between p = 8 and

p = 16, similar to studies in [17] but not as severe. This suggests the bottleneck of

CPU memory channels we observed in [17] may still be affecting the scalability on the

CICR problem. The fundamental reason for the speedup and efficiency to trail off is

that simply too little work is performed on each process. Due to the one-dimensional

split in the z-direction into as many sub-domains as parallel processes p, eventually

only one or two x-y-planes of data are located on each process. There are not enough

calculation work to justify the cost of communicating between the processes. In effect,

this leads to a recommendation how many nodes to use for a particular Nx×Ny×Nz

mesh, with more nodes being justifiable for larger meshes.

The customary graphical representations of speedup and efficiency are presented

in Figures 4.1.2 (a) and (b), respectively. Figure 4.1.2 (a) shows the speedup pattern

as we observed in Table 4.1.4 (b) but more intuitively. The efficiency plotted in

Figure 4.1.2 (b) is directly derived from the speedup, but the plot is still useful

because it details interesting features for small values of p that are hard to discern in

the speedup plot. Here, we notice the consistency of most results for small p.

Notice that the performance of our implementation of the finite volume method

is much faster than the implementation using finite element method in Section 4.1.1.

This is partially due to the fact that our implementation of the finite volume method is

less computationally intensive. To calculate the mean value of the solution on a control

volume, we need fluxes to and from neighboring control volumes, which is a total of

7 control volumes. However to calculate the solution at one mesh point with FEM,

we need to consider all neighboring 27 points including itself. Thus the FVM has less

computation in matrix vector multiplication. This is to say, our implementation using

FVM is faster. In general, we do not conclude that FVM is faster than FEM. We also
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notice that the implementation of the finite volume method does not scale as efficiently

as the finite element method. This is also due to the fact that our implementation

of the finite volume method is less computationally intensive. When there are too

many MPI processes and each MPI process do not have enough calculation work to

justify the cost of communicating between the processes, the scalability tends to be

bad. This applies to both implementations, but much severe in the case of FVM. Due

to this limitation of MPI implementation, we cannot further speedup the calculation

by adding more nodes. However, if we can greatly speedup the calculation on each

MPI process using GPU offloading, then we can speedup the calculation significantly

with much fewer number of nodes.
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Table 4.1.3: Performance study of the CICR problem solved with first order FVM

on maya 2013 by number of nodes and processes per node. ET indicates “excessive

time required” (more than 5 days), N/A indicates that the case is not feasible due to

p > (Nz + 1).

(a) Mesh resolution Nx ×Ny ×Nz = 16× 16× 64, DOF = 56,355

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:12:38 00:05:55 00:03:23 00:02:04 00:01:31 00:01:20 00:01:21

2 processes per node 00:07:23 00:03:13 00:02:00 00:01:27 00:01:25 00:01:19 N/A

4 processes per node 00:04:41 00:02:03 00:01:34 00:01:26 00:01:37 N/A N/A

8 processes per node 00:03:19 00:01:32 00:01:32 00:01:46 N/A N/A N/A

16 processes per node 00:02:11 00:01:34 00:02:43 N/A N/A N/A N/A

(b) Mesh resolution Nx ×Ny ×Nz = 32× 32× 128, DOF = 421,443

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 02:22:19 01:10:46 00:36:09 00:19:17 00:10:54 00:06:37 00:04:56

2 processes per node 01:11:43 00:35:48 00:19:13 00:10:45 00:06:47 00:04:48 00:04:50

4 processes per node 00:37:52 00:19:27 00:11:07 00:06:59 00:05:18 00:04:41 N/A

8 processes per node 00:21:35 00:11:28 00:07:24 00:05:41 00:05:36 N/A N/A

16 processes per node 00:12:58 00:07:24 00:06:30 00:07:26 N/A N/A N/A

(c) Mesh resolution Nx ×Ny ×Nz = 64× 64× 256, DOF = 3,257,47 5

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 25:02:01 12:25:01 06:10:14 03:07:33 01:37:56 00:53:17 00:31:46

2 processes per node 12:25:07 06:11:38 03:08:20 01:37:41 00:52:27 00:30:36 00:20:05

4 processes per node 06:32:39 03:16:02 01:41:55 00:55:03 00:31:50 00:21:03 00:16:10

8 processes per node 03:52:48 01:53:44 01:00:20 00:34:24 00:22:30 00:18:33 N/A

16 processes per node 02:25:55 01:10:26 00:39:04 00:25:46 00:21:29 N/A N/A

(d) Mesh resolution Nx ×Ny ×Nz = 128× 128× 512, DOF = 25,610 ,499

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node ET ET 69:15:37 34:51:02 17:31:44 08:59:06 04:49:17

2 processes per node ET 69:46:29 35:16:03 17:45:06 09:00:47 04:47:14 02:43:04

4 processes per node 72:31:51 36:34:34 18:36:29 09:32:04 05:01:44 02:50:34 01:46:47

8 processes per node 42:01:27 26:23:03 11:03:41 05:46:44 03:09:23 01:56:47 01:23:57

16 processes per node 26:53:37 13:56:38 07:21:17 03:54:47 02:17:48 01:40:35 N/A
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Table 4.1.4: Performance study of the CICR problem solved with first order FVM on

maya 2013 by number of processes. Data based on 16 processes per node, except for

the cases p = 1, 2, 4, 8.
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(a) Observed speedup Sp

(b) Observed efficiency Ep

Figure 4.1.2: Performance study of the CICR problem solved with first order FVM

on maya 2013 by number of processes. Data based on 16 processes per node, except

for the cases p = 1, 2, 4, 8.
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4.2 Weak Scalability

This section is part of [13] that discusses the weak scalability study on the CICR

problem on the cluster tara, which is now maya 2009 portion of the cluster maya.

Parallel computing using MPI offers one key advantage: For efficient implementa-

tions of appropriate algorithms, problems can be solved significantly faster by pooling

the processing power of several compute nodes. We have observed in [26] that the

code demonstrates good strong scalability. That is, for a fixed problem size, as we

double the number of processes, the wall clock time required for the simulation is

nearly halved. However we also observe that the speedup and efficiency dropped sig-

nificantly when we use a large number of nodes. One reason for this is that increasing

the number of processes increases the cost of MPI communication among them. An-

other reason is that by splitting the fixed problem across more processes, each process

has less computations to perform. The ratio of wall clock time on computation over

wall clock time on MPI communication is smaller. Hence we lose the strong scalabil-

ity as we reach certain large number of nodes. Moreover, the strong scalability study

failed to demonstrate how efficient the implementation is as we increase problem size.

Another key advantage of parallel computing is, problems with larger scale can be

solved within comparable time by pooling the processing power and memory of more

compute nodes. A weak scalability study is designed to show this, the basic idea is to

fix the workload per node while doubling the number of nodes. Since in Section 3.4 we

have demonstrated first-order finite volume method is preferable for CICR problem,

we will use that for the remaining studies of this chapter.



81

4.2.1 Weak Scalability Study Design

In order to maintain the workload for each node, while doubling the number of

nodes, we first double the domain size along the z-direction. Then, for each resolution,

we preserve the mesh resolution in x- and y-directions, and double the mesh resolution

in z-direction.

We test the scalar test problem with smooth source term in Section 2.2 first, since

it is much easier to control workload per time step for this basic problem. Then we

move on to the three-species application such as the CICR problem where the actual

physiology is more complicated. In addition to doubling the domain and mesh on the

z-direction, we also double the distance between the CRUs. This ensures that the

total number of CRUs does not change. This increased space between CRUs is not

physiologically realistic, but is necessary to fix the sequence of opening and closing

CRUs manually for all runs, allowing each run to have a stable and comparable

workload per node.

Table 4.2.1 and Table 4.2.2 outline calculated number of degrees of freedom and

estimated total memory usage for the scalar test problem and the CICR problem,

respectively. As shown in Tables 4.2.1 (a) and 4.2.2 (a), the number of degrees of

freedom depends on the mesh resolution, ranging from tens of thousands all the way

to 819 million for the CICR problem and 2 billion for the linear test problem. It also

depends on the number of nodes used, since we attempt to fix the workload per node.

Because each node has 8 parallel processes, we define Nz = (4Nx)(p/8). When p = 8,

only one node is used, and Nz = 4Nx is the mesh setting we normally use to solve the

CICR problem in Section 2.1. When the number of nodes doubles, the mesh resolution

in z-direction doubles as well. For mesh resolution Nx×Ny×Nz, the number of control

volumes M = MxMyMz = (Nx + 1)(Ny + 1)(Nz + 1). Hence the number of degrees of

freedom DOF = nsM = ns(Nx + 1)(Ny + 1)(Nz + 1). Our implementation requires



82

using 17 large arrays of length nsM , therefore the memory estimation equation is

given by: Total memory = 17nsM8/(10243) GB. Here, 8 represents 8 bytes of memory

for one double precision number. Tables 4.2.1 (b) and 4.2.2 (b) show the estimated

memory usage in total based on the degrees of freedom. It demonstrates that the

workload per node is expected to grow with the number of nodes used, and we will

compare them to the observed memory usage in Table 4.2.3 and Table 4.2.4. The

reason the finest mesh in Table 4.2.2 (b) is not as fine as in Table 4.2.1 (b) is because

it would exceed the 24 GB memory per node.
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Table 4.2.1: Calculated degrees of freedom and estimated total memory for weak

scalability study of the scalar test problem with smooth source term. The mesh size

in z-direction Nz = (4Nx)(p/8) doubles as the number of processes doubles.

(a) Total number of degrees of freedom for the scalar test problem

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 18,785 37,570 75,140 150,280 300,560 601,120
32× 32 140,481 280,962 561,924 1,123,848 2,247,696 4,495,392
64× 64 1,085,825 2,171,650 4,343,300 8,686,600 17,373,200 34,746,400
128× 128 8,536,833 17,073,666 34,147,332 68294664 136,589,328 273,178,656
256× 256 67,700,225 135,400,450 270,800,900 541,601,800 1,083,203,600 2,166,407,200

(b) Estimated memory usage based on the degrees of freedom (GB)

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 0.00 0.00 0.01 0.02 0.04 0.08
32× 32 0.02 0.04 0.07 0.14 0.28 0.57
64× 64 0.14 0.28 0.55 1.10 2.20 4.40
128× 128 1.08 2.16 4.33 8.65 17.30 34.60
256× 256 8.57 17.15 34.30 68.60 137.20 274.40

Table 4.2.2: Calculated degrees of freedom and estimated total memory for weak

scalability study of the CICR problem. The mesh size in z-direction Nz = (4Nx)(p/8)

doubles as the number of processes doubles.

(a) Total number of degrees of freedom for the calcium problem

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 56,355 112,710 225,420 45,0840 901,680 1,803,360
32× 32 421,443 842,886 1,685,772 3,371,544 6,743,088 13,486,176
64× 64 3,257,475 6,514,950 13,029,900 26,059,800 52,119,600 104,239,200
128× 128 25,610,499 51,220,998 102,441,996 204,883,992 409,767,984 819,535,968

(b) Estimated memory usage based on the degrees of freedom (GB)

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 0.01 0.01 0.03 0.06 0.11 0.23
32× 32 0.05 0.11 0.21 0.43 0.85 1.71
64× 64 0.41 0.83 1.65 3.30 6.60 13.20
128× 128 3.24 6.49 12.98 25.95 51.90 103.80
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4.2.2 Weak Scalability Study Results

We present two weak scalability studies to estimate the parallel performance of

the matrix-free method. Table 4.2.3 is based on the scalar test problem with smooth

source term from Section 2.2 to final time tfin = 1,000. Table 4.2.3 (a) reports the

observed wall clock time in HH:MM:SS for each simulation. We observe that the

wall clock times only increase slightly as the problem sizes increase in each row. This

demonstrates weak scalability of our implementation. Table 4.2.3 (b) shows the num-

ber of time steps for the linear problem does not vary too much, even though we

increase mesh resolution as well as the number of nodes. Table 4.2.3 (c) shows cal-

culated wall clock time per time step based on data from the previous two subtables.

In this case we see the same slight increase in each row as Table 4.2.3 (a). But

this subtable is designed to give more insight when wall clock time and time steps

differ. We also include observed memory usage per node as a relative indicator for

the workload per node in Table 4.2.3 (d). In the mean time, Table 4.2.3 (e) reports

the observed total memory usage. The numbers are very close to estimated numbers

in Table 4.2.1 (b). These subtables demonstate we have indeed increased the work-

load both in terms of calculation and memory consumption. And if we increase the

computing resources in the same pace, then we can expect the same wall clock time.

Table 4.2.4 shows a weak performance study for the CICR problem from Sec-

tion 2.1 to final time tfin = 100. It also has 5 subtables like Table 4.2.3. We want

to bring about the same idea of doubling work load per time step while double the

number of nodes used. One additional setup to ensure we get the same physiological

outcome is to use an input file that specifies the open CRUs at each time step, forcing

every simulation to reproduce the same CRU sequence. The input file is originally

generated by a typical simulation as in Section 2.3. From Table 4.2.4 (a), we ob-

serve that the wall clock times in each row decrease slightly. Also, the number of time
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steps also decrease slightly as we increase the number of nodes used in Table 4.2.4 (b).

These are different from what we observe from Table 4.2.3, where we see weak scal-

ability but wall clock times increase slightly. This is due to the fact that we have

the same number of CRUs as a typical CICR simulation, but since we increase the

distances between CRUs on the z-direction, the effect of diffusion on that direction is

less and the ODE problem is smoother. In Table 4.2.4 (c) We observe that the wall

clock time per time step did not vary too much and memory usage per node stays the

same in Table 4.2.4 (d). Hence, we conclude the implementation demonstrates weak

scalability, also for the CICR problem.
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Table 4.2.3: Performance study for the scalar test problem with smooth source term,

solved with first-order finite volume method to tfin = 1,000 ms. The mesh size in

z-direction Nz = (4Nx)(p/8) doubles as the number of processes doubles.

(a) Wall clock time Tp in HH:MM:SS

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 00:00:21 00:00:20 00:00:21 00:00:22 00:00:25 00:00:29
32× 32 00:00:39 00:00:40 00:00:39 00:00:41 00:00:45 00:00:55
64× 64 00:04:02 00:04:07 00:04:16 00:04:31 00:04:58 00:05:45
128× 128 00:45:34 00:46:11 00:46:56 00:49:11 00:52:52 00:59:21
256× 256 10:13:48 10:17:59 10:28:33 10:41:11 11:09:21 12:09:12

(b) Time steps

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 2015 2015 2015 2015 2015 2015
32× 32 2018 2018 2018 2018 2018 2018
64× 64 2020 2021 2020 2020 2020 2020
128× 128 2019 2019 2019 2019 2019 2019
256× 256 2014 2014 2014 2014 2014 2014

(c) Wall clock time per time step in seconds

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 0.01 0.01 0.01 0.01 0.01 0.01
32× 32 0.02 0.02 0.02 0.02 0.02 0.03
64× 64 0.12 0.12 0.13 0.13 0.15 0.17
128× 128 1.35 1.37 1.39 1.46 1.57 1.76
256× 256 18.29 18.41 18.73 19.10 19.94 21.72

(d) Observed memory usage per node (GB)

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 0.10 0.12 0.12 0.13 0.10 0.10
32× 32 0.12 0.14 0.14 0.15 0.12 0.11
64× 64 0.26 0.27 0.27 0.28 0.25 0.25
128× 128 1.34 1.34 1.34 1.35 1.31 1.31
256× 256 9.73 9.73 9.73 9.73 9.70 9.70

(e) Observed total memory usage (GB)

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 0.10 0.24 0.49 1.04 1.61 3.05
32× 32 0.12 0.27 0.55 1.18 1.90 3.61
64× 64 0.26 0.55 1.10 2.26 4.05 7.91
128× 128 1.34 2.68 5.36 10.76 21.04 41.86
256× 256 9.73 19.47 38.91 77.85 155.22 310.25
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Table 4.2.4: Performance study for the calcium problem, solved with first-order finite

volume method to tfin = 100 ms. The mesh size in z-direction Nz = (4Nx)(p/8)

doubles as the number of processes doubles.

(a) Wall clock time Tp in HH:MM:SS

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 00:00:15 00:00:14 00:00:13 00:00:13 00:00:14 00:00:14
32× 32 00:02:26 00:02:21 00:02:14 00:02:06 00:02:01 00:01:56
64× 64 00:27:18 00:26:35 00:25:08 00:23:50 00:22:54 00:21:35
128× 128 05:03:11 04:50:14 04:38:24 04:34:29 04:20:49 04:17:25

(b) Time steps

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 2558 2401 2254 2126 1999 1893
32× 32 3277 3158 2960 2738 2589 2424
64× 64 4089 3913 3694 3458 3227 3030
128× 128 4955 4724 4422 4153 3908 3679

(c) Wall clock time per time step in seconds

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 0.01 0.01 0.01 0.01 0.01 0.01
32× 32 0.04 0.04 0.05 0.05 0.05 0.05
64× 64 0.40 0.41 0.41 0.41 0.43 0.43
128× 128 3.67 3.69 3.78 3.97 4.00 4.20

(d) Observed memory usage per node (GB)

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 0.11 0.13 0.13 0.13 0.11 0.10
32× 32 0.16 0.18 0.18 0.19 0.16 0.15
64× 64 0.57 0.58 0.58 0.59 0.56 0.55
128× 128 3.74 3.75 3.75 3.76 3.73 3.72

(e) Total memory usage (GB)

Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16× 16 0.11 0.25 0.50 1.07 1.71 3.23
32× 32 0.16 0.35 0.71 1.49 2.54 4.89
64× 64 0.57 1.16 2.32 4.71 8.96 17.72
128× 128 3.74 7.50 14.99 30.06 59.63 119.06



88

4.3 Single-Node GPU Performance

This section is part of [11].

Single-node GPU performance is interesting because people do not always get

a cluster of GPUs to work with. Moreover, even a single GPU-CPU framework can

provide advantages that multiple CPUs on their own do not offer due to specialization

in each chip. As an example, we will show single-node performance of the CICR

problem using the finite element method with BiCGSTAB as linear solver in this

section. The next section contains results on more numerical methods and how they

scale up on multiple nodes.

Table 4.3.1 summarizes the wall clock times for the CICR problem solved with the

finite element method using p = 1, 2, and 16 MPI processes on a CPU node with two

eight-core CPUs. All runs fit into the memory of the node, but some runs would take

longer than the maximum time of 5 days allowed for a job on the system. For the

cases, where the run with p = 1 process is possible, the parallel scalability is excellent

to p = 2 processes, and using all 16 cores available on the node is clearly the fastest

run in each case.

Table 4.3.2 summarizes the wall clock times for the CICR problem solved with

the finite element method using a hybrid CPU/GPU node. For mesh resolution

32 × 32 × 128, the wall clock time on one CPU core and one GPU is more than

5 times faster than a serial run on a CPU, but slower than using all 16 cores on a

CPU node. For this coarse resolution, the time on one node with two MPI processes

and two GPUs does not improve performance. This is due to time spent on data

transfer between CPU and GPU memory dominating over time spent on calculation.

For mesh resolution 64× 64× 256, the wall clock time on one CPU core and one

GPU is more than 15 times faster than a serial run on a CPU. For this resolution,

the wall clock time on one node with two MPI processes and two GPUs is 1.8 times
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faster than using all 16 cores on a CPU node.

The amount of time needed for calculation increased rapidly due to increased mesh

size. For the fine mesh resolution 128 × 128 × 512, the serial run on a CPU is not

available due to excessive time requirement. The wall clock time on one node with

two MPI processes and two GPUs is around 3 times faster than using all 16 cores on

a CPU node.

Table 4.3.1: Wall clock time for CICR problem solved with FEM using p MPI pro-

cesses on a CPU node. E.T. indicates excessive time requirement (more than 5 days).

Nx ×Ny ×Nz p = 1 p = 2 p = 16

32× 32× 128 04:12:42 02:11:30 00:20:28
64× 64× 256 29:39:29 15:33:52 02:36:56

128× 128× 512 E.T. E.T. 42:07:19

Table 4.3.2: CICR problem solved with FEM on a hybrid node using p MPI processes

and one GPU per MPI process. Each MPI process launches kernels on a unique GPU.

(a) Wall clock time, (b) speedup over p = 16 MPI processes on a sixteen-core CPU

node.

(a) Wall clock time

Nx ×Ny ×Nz p = 1 p = 2

1 GPU 2 GPUs

32× 32× 128 00:42:33 00:43:32
64× 64× 256 01:58:19 01:25:32

128× 128× 512 25:09:06 13:46:41

(b) Speedup over p = 16 run on CPU Node

Nx ×Ny ×Nz p = 1 p = 2

1 GPU 2 GPUs

32× 32× 128 0.48 0.47
64× 64× 256 1.33 1.83

128× 128× 512 1.67 3.06
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4.4 Multi-Node GPU Performance

Part of the results in this section is presented in a poster at the NVIDIA GPU

Conference 2015.

This section reports wall clock time in HH:MM:SS and speedup for CICR problem

described in Section 2.1 on hybrid CPU/GPU nodes. Speedup is calculated using

CPU only runtime on one 16-core node as baseline for each mesh size. Tables of data

are based on simulations using the CUDA with MPI implementation described in

Section 3.3.2. We present now four sets of results, namely for both the finite element

and finite volume methods and using both the BiCGSTAB and QMR methods as

linear solvers.

Table 4.4.1 reports wall clock time in HH:MM:SS for CICR problem on hybrid

CPU/GPU nodes and speedup against CPU only runtime on one 16-core node, for

finite element method and BiCGSTAB as linear solver. Since we have 19 hybrid

CPU/GPU nodes on our cluster, we report wall clock time using 1, 2, 4, 8, and 16

nodes, as powers of 2. As explained in Section 3.3.2, in the parallel implementation

using CUDA with MPI, each MPI process that runs on one CPU core have access to

a unique GPU. This is to avoid kernels from different MPI processes queue up in the

same GPU, rendering reduced performance. Thus, for a fixed number of nodes, we

report performance using 16 CPU cores per node, using 1 CPU core and 1 GPU per

node, and using 2 CPU cores and 2 GPUs per node, for mesh resolution 32×32×128,

64 × 64 × 256, and 128 × 128 × 512. Numbers in parenthesis represent speedups

against CPU only runtime on one 16-core node for the corresponding CPU/GPU

nodes combination, and corresponding mesh resolution. The following is a summary

of our observations:

(i) The second column shows performance on mesh resolution 32× 32× 128. We

gain no benefit using CPU/GPU hybrid nodes on this mesh. The speedup numbers
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in parenthesis are all below 1, indicating the wall clock times using hybrid nodes are

slower than using one 16-core CPU node. Since it is a very coarse mesh, the time

saved by using GPUs is not significant compare to the extra time incurred by having

data transfers between CPU and GPU memories.

(ii) The third column shows performance on mesh resolution 64 × 64 × 256. We

observe that the speedup numbers in parenthesis are greater than 1, indicating the

wall clock times using hybrid nodes are faster than using one 16-core CPU node. We

also observe that using 1 or 2 hybrid CPU/GPU nodes, the wall clock times are faster

than using the same number of CPU nodes with 16 cores per node. But using 4

hybrid nodes or more, the performance is worse than using the same number of CPU

only nodes. These results confirm that we are starting to take advantage of using

GPUs for heavy computation, but the performance does not scale up well enough for

this mesh.

(iii) The last column shows performance on mesh resolution 128× 128× 512. We

observe that the speedup numbers in parenthesis are greater than 1, indicating the

wall clock times using hybrid nodes are faster than using one 16-core CPU node.

We also observe that the speedup numbers increase significantly as we increase the

number of nodes, which shows the performance scales up.

(iv) From the last column we observe that for a fixed number of nodes, the per-

formance gets better as we increase the number of GPUs per node. For instance,

using 1 node with 1 GPU, the wall clock time is 25:09:06, roughly 1.67 times faster

than using one 16-core CPU node; using 1 node with 2 GPUs, the wall clock time is

13:46:41, which is significantly faster than using 1 node with 1 GPU. This is also true

for using 2, 4, 8, and 16 nodes.

(v) From the last column we also observe that as we increase the number of hybrid

nodes, we can further improve the performance. Take the case of using 2 GPUs per
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node as example, we observe that the wall clock time reduces from 13:46:41 on one

hybrid node to 02:28:00 on 16 hybrid nodes.

(vi) It is interesting to notice from the last column that, the performance using 2

GPUs per node is faster than the case where twice the number of CPU only nodes are

used. For instance, using 2 hybrid nodes with 2 GPUs the wall clock time is 07:47:28,

faster than using 4 nodes with 16-cores, where it took 11:14:39. The same applies to

larger number of nodes.

Figure 4.4.1 gives a more intuitive view of the wall clock time by number of nodes

for mesh resolution 128 × 128 × 512. We observe that if the same number of nodes

are used, 2 GPUs per node gives better performance than 1 GPU per node, which

again is better than CPU only performance with all 16-cores on each node. We also

observe that better performance than CPU only simulations can be achieved by using

half number of hybrid nodes. For instance, using 1 node with 2 GPU is faster than

using 2 CPU only nodes, using 2 nodes with 2 GPUs per node is faster than using 4

CPU only nodes, and so on.

Figure 4.4.2 gives a more intuitive view of the speedup against performance on

one 16-core CPU. The CPU only speedup on one node is 1, since it is the baseline.

We observe that if same number of nodes are used, the speedup increases significantly

as we increase the number of GPUs used. Figure 4.4.3 demonstrates speedup line for

each implementation. The CPU only implementation has the best scalability, since

there are no data transfer between CPU and GPU memory. The implementation using

one GPU per node has better speedup, and the implementation using two GPUs per

node has the highest speedup. However, the scalability for the implementation using

two GPUs per node is slightly reduced. This is due to the fact that each GPU has less

computation to carry out as we increase the number of GPUs used, the time saved by

using GPUs is reduced. The cost of data transfer between CPU and GPU memory
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Table 4.4.1: Wall clock time in HH:MM:SS for CICR problem on hybrid CPU/GPU

nodes and speedup against CPU only runtime on one 16-core node, for finite element

method and BiCGSTAB as linear solver.

nodes (GPU/node) 32× 32× 128 64× 64× 256 128× 128× 512

1 node (16 cores) 00:20:28 02:36:56 42:07:19

1 node (1 GPU) 00:42:33 (0.48) 01:58:19 (1.33) 25:09:06 (1.67)

1 node (2 GPUs) 00:43:42 (0.47) 01:25:32 (1.83) 13:46:41 (3.06)

2 nodes (16 cores) 00:10:58 01:15:20 21:29:09

2 nodes (1 GPU) 00:36:24 (0.56) 01:13:29 (2.13) 13:25:47 (3.14)

2 nodes (2 GPUs) 00:40:21 (0.50) 01:02:11 (2.52) 07:47:28 (5.41)

4 nodes (16 cores) 00:06:40 00:40:07 11:14:39

4 nodes (1 GPU) 00:29:20 (0.69) 00:49:29 (3.17) 07:19:21 (5.75)

4 nodes (2 GPUs) 00:39:35 (0.51) 00:51:35 (3.04) 04:41:47 (8.97)

8 nodes (16 cores) 00:04:39 00:22:48 05:51:53

8 nodes (1 GPU) 00:30:47 (0.66) 00:39:42 (3.95) 04:13:37 (9.96)

8 nodes (2 GPUs) 00:40:28 (0.50) 00:47:25 (3.30) 03:10:48 (13.25)

16 nodes (16 cores) N/A 00:14:49 03:14:21

16 nodes (1 GPU) 00:30:02 (0.68) 00:36:22 (4.31) 02:40:37 (15.73)

16 nodes (2 GPUs) 00:42:03 (0.49) 00:47:26 (3.30) 02:28:00 (17.08)
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should be reduced as well, since there are less data to be transferred to and from each

GPU. However this reduction of cost is not significant compare to the reduction of

saved time. We expect to observe better scalability for more computationally intensive

problem.

Figure 4.4.1: Wall clock time by number of nodes using CPU only node, one GPU per

node and two GPU per node, for CICR problem solved with finite element method

with BiCGSTAB as linear solver, for mesh resolution 128× 128× 512.
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Figure 4.4.2: Observed speedup over one 16-core CPU node reference time by number

of nodes using CPU only node, one GPU per node and two GPU per node, for CICR

problem solved with finite element method with BiCGSTAB as linear solver. for mesh

resolution 128× 128× 512.
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Figure 4.4.3: Observed speedup over one 16-core CPU node reference time by number

of nodes using CPU only node, one GPU per node and two GPU per node, for CICR

problem solved with finite element method with BiCGSTAB as linear solver. for mesh

resolution 128× 128× 512.



97

Table 4.4.2 reports wall clock time in HH:MM:SS for CICR problem on hybrid

CPU/GPU nodes and speedup against CPU only runtime on one 16-core node, for

finite volume method and BiCGSTAB as linear solver. Table 4.4.2 has the same

format as in Table 4.4.1, where we report wall clock time using 1, 2, 4, 8, and 16

nodes, as powers of 2. As explained in Section 3.3.2, in the parallel implementation

using CUDA with MPI, each MPI process that runs on one CPU core have access to

a unique GPU. This is to avoid kernels from different MPI processes queue up in the

same GPU, rendering reduced performance. Thus, for a fixed number of nodes, we

report performance using 16 CPU cores per node, using 1 CPU core and 1 GPU per

node, and using 2 CPU cores and 2 GPUs per node, for mesh resolution 32×32×128,

64 × 64 × 256, and 128 × 128 × 512. Numbers in parenthesis represent speedups

against CPU only runtime on one 16-core node for the corresponding CPU/GPU

nodes combination, and corresponding mesh resolution. The following is a summary

of our observations:

(i) The second column shows performance on mesh resolution 32× 32× 128. We

gain no benefit using CPU/GPU hybrid nodes on this mesh. The speedup numbers

in parenthesis are all below 1, indicating the wall clock times using hybrid nodes are

slower than using one 16-core CPU node. Since it is a very coarse mesh, the time

saved by using GPUs is not significant compare to the extra time incurred by having

data transfers between CPU and GPU memories.

(ii) The third column shows performance on mesh resolution 64 × 64 × 256. We

observe that the speedup numbers in parenthesis are greater than 1, indicating the

wall clock times using hybrid nodes are faster than using one 16-core CPU node. We

also observe that using 1 or 2 hybrid CPU/GPU nodes, the wall clock times are faster

than using the same number of CPU nodes with 16 cores per node. But using 4

hybrid nodes or more, the performance is worse than using the same number of CPU
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only nodes. These results confirm that we are starting to take advantage of using

GPUs for heavy computation, but the performance does not scale up well enough for

this mesh.

(iii) The last column shows performance on mesh resolution 128× 128× 512. We

observe that the speedup numbers in parenthesis are greater than 1, indicating the

wall clock times using hybrid nodes are faster than using one 16-core CPU node.

We also observe that the speedup numbers increase significantly as we increase the

number of nodes, which shows the performance scales up.

(iv) From the last column we observe that for a fixed number of nodes, the per-

formance gets better as we increase the number of GPUs per node. For instance,

using 1 node with 1 GPU, the wall clock time is 16:22:51, roughly 1.64 times faster

than using one 16-core CPU node; using 1 node with 2 GPUs, the wall clock time is

08:58:16, which is significantly faster than using 1 node with 1 GPU. This is also true

for using 2, 4, 8, and 16 nodes.

(v) From the last column we also observe that as we increase the number of hybrid

nodes, we can further improve the performance. Take the case of using 2 GPUs per

node as example, we observe that the wall clock time reduces from 08:58:16 on one

hybrid node to 01:48:19 on 16 hybrid nodes.

(vi) It is interesting to notice from the last column that, the performance using 2

GPUs per node is faster than the case where twice the number of CPU only nodes are

used. For instance, using 2 hybrid nodes with 2 GPUs the wall clock time is 05:03:27,

faster than using 4 nodes with 16-cores, where it took 07:21:17. The same applies to

larger number of nodes.

Comparing Table 4.4.2 and Table 4.4.1 we observe the same pattern of speedup

against CPU-only performance. It indicates our approach of hybrid CUDA/MPI im-

plementation is appropriate for both the finite element and the finite volume method.
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Table 4.4.2: Wall clock time in HH:MM:SS for CICR problem on hybrid CPU/GPU

nodes and speedup against CPU only runtime on one 16-core node, for finite volume

method and BiCGSTAB as linear solver.

nodes (GPU/node) 32× 32× 128 64× 64× 256 128× 128× 512

1 node (16 cores) 00:12:58 02:25:55 26:53:37

1 node (1 GPU) 00:31:09 (0.39) 02:00:32 (1.19) 16:22:51 (1.64)

1 node (2 GPUs) 00:30:33 (0.39) 01:30:03 (1.60) 08:58:16 (3.00)

2 nodes (16 cores) 00:07:24 01:10:26 13:56:38

2 nodes (1 GPU) 00:23:46 (0.51) 01:15:14 (1.91) 08:39:43 (3.10)

2 nodes (2 GPUs) 00:28:08 (0.42) 01:05:04 (2.21) 05:03:27 (5.32)

4 nodes (16 cores) 00:06:30 00:39:04 07:21:17

4 nodes (1 GPU) 00:20:46 (0.58) 00:52:09 (2.76) 04:45:01 (5.66)

4 nodes (2 GPUs) 00:28:02 (0.43) 00:55:10 (2.61) 03:05:28 (8.70)

8 nodes (16 cores) 00:07:26 00:25:46 03:54:47

8 nodes (1 GPU) 00:20:16 (0.59) 00:43:12 (3.33) 02:49:08 (9.54)

8 nodes (2 GPUs) 00:28:03 (0.43) 00:51:44 (2.78) 02:11:12 (12.30)

16 nodes (16 cores) N/A 00:21:29 02:17:48

16 nodes (1 GPU) 00:20:09 (0.59) 00:39:35 (3.64) 01:56:17 (13.88)

16 nodes (2 GPUs) 00:28:46 (0.42) 00:51:41 (2.79) 01:48:19 (14.90)

Figure 4.4.4 gives a more intuitive view of the wall clock time by number of nodes

for mesh resolution 128 × 128 × 512. We observe that if the same number of nodes

are used, 2 GPUs per node gives better performance than 1 GPU per node, which

again is better than CPU only performance with all 16-cores on each node. We also

observe that better performance than CPU only simulations can be achieved by using

half number of hybrid nodes. For instance, using 1 node with 2 GPU is faster than

using 2 CPU only nodes, using 2 nodes with 2 GPUs per node is faster than using 4

CPU only nodes, and so on. This can be seen easier from Figure 4.4.5.

Figure 4.4.5 gives a more intuitive view of the speedup against performance on

one 16-core CPU. The CPU only speedup on one node is 1, since it is the baseline.
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We observe that if same number of nodes are used, the speedup increases significantly

as we increase the number of GPUs used. Figure 4.4.6 demonstrates speedup line for

each implementation. We observe the same pattern as in Figure 4.4.3. The CPU

only implementation has the best scalability, since there are no data transfer between

CPU and GPU memory. The implementation using one GPU per node has better

speedup, and the implementation using two GPUs per node has the highest speedup.

However, the scalability for the implementation using two GPUs per node is slightly

reduced.

Figure 4.4.4: Wall clock time by number of nodes using CPU only node, one GPU per

node and two GPU per node, for CICR problem solved with finite volume method

with BiCGSTAB as linear solver, for mesh resolution 128× 128× 512.
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Figure 4.4.5: Observed speedup over one 16-core CPU node reference time by number

of nodes using CPU only node, one GPU per node and two GPU per node, for CICR

problem solved with finite volume method with BiCGSTAB as linear solver. for mesh

resolution 128× 128× 512.
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Figure 4.4.6: Observed speedup over one 16-core CPU node reference time by number

of nodes using CPU only node, one GPU per node and two GPU per node, for CICR

problem solved with finite volume method with BiCGSTAB as linear solver. for mesh

resolution 128× 128× 512.
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Table 4.4.3 and Table 4.4.4 discussed below are the same studies presented in Ta-

ble 4.4.1 and Table 4.4.2, except that the linear solver used is QMR. As observed in

Table 3.2.1 and Table 3.2.2, the observed average number of iterations in linear solver

for QMR is higher than BiCGSTAB. This indicates the program is more computa-

tionally intensive than using BiCGSTAB, thus we expect to see higher speedup for

the implementation using CUDA and MPI.

Table 4.4.3 reports wall clock time in HH:MM:SS for CICR problem on hybrid

CPU/GPU nodes and speedup against CPU only runtime on one 16-core node, for

finite element method and QMR as linear solver. The first column shows performance

on mesh resolution 32× 32× 128. We observe that using the parallel implementation

using MPI on one 16-core CPU the simulation runs for about 31 minutes. As in

Table 4.4.1, 1 node (1 GPU) means one MPI process running on one CPU core with

access to one GPU, 1 node (2 GPUs) means two MPI processes, each accessing one

GPU on the node. It is the same with simulations on multiple hybrid CPU/GPU

nodes. Here we observe that using one CPU core with one GPU the simulation runs

for 40 minutes. The performance of adding a GPU is not faster than using all 16

cores on the node. We also observe that using more nodes with one or two GPUs

per node we can get better performance than the 16-core CPU. This is different

with Table 4.4.1, where we cannot get better performance than a 16-core CPU on

this coarse mesh. It confirms that the program is more computationally intensive.

However, the speedup is very low that we cannot beat multiple CPU nodes. The

second column shows performance on mesh resolution 64 × 64 × 256. We observe

that using one 16-core node the simulation runs for about 4 hours. Using one CPU

core and one GPU, the simulation runs for about 2 hours 38 minutes, faster than

16-core CPU result. Reading along this column, we observe the wall clock time been

further reduced using more nodes and two GPUs per node. Also, we observe that
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the speedup numbers are larger than those in Table 4.4.1. The third column shows

performance on mesh resolution 128× 128× 512. We observe that using one 16-core

node the simulation runs for more than 72 hours. We observe that using one CPU

core and one GPU, the simulation runs for around 37 hours. Using one node with two

GPUs, the simulation runs for 19 hours and 29 minutes. This is approximately 3.7

times faster than one 16-core CPU, higher than 3 times faster in Table 4.4.1. Reading

along the column we observe the wall clock time decreases significantly using more

nodes, all the way to 3 hours on 16 nodes. The speedup using 16 nodes and 2 GPUs

per node is 23.5, much higher than 17.08 in Table 4.4.1.

Table 4.4.3: Wall clock time in HH:MM:SS for CICR problem on hybrid CPU/GPU

nodes and speedup against CPU only runtime on one 16-core node, for finite element

method and QMR as linear solver.

nodes (GPU/node) 32× 32× 128 64× 64× 256 128× 128× 512

1 node (16 cores) 00:30:42 03:56:54 72:05:43

1 node (1 GPU) 00:40:35 (0.76) 02:37:42 (1.50) 37:06:58 (1.94)

1 node (2 GPUs) 00:25:32 (1.20) 01:35:14 (2.49) 19:29:32 (3.70)

2 node (1 GPU) 00:29:36 (1.04) 01:34:00 (2.52) 19:31:06 (3.69)

2 node (2 GPUs) 00:20:14 (1.52) 01:04:15 (3.69) 10:41:27 (6.74)

4 node (1 GPU) 00:21:23 (1.43) 01:00:17 (3.93) 10:28:33 (6.88)

4 node (2 GPUs) 00:18:27 (1.66) 00:53:36 (4.42) 06:07:49 (11.76)

8 node (1 GPU) 00:19:23 (1.58) 00:48:20 (4.90) 05:53:10 (12.25)

8 node (2 GPUs) 00:18:29 (1.66) 00:51:34 (4.59) 03:57:46 (18.19)

16 node (1 GPU) 00:19:59 (1.53) 00:46:58 (5.04) 03:42:36 (19.43)

16 node (2 GPUs) 00:20:14 (1.52) 00:56:26 (4.20) 03:04:03 (23.50)

Figure 4.4.7 gives a more intuitive view of the wall clock time by number of nodes

for mesh resolution 128 × 128 × 512. We observe that if the same number of nodes

are used, 2 GPUs per node gives better performance than 1 GPU per node, which

again is better than CPU only performance with all 16-cores on each node. We also
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observe that better performance than CPU only simulations can be achieved by using

half number of hybrid nodes. For instance, using 1 node with 2 GPU is faster than

using 2 CPU only nodes, using 2 nodes with 2 GPUs per node is faster than using 4

CPU only nodes, and so on. This can be seen easier from Figure 4.4.8.

Figure 4.4.8 gives a more intuitive view of the speedup against performance on one

16-core CPU. The CPU only speedup on one node is 1, since it is the baseline. We

observe that if same number of nodes are used, the speedup increases significantly

as we increase the number of GPUs used. Figure 4.4.9 demonstrates speedup line

for each implementation. We observe the same pattern as in Figure 4.4.3. The

CPU only implementation has the best scalability, since there are no data transfer

between CPU and GPU memory. The implementation using one GPU per node has

better speedup, and the implementation using two GPUs per node has the highest

speedup. However, the scalability for the implementation using two GPUs per node

is slightly reduced. Compare to Figure 4.4.3, we gain much higher speedup using 16

hybrid CPU/GPU nodes, due to the more computationally intensive program. This

indicates that better scalability can be expected for more computationally intensive

program. It is preferable to use more nodes on larger problems.
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Figure 4.4.7: Wall clock time by number of nodes using CPU only node, one GPU per

node and two GPU per node, for CICR problem solved with finite element method

with QMR as linear solver, for mesh resolution 128× 128× 512.
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Figure 4.4.8: Observed speedup over one 16-core CPU node reference time by number

of nodes using CPU only node, one GPU per node and two GPU per node, for CICR

problem solved with finite element method with QMR as linear solver. for mesh

resolution 128× 128× 512.
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Figure 4.4.9: Observed speedup over one 16-core CPU node reference time by number

of nodes using CPU only node, one GPU per node and two GPU per node, for CICR

problem solved with finite element method with QMR as linear solver. for mesh

resolution 128× 128× 512.
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Table 4.4.4 reports wall clock time in HH:MM:SS for CICR problem on hybrid

CPU/GPU nodes and speedup against CPU only runtime on one 16-core node, for

finite volume method and QMR as linear solver. The first column shows performance

on mesh resolution 32× 32× 128. We observe that using the parallel implementation

using MPI on one 16-core CPU the simulation runs for about 18 minutes. As in

Table 4.4.1, 1 node (1 GPU) means one MPI process running on one CPU core with

access to one GPU, 1 node (2 GPUs) means two MPI processes, each access one GPU

on the node. It is the same with simulations on multiple hybrid CPU/GPU nodes.

Here we observe that using one CPU core with one GPU the simulation runs for 26

minutes. The performance of adding a GPU is not faster than using all 16 cores on

the node. We also observe that using more nodes with one or two GPUs per node we

can get better performance than the 16-core CPU. This is different with Table 4.4.2,

where we cannot get better performance than the 16-core CPU on this coarse mesh.

It also confirms that the program is more computationally intensive. However, the

speedup is very low that we cannot beat multiple CPU nodes. The second column

shows performance on mesh resolution 64× 64× 256. We observe that using one 16-

core node the simulation runs for about 3 hours 41 minutes. Using one CPU core and

one GPU, the simulation runs for about 2 hours 29 minutes, faster than the 16-core

CPU result. Reading along the column we observe using more nodes and two GPUs

per node we can further reduce the wall clock time. Also, we observe that the speedup

numbers are larger than those in Table 4.4.2. The third column shows performance

on mesh resolution 128 × 128 × 512. We observe that using one 16-core node the

simulation runs for more than 40 hours. We observe that using one CPU core and

one GPU, the simulation runs for around 22 hours. Using one node with two GPUs,

the simulation runs for 11 hours and 50 minutes. This is approximately 3.45 times

faster than one 16-core CPU, higher than 3 times faster in Table 4.4.1. Reading along
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the column we observe the wall clock times decrease significantly using more nodes,

all the way to 2 hours 17 minutes on 16 nodes. The speedup using 16 nodes and 2

GPUs per node is 17.83, much higher than 14.9 in Table 4.4.1.

Table 4.4.4: Wall clock time in HH:MM:SS for CICR problem on hybrid CPU/GPU

nodes and speedup against CPU only runtime on one 16-core node, for finite volume

method and QMR as linear solver.

nodes (GPU/node) 32× 32× 128 64× 64× 256 128× 128× 512

1 node (16 cores) 00:18:24 03:41:39 40:51:02

1 node (1 GPU) 00:26:02 (0.71) 02:29:48 (1.48) 22:02:11 (1.85)

1 node (2 GPUs) 00:16:48 (1.10) 01:34:21 (2.35) 11:50:11 (3.45)

2 node (1 GPU) 00:17:38 (1.04) 01:32:18 (2.40) 11:46:06 (3.47)

2 node (2 GPUs) 00:13:48 (1.33) 01:08:00 (3.26) 06:34:43 (6.21)

4 node (1 GPU) 00:14:15 (1.29) 01:03:01 (3.52) 06:23:56 (6.38)

4 node (2 GPUs) 00:13:20 (1.37) 01:00:34 (3.66) 03:54:06 (10.47)

8 node (1 GPU) 00:13:34 (1.36) 00:55:21 (4.00) 03:44:44 (10.91)

8 node (2 GPUs) 00:15:47 (1.17) 01:04:09 (3.46) 02:43:41 (14.97)

16 node (1 GPU) 00:15:50 (1.16) 00:55:55 (3.96) 02:32:39 (16.06)

16 node (2 GPUs) 00:20:48 (0.88) 01:10:58 (3.12) 02:17:29 (17.83)

Figure 4.4.10 gives a more intuitive view of the wall clock time by number of nodes

for mesh resolution 128 × 128 × 512. We observe that if the same number of nodes

are used, 2 GPUs per node gives better performance than 1 GPU per node, which

again is better than CPU only performance with all 16-cores on each node. We also

observe that better performance than CPU only simulations can be achieved by using

half number of hybrid nodes. For instance, using 1 node with 2 GPU is faster than

using 2 CPU only nodes, using 2 nodes with 2 GPUs per node is faster than using 4

CPU only nodes, and so on. This can be seen easier from Figure 4.4.11.

Figure 4.4.11 gives a more intuitive view of the speedup against performance on

one 16-core CPU. The CPU only speedup on one node is 1, since it is the baseline.
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We observe that if same number of nodes are used, the speedup increase significantly

as we increase the number of GPUs used. Figure 4.4.12 demonstrates speedup line

for each implementation. We observe the same pattern as in Figure 4.4.6. The

CPU only implementation has the best scalability, since there are no data transfer

between CPU and GPU memory. The implementation using one GPU per node has

better speedup, and the implementation using two GPUs per node has the highest

speedup. However, the scalability for the implementation using two GPUs per node

is slightly reduced. Compare to Figure 4.4.6, we gain much higher speedup using 16

hybrid CPU/GPU nodes, due to the more computationally intensive program. This

indicates that better scalability can be expected for more computationally intensive

program. It is preferable to use more nodes on larger problems.

Figure 4.4.10: Wall clock time by number of nodes using CPU only node, one GPU

per node and two GPU per node, for CICR problem solved with finite volume method

with QMR as linear solver, for mesh resolution 128× 128× 512.
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Figure 4.4.11: Observed speedup over one 16-core CPU node reference time by number

of nodes using CPU only node, one GPU per node and two GPU per node, for CICR

problem solved with finite volume method with QMR as linear solver. for mesh

resolution 128× 128× 512.
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Figure 4.4.12: Observed speedup over one 16-core CPU node reference time by number

of nodes using CPU only node, one GPU per node and two GPU per node, for CICR

problem solved with finite volume method with QMR as linear solver. for mesh

resolution 128× 128× 512.
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CONCLUSIONS

We capture the effect of advection in three-dimensional long-time simulation of

the CICR model. Different advection speeds of the calcium waves are observed, which

in turn show our numerical methods are producing physiologically plausible results.

We demonstrate convergence of the finite volume method numerically and com-

pare the results to those obtained by the finite element method from [7]. We show

convergence for scalar test problems with choices between smooth versus non-smooth

source terms and first-order versus second-order discretization of the advection term,

in both two- and three-dimensional mesh spacing. If there is no advection, the con-

vergence rates are the same as for the finite element method. For the CICR problem,

where the source term is highly non-smooth, we recommend using the first-order

discretization of the advection term.

Through a series of parallel performance studies, we show the strong and weak

scalability of the parallel implementation using MPI. This indicates we can solve the

CICR problem faster and on finer meshes, provided that we have access to a large

number of CPU nodes.

With a parallel implementation using CUDA and MPI, we show how to combine

several hybrid CPU/GPU nodes in a multi-node distributed-memory compute cluster

with high performance interconnect successfully. The results demonstrate that using

CUDA and MPI on one hybrid node with two CPUs and two GPUs, the CICR

problem can be solved much faster than using all 16 cores of two eight-core CPUs

on a CPU node. The data transfer between CPU and GPU memory is inevitable,

but performance can be improved by splitting kernels and using non-blocking MPI

communications. Moreover, we show the scalability of the implementation, where the

114
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wall clock time can be further reduced by using multiple GPU nodes. It is noticeable

that we can outperform the CPU-only implementation by using half as many hybrid

CPU/GPU nodes.
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