
LONG-TIME SIMULATIONS ON HIGH RESOLUTION MESHES TO
MODEL CALCIUM WAVES IN A HEART CELL∗

MATTHIAS K. GOBBERT†

Abstract. A model for the flow of calcium on the scale of one heart cell is given by a system
of time-dependent reaction-diffusion equations coupled by non-linear reaction terms. Calcium ions
enter into the cell at release units distributed throughout the cell and then diffuse. At each release
unit, the probability for calcium to be released increases along with the concentration of calcium, thus
creating a feedback loop of waves re-generating themselves repeatedly. The validation of this model
requires simulations on the time scale of several repeated waves and on the spatial scale of the entire
cell. This requires long-time studies on spatial meshes that need to have a high resolution to resolve
the positions of the calcium release units throughout the entire cell. We detail the development of
a special-purpose numerical method and parallel implementation for this problem. Parallel perfor-
mance studies demonstrate the scalability of the implementation on a distributed-memory cluster
with low-latency interconnect. Convergence studies verify convergence to analytical expectations and
confirm the appropriateness of all numerical parameters. Application studies on the desired time and
length scales confirm that the model exhibits the desired feedback mechanism for calcium currents
through the release units at suitable high levels, but the long-time studies demonstrate also that the
current model with its present parameters leads to excessive calcium concentrations over time. This
phenomenon could only be observed using a computational method able to reach laboratory scale
final times for a domain on the scale of a complete cell.

Key words. reaction-diffusion equation, non-smooth data, finite element method, matrix-free
implementation, cluster computing

AMS subject classifications. 35K57, 65F10, 65M60, 65Y05, 92C45

1. Introduction. Diffusion waves of calcium ions in a heart cell are part of the
normal functioning of the heart, but can also trigger arrhythmias (irregular heart
beat) [11, 12, 13]. See these sources as well as the appendix in [8] for more references
to background material. The model for the calcium flow is given by a system of
coupled, time-dependent reaction-diffusion equations

(1.1)
∂u(i)

∂t
−∇ ·

(
D(i)∇u(i)

)
+ a(i) u(i) = r(i) +

(
− Jpump + Jleak + JSR

)
δi0 + f (i)

for the concentrations u(i)(x, t) of the ns chemical species i = 0, 1, . . . , ns − 1 as
functions of space x ∈ Ω ⊂ R3 and time 0 ≤ t ≤ tfin. In the application problem,
(1.1) is coupled with no flow boundary conditions, and the concentrations at the initial
time are given.

The time and space derivatives on the left-hand side of (1.1) model the dif-
fusive transport of each chemical species with diffusivities given by the diagonal,
positive definite matrices D(i) ∈ R3×3, i = 0, 1, . . . , ns − 1. The reaction terms
r(i) ≡ r(i)(u(0), . . . , u(ns−1)) on the right-hand side are in general non-linear functions
of all species and couple all reaction-diffusion equations in (1.1). In the application
problem, crucial effects related to the calcium species, labeled with index i = 0, are
contained in the right-hand side terms associated with the Kronecker delta function
δi0 (defined as δij = 0 for all i 6= j and δij = 1 for i = j). In (1.1), the appli-
cation problem is combined with additional terms a(i)u(i) with constant a(i) ≥ 0

∗The author acknowledges partial support from National Science Foundation under grant DMS–
0215373 for the computational hardware used in the numerical studies.

†Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000
Hilltop Circle, Baltimore, MD 21250, U.S.A. (gobbert@math.umbc.edu)

1

2 Matthias K. Gobbert

and given function f (i) ≡ f (i)(x, t) that incorporates the scalar linear test problem
ut − ∇ · (D∇u) + au = f(x, t) in the formulation. This combined formulation of
the problems allows to switch the code from one problem to the other by turning
off terms and is useful in testing to ensure correctness of the code and associated
post-processing routines.

The problem of calcium flow in a cell is a multiscale problem in both space and
time. On the scale of a cell, the points where calcium ions are injected into the cell, are
represented as point sources, i.e., mathematically by highly non-smooth Dirac delta
distributions, each located at a discrete point of size 0, which will be explained in
detail in section 2 and specifically in section 2.1 the source term JSR that includes the
Dirac delta distributions. In fact, calcium channels have a size of about 10 to 30 nm,
and the opening and closing of the channels take place on the scale of microseconds
[18, p. 1848]. On the time scale of the waves we intend to simulate, 100 ms, this
appears as instantaneous switching in time. The differences in spatial and time scale
highlight that different works can have different foci. For instance, [18] considers one
channel only (located on a membrane at the boundary of the domain) and models the
release of calcium in detail (with a different, mathematically smooth mechanism). To
simulate to desired final times of nearly 10 s, while resolving the opening transient,
their numerical method uses variable time-stepping. However, due to the focus on one
channel, the spatial domain of size 8×8×5 µm3 includes only the region surrounding
the channel.

By contrast, for the simulation of calcium waves through an entire cell, the domain
needs to be on the scale of the cell, which is on the order of 10×10 µm2 in cross-section
and at least between 50 and 100 µm in length. On this scale, the spatial extent of
calcium channels appears indeed as a point of size 0. The mathematical model based
on a highly non-smooth Dirac delta distribution for each channel is appropriate on
this scale, as it captures the relevant effect on this scale of an injection of an amount
of calcium ions per unit of time that can be assessed experimentally. Thus, we choose
the domain Ω ⊂ R3 of the differential equation model (1.1) as the interior of one cell
as Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0) in units of µm. Clearly, a rectangular
shape is not the shape of a real cell, but this choice reflects the final goal of simulating
calcium waves, for which the exact shape of the cell is not crucial. Moreover, the
intermediate goal is actually to validate and tune of the coefficients in the model.
Specifically, all functions r(i), Jpump, JSR, etc. contain parameters, many of which
cannot be measured directly but are inferred indirectly from measurements of other
observations. So, before using the model (1.1) as a predictive tool, it needs to be
validated against experiments.

To this end, our task is to demonstrate that the model and its computer imple-
mentation are capable of replicating the phenomena observed in the laboratory. What
has to be achieved for the present purpose is (i) to be able to compute to final times
comparable to the laboratory scales and (ii) to do this with a domain that has a real-
istic size comparable to a real cell. Specifically, a final time on the order of 1,000 ms
is our goal, because it will allow enough time for waves to self-organize and for several
waves of calcium to traverse the cell, given their typical time scale of 100 ms; see
section 2.1. We use a domain with one long dimension of 64 µm and a cross-section
of 12.8 × 12.8 µm2, which is a good representation of the scale and the fundamen-
tal shape of a cell in this context [11, 13]. A particular example of quantities under
still-active validation is the positioning of and distances between the release units of
calcium, see, e.g., [2] and [12] that approach the problem from the experimental and

Long-Time Simulations on High Resolution Meshes 3

computational side, respectively. Specifically in [12], numerical studies analyze the
influence of various choices on the initiation of a calcium wave on a short cross-section
of the cell, on the order of 2 µm in length, with a final simulation time of 100 ms.

By contrast, this work presents a special-purpose simulation platform that is for
the first time capable of simulating several repetitions of calcium waves through an
entire cell. To accomplish this, we choose a numerical method that is mathemati-
cally appropriate for the problem and takes advantage of any special structure of the
problem for its efficiency, while still representing the salient features of the problem
and keeping the goals of the simulations in mind, and to implement this method effi-
ciently. This paper presents an approach to this problem in this spirit that uses the
properties of the application problem to design an efficient special-purpose code for
reaction-diffusion equations of the form (1.1) on a domain of rectangular shape such
as Ω above. Since our code and its parallelization are new, we also demonstrate how
to gain confidence in its efficacy by parallel performance studies and its accuracy by
convergence studies, before applying it to the application problem. In these studies,
the mesh is refined down to mesh spacings on the order of 0.0625 µm; see sections 4.2
and 4.3. This quantity reaches just about the scale of the calcium channel of up
to 30 nm cited above and is as fine as the differential equation model (1.1) can be
considered valid. These studies confirm on the one hand that the method converges,
even in the face of the highly non-smooth Dirac delta distribution as source term. On
the other hand, it also confirms that the model does not lose or gain mass, that is,
the relevant effect of the calcium injection is handled correctly and accurately on the
spatial scale of the cell, where each channel appears as a discrete point only.

Other authors suggest the use of local refinement around the location of calcium
channels. This is useful if one wishes, e.g., to plot additional detail near the location
of the calcium channels. However, this numerical fine resolution does not improve
the validity of the differential equation model, which by its nature of representing the
calcium channels as point sources cannot provide any more meaningful detail close
to the source. In fact, by definition of the Dirac delta distribution that necessarily
tends to infinity at the channel location, the solution also approaches infinity at the
location of each channel, and the value of the solution at the channel location will
never converge; this is an inherent feature of the mathematical model involving the
Dirac delta distributions and cannot be overcome by any numerical method. Notice
that the weak form of (1.1) used for the finite element method, as detailed in sec-
tion 3.1, replaces the Dirac delta distribution by a weak form with a finite constant
at that node, and thus the finite element method can be formulated for this problem.
However, the classical convergence theory for the finite element method still does not
apply, because that assumes the right-hand side of (1.1) to be in the function space
L2(Ω) spatially at every time. It is for this reason that we check the mass conservation
in section 4.3 and that careful convergence tests are necessary to gain confidence in
the method [6, 8].

The underlying issue here is a classical aspect of multiscale problems, where one
can only use the model on the scale for which it is valid, which is here on the scale
of a cell (or substantial part thereof), but with only a Dirac delta distribution, no
detailed information is contained in the model itself about the solution structure at
or very close to the channel (i.e., within the size of 30 nm of the channel). Rather,
the model by design captures only the total amount of calcium ions injected at the
channel and the location of the injection. Looking ahead to potential future research,
the use of non-uniform meshes would actually be rather to use a fine mesh only near

4 Matthias K. Gobbert

positions of open channels, as opposed to using a fine mesh at the positions of all
channels, whether open or closed. This amounts to transient mesh refinement and
coarsening, for which code is necessarily complicated to program. In the absence of
this, our uniform finest mesh can be considered to be locally as fine as other fine
meshes close to each channel location, but with unnecessarily many points in between
them. Unfortunately, [12] does not seem to state numerical values for the mesh spacing
close to the calcium channels, but considering their Fig. 1C (zoom), it appears that
the smallest mesh spacing (next to channel location) is about 1/16 of the distance
Λ between two channels, which is on the order of Λ = 1 µm. Hence, the smallest
mesh spacing used in their mesh may be on the order of Λ/16 = 1/16 = 0.0625 µm.
This value equals in fact the mesh spacing of the finest mesh used in the convergence
studies in sections 4.2 and 4.3, with the difference that we also have a fine mesh
between the channels.

This work can be viewed as enabling the extension of studies of the type of
[12] in space and time scale, with the use of comparable computational resources
(number of parallel nodes, wall clock time). Thus, the focus is in the end on comparing
computational cost and we therefore restrict ourselves to the same model as used there
and to a particular set of model parameters. Since the scientific goal of analyzing the
influence of parameters on the initiation of calcium waves on a cross-section of the
cell in [12] is different from our goal of providing a simulator for long-time studies
on the whole cell, we do not re-compute their studies here. However, to enable any
comparisons on the numerical methods, we use the same model and model parameters
as in [12]. Our method is able to accomodate generalizations of the model, for instance
by adding additional species. One application would be to model the amount of
calcium available for insertion at the CRUs explicitly, instead of assuming an unlimited
store. This and other variations, e.g., of parameter values, are the subject of future
research, which can be attempted after this paper focuses on establishing that the
numerical method is convergent and its implementation efficient, and that crucial
aspects of the model work correctly, e.g., mass conservation and the self-generation of
calcium waves. To focus on this validation is another reason why we restrict ourselves
to the same model and model parameters as in [12].

The work [12] uses the code MPSalsa (www.cs.sandia.gov/CRF/MPSalsa, [20])
from Sandia National Laboratories as simulation platform. This general-purpose code
is designed for more general problems than (1.1) by including additional phenomena
(such as heat and mass transfer, etc.) and uses unstructured finite element meshes,
thus is potentially much more flexible in representing realistic geometries. It will
become apparent in the detailed comparisons in section 3 that some of our choices
of numerical methods are remarkable analogous, such as a low-order finite element
method in space, fully implicit time stepping, the Newton method as non-linear solver,
and use of a Krylov subspace method as linear solver, but with certain meaningful
differences, which makes a comparison of the methods interesting: One key difference
is our use of a variable-order time stepping method with automatic step size control
that decreases the step size when warranted to control transients in time as well as
allows the step size to become large when possible. This is crucial to resolve the
opening and closing transients of calcium channels and to also treat the very smooth
diffusion effects as efficiently as possible with high method orders and large time steps
(see section 3.2). Another key difference is that we developed a completely matrix-free
implementation of the numerical method (see section 3.4). It is this approach that
decreases the memory usage dramatically and thus enables the numbers of degrees

Long-Time Simulations on High Resolution Meshes 5

of freedom to be in the millions (see Table 3.1 in section 3.1). This approach was
originally proposed and the derivation of the terms detailed in [8], but that work
did not split the unknowns for each species across the parallel computer and thus
did not have the necessary efficiency for long-time studies of the whole cell. Another
key benefit of the matrix-free methodology is that the analytical Jacobian matrix in
the Newton method is exact and automatically up-to-date in each iteration without
any associated cost, both of which improve the convergence behavior of the Newton
iterations (see section 3.3). Together with the use of a Krylov subspace method as
linear solver, this is known as Jacobian-free Newton-Krylov (JFNK) method; see the
review paper [14] and the references therein. These key features of our code permit
us to compute to large final times on the entire cell within about the same wall clock
times on similar computational resources as used in [12]. Another difference between
the works is the shape of the domain. We use an elongated brick shape as generic
approximation of the shape of a cell, while [12] uses a cylinder. Both shapes are
regular in nature, and there is no inherent difference between the computational cost
of approximating either of them. In the same way, [12] considers a range of values
for various parameters, which also does not influence the computational cost of the
simulation significantly.

Along with the software MPSalsa, mentioned above and used in [12], exist various
other packages, such as SUNDIALS (www.llnl.gov/casc/sundials, [9]) and PETSc
(www.mcs.anl.gov/petsc, [1]), that contain state-of-the-art numerical algorithms for
problems including (1.1) considered here. It will become clear in the following sections
that we made very similar algorithmic choices as these packages. However, we still
decided to implement our own special-purpose code for this application in order to
have full control of all algorithmic details. One set of issues relates to the term JSR in
(1.1) that drives the calcim release: On the one hand for theoretical reasons, we need
to carefully ensure convergence of the spatial discretization in the face of the highly
non-smooth Dirac delta distributions in JSR. We use the finite element method to
this end, which results in a mass matrix in the ODE system and thus needed an ODE
solver that incorporates a mass matrix. It is also important that we can test various
versions of the mass matrix before confirming that a lumped mass matrix is sufficient
to guarantee accuracy and convergence [8]. On the other hand for practical reasons,
we will want to control the time stepping of the ODE method to respect the spark
times at which the calcium release units can open or close, which we are able to do in
our own code more easily. It will also become clear that we need to be very mindful
to limit the use of memory as much as possible to facilitate the solution of problems
on the desired high resolution meshes, and this is easier in a special-purpose code.
Additionally, we have and are continuing to investigate method choices that make the
code more efficient for this application, for which full control of the code is necessary.
One example of this is the use of the NDFk method family for time-stepping following
[21], instead of the more traditional BDFk family in some of the alternative packages
such as SUNDIALS. The idea is that the NDFk methods can use significantly larger
time steps than the BDFk methods [21], resulting in significant savings of wall clock
time. This is clearly very important for the long-time studies intended here and has
been confirmed to be effective for this diffusion-dominated flow. Another example
is the use of the QMR method as linear solver instead of the more typically chosen,
more general GMRES, in order to limit the memory usage more tightly.

The following section 2 introduces the application problem in more detail and
highlights the numerical challenges that need to be addressed. Section 3 explains

6 Matthias K. Gobbert

the choices for the components of our numerical method in detail and discusses some
comparisons with the simulations in [12]. Section 4 presents results in four sections:
Parallel performance studies in section 4.1 demonstrate that we can solve problems of
the desired size efficiently on a distributed-memory cluster with low-latency intercon-
nect. Sections 4.2 and 4.3 present convergence studies with smooth and non-smooth
source terms, respectively, to validate the method, its implementation, and our choice
of numerical parameters. Finally, section 4.4 shows long-time simulations for two
cases, one in which no calcium waves self-organize and one in which two waves self-
organize and traverse the domain. Movies of the results are available at the author’s
website www.math.umbc.edu/~gobbert/calcium. Our conclusions are summarized
in section 5.

2. The application problem.

2.1. The model of the spark mechanism. The key term of the model is the
term JSR(u(0),x, t) in the equation for the calcium concentration (labeled as species
i = 0) in (1.1) that describes the release of calcium at the calcium release units
(CRUs), referred to as spark events [11, 13]. On the spatial scale of a cell, the CRUs
appear as discrete points distributed uniformly throughout the cell. Specifically, we
take the arrangement of the CRUs as a three-dimensional lattice with spacings of
∆xs = ∆ys = 0.8 µm in the x- and y-dimensions and of ∆zs = 2.0 µm in the z-
dimension of the cell with no CRUs on the boundary of the cell [13, p. 105]. These
and all other coefficient values and their units are collected in Table 2.1. For our
domain of Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0) with length units of µm, this
means that the CRUs form a 15×15×31 lattice with a total of 6,975 CRUs in the cell.
It is immediately clear that one of the challenges for simulations of the calcium flow
throughout an entire cell is the need for a numerical mesh that resolves this lattice of
points, where the sources of calcium are located.

The release of calcium concentration at each CRU is modeled as a point source on
the spatial scale of the cell, mathematically represented as a Dirac delta distribution
δ(x− x̂) for a CRU located at x̂ [11, p. 89]. The Dirac delta distribution is understood
here in a three-dimensional sense for short, that is, δ(x−x̂) := δ(x−x̂) δ(y−ŷ) δ(z−ẑ),
where we also write x = (x, y, z) and x̂ = (x̂, ŷ, ẑ). We recall that δ(x) is defined by
requiring (i) δ(x − x̂) = 0 for all x 6= x̂ and (ii)

∫
ψ(x) δ(x − x̂) dx = ψ(x̂) for any

continuous function ψ(x); this definition implies in particular that δ(x̂) tends to ∞
and is thus not a function in the mathematical sense. The amount of calcium injected
into the cell at one point x̂ is given by the flux density σ, that is,

∫
Ω
σ δ(x− x̂) dx = σ,

by the definition of the delta distribution, gives the amount of calcium released into
the cell in 1 ms. The effect of a CRU switching on and off is incorporated by an
indicator function in time. More specifically, let the set Ωs = {x̂ ∈ Ω | x̂ is a CRU}
denote the set of all CRU locations. Then [12, p. 96]

(2.1) JSR(u(0),x, t) =
∑
x̂∈Ωs

σ Sx̂(u(0), t) δ(x− x̂)

is the superposition of the release of calcium at all CRUs. Since the Dirac delta dis-
tribution is a highly non-smooth term, one critical question for the numerical method
is whether its spatial discretization converges.

The indicator function Sx̂(u(0), t) in each term of the sum in (2.1) houses the
stochastic aspect of the sparking mechanism of the CRU at x̂. The model allows the

Long-Time Simulations on High Resolution Meshes 7

CRU to open with probability

(2.2) Jprob(u(0)) =
Pmax (u(0))nprob

(Kprob)nprob + (u(0))nprob

as a function of the local calcium concentration u(0) [13, p. 104]. This probabilistic
model is checked at the spark times that are every unit in time ∆ts = 1 ms apart.
If a CRU opens at a time t = t̂, it stays open for a duration topen = 5 ms, that
is, mathematically the indicator function Sx̂ is set to 1 for t ∈ [t̂, t̂ + topen]. The
desired effect of this design is that the calcium released at one CRU diffuses to a
neighboring CRU, whose probability for opening increases with the increased calcium
concentration. If the calcium concentration then reaches a third CRU and it opens,
the effect is that of a wave forming throughout the cell [8, 13]. After a CRU closes
again, it cannot release calcium again for a time period tclosed = 100 ms. Therefore,
calcium waves through the cell are separated in time by at least 100 ms. We see that
to simulate a sequence of repeated calcium waves, we need to be able to calculate for
long times, such as, up to the final time tfin = 1,000 ms. The studies in section 4.4
use the model parameters in Table 2.1 with a maximum probability Pmax = 0.3/ ms
for a CRU to open and spark intervals of ∆ts = 1 ms, following the original work [13].
These results were checked against several theoretically equivalent choices, including
among others a maximum probability of Pmax/4 every 0.25 ms. These simulations
gave equivalent results, aside from expected variations due to different sequences of
pseudo random numbers in each simulation.

The experimentally obtained coefficient σ models the amount of calcium released
at one CRU [11, 13]. It is a function of the calcium current ISR by σ = ISR/(2F),
where F denotes the Faraday constant. The range of ISR from 10 to 20 pA is “back-
calculated from the size of sparks” [12, p. 96]. This quantity has crucial influence on
whether calcium waves self-organize or not because it determines how much calcium
is released into the cell at one CRU, σ, which via diffusion raises the value of Jprob

in (2.2) at nearby CRUs and thus influences strongly whether they open or not. One
interesting validation for this model of calcium waves is to consider the extreme values
of this range for ISR and observe whether calcium waves self-organize.

In summary, there are several key challenges for the numerical method and its
implementation: The spatial discretization needs to resolve the cell domain with a fine
mesh and we need to ensure its convergence in the face of the Dirac delta distributions
as highly non-smooth source terms. The time discretization needs to ensure small
error when CRUs are switched on and off and needs to be efficient enough to allow
long-time simulations within reasonable wall clock times.

2.2. The other terms of the application problem. The model for the cal-
cium flow involves in addition to calcium C, labeled as species i = 0, additionally an
endogenous calcium buffer F(1), labeled i = 1, and a fluorescent indicator dye F(2),
labeled i = 2. The reversible binding/unbinding of the indicator and buffer species
are modeled by the reaction model for the ns = 3 species [11]

(2.3) F(i) + C
 G(i), for i = 1, . . . , ns − 1,

where F(i) denotes the free molecules of species i, C denotes the calcium species,
and G(i) the molecules of species i that are bound with C. The reaction model,
together with the no flow boundary conditions, assures the conservation of the total
concentrations of F(i) and G(i) together at a value ui [11] that is determined by the

8 Matthias K. Gobbert

Table 2.1
Coefficients of the application problem with ns = 3 species. The concentration unit M is short

for mol / L (moles per liter).

Domains in space and time
Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0) in units of µm
0 ≤ t ≤ tfin with tfin = 1,000 in units of ms

Reaction-diffusion equation (1.1)
D(0) = diag(0.15, 0.15, 0.30) µm2 / ms
D(1) = diag(0.01, 0.01, 0.02) µm2 / ms
D(2) = diag(0.00, 0.00, 0.00) µm2 / ms
a(i) = 0, f (i) ≡ 0 for all i
u

(0)
ini = 0.1 µM, u

(1)
ini = 45.9184 µM, u

(2)
ini = 111.8182 µM

CRU coefficients, (2.1), and (2.2)
∆xs = 0.8 µm, ∆ys = 0.8 µm, ∆zs = 2.0 µm

σ =
{

51.8213655 µM µm3 / ms for ISR = 10 pA
103.6430533 µM µm3 / ms for ISR = 20 pA

F = 96,485.3 C / mol Faraday constant
Pmax = 0.3 / ms, Kprob = 15.0 µM, nprob = 1.6
∆ts = 1. ms, topen = 5.0 ms, tclosed = 100.0 ms

Reaction terms (2.4)
k+
1 = 0.08 / (µM ms), k−1 = 0.09 / ms, u1 = 50.0 µM
k+
2 = 0.10 / (µM ms), k−2 = 0.10 / ms, u2 = 123.0 µM

Pump and leak terms (2.6)
Vpump = 0.2 µM / ms, Kpump = 0.184 µM, npump = 4
Jleak = 0.016048418 µM / ms

initial conditions. With u(i) denoting the concentration of F(i), the concentration of
G(i) is then ui − u(i). And with u(0) as concentration of C, the reaction rates are

(2.4) R(i) = −k+
i u

(0)u(i) + k−i

(
ui − u(i)

)
for i = 1, . . . , ns − 1.

The reaction terms r(i) in the unified notation of (1.1) are then for all species

(2.5) r(i)(u(0), . . . , u(ns−1)) :=


ns−1∑
j=1

R(j)(u(0), u(j)), for i = 0,

R(i)(u(0), u(i)), for i = 1, . . . , ns − 1.

These reaction terms introduce non-linearity into the problem and constitute the
coupling between the equations in (1.1). Notice that we follow the convention of
[11, 12, 13] of tracking the buffer species in their bound state. By contrast, [18] tracks
the buffers in their unbound state, resulting in apparent sign reversions in all reaction
terms.

Finally, calcium also leaves the cell through the non-linear drain term [11, p. 89]

(2.6) Jpump(u(0)) =
Vpump (u(0))npump

(Kpump)npump + (u(0))npump
.

At rest, that is, for the calcium concentration u(0) = 0.1 µM, the constant source
term Jleak balances the pump term such that Jleak = Jpump(u(0)) [11, p. 89]. (In [12,

Long-Time Simulations on High Resolution Meshes 9

p. 96], there is a typo in the sign of the pump term; cf. the original source [11, p. 89].)
The rest concentration u(0) = 0.1 µM is chosen as the initial condition for the calcium
concentration, and the initial conditions for the other reactive species are computed
such that r(i) = 0 for all reactions.

3. The numerical method. The problem (1.1), for which a numerical method
needs to be developed, is a system of reaction-diffusion equations coupled through the
non-linear reaction terms. We use a method of lines approach to develop a special-
purpose code that can handle the Dirac delta distributions in (2.1) and that is suitable
for long-time simulations on the desired fine meshes.

3.1. Spatial discretization. Recall that Ω = (−X,X) × (−Y, Y) × (−Z,Z)
with X = Y = 6.4 and Z = 32.0 has a regular shape and that the calcium release
units (CRUs) at which the Dirac delta distributions are centered form a regular lattice
Ωs inside the domain Ω with spacings of ∆xs, ∆ys, ∆zs between the CRUs in the
three coordinate directions. We take advantage of this structure by using a uniform
numerical mesh Ωh ⊂ Ω with mesh spacings ∆x, ∆y, ∆z chosen such that Ωh includes
the CRU locations as mesh points, that is, we have Ωs ⊂ Ωh ⊂ Ω by design. More
specifically, the mesh has Nx × Ny × Nz brick-shaped elements and thus there are
a total of N = (Nx + 1)(Ny + 1)(Nz + 1) nodes in the mesh. For a problem with
ns = 3 chemical species as in the application problem, there will be neq = nsN = 3N
degrees of freedom (DOF) to be solved for in each time step. Table 3.1 lists several
resolutions that we will use in the following and their associated number of nodes
N and degrees of freedom neq. The simulations shown in section 4.4 in fact use the
64 × 64 × 256 mesh and have thus ‘only’ over 3 million DOFs. But the finer meshes
are crucial to study the convergence of the spatial discretization and the reference
solution in sections 4.2 and 4.3 in fact used the 256 × 256 × 1024 mesh, albeit in a
single-species run, so having as DOFs the nodes N of ‘only’ nearly 68 million listed in
the table. What these numbers demonstrate is that an off-the-shelf software such as
COMSOL Multiphysics (formerly known as FEMLAB; www.comsol.com) cannot be
used to solve this problem: COMSOL is a serial code, thus all variables used must fit
into the memory of the computer used. Due to large numbers of auxiliary variables
used inside its general-purpose implementation of the finite element method on an
unstructured mesh, it runs out of memory rather rapidly, such as with about 20,000
elements on 0.5 GB of memory [5] or 200,000 elements on 1.0 GB of memory [6];
these observations depend on the polynomial order of finite elements used as well as
on various other factors such as choice of solver, and should only be considered a
rough guide. However, an additional limitation is that in time-dependent problems
COMSOL stores all solutions over time in memory. Even if this is restricted to the
points in time, where the output of the solution is desired, this would mean about 1,000
solutions for the present problem, if we store the solution merely at every spark time;
this clearly becomes infeasible for any reasonable mesh resolution. All this should
not be taken as an indictment of COMSOL. Rather, its strength lies in providing
ready access to a variety of different finite elements, many higher-order than the
linear elements used here, whose implementation is difficult and justifiably requires
the large numbers of auxiliary variables used. But a problem with special features
such as the one under consideration might require a special-purpose code to achieve
the desired resolution.

The need to discretize the Dirac delta distributions in (2.1) motivates the use
of the finite element method (FEM), because the weak formulation of the FEM is
obtained by integrating (1.1) over Ω against a smooth test function, which is well-

10 Matthias K. Gobbert

Table 3.1
A finite element mesh with Nx ×Ny ×Nz elements has N = (Nx + 1)(Ny + 1)(Nz + 1) nodes

and neq = nsN = 3N degrees of freedom (DOF) for the application problem with ns = 3 species.

Nx ×Ny ×Nz N neq = DOF
16× 16× 64 18,785 56,355

32× 32× 128 140,481 421,443
64× 64× 256 1,085,825 3,257,475

128× 128× 512 8,536,833 25,610,499
256× 256× 1024 67,700,225 203,100,675

defined for the Dirac delta distributions in JSR. We choose tri-linear nodal FEM basis
functions ϕk(x), 0 ≤ k < N , that satisfy ϕk(x`) = δk` for all nodes x` ∈ Ωh and are
linear functions of each variable between nodes. Using ϕk as test function in the weak
formulation allows for an explicit evaluation of the JSR term in the discretization and
we find

(3.1) Σk :=
∫

Ω

JSR ϕk dx = σ
∑
x̂∈Ωs

Sx̂

∫
Ω

δ(x− x̂)ϕk(x) dx = σ
∑
x̂∈Ωs

Sx̂ ϕk(x̂).

Since x̂ ∈ Ωs ⊂ Ωh by construction of the mesh, x̂ is a node and we obtain ϕk(x̂) = 1
if and only if x̂ = xk. Moreover, Sx̂(u(0), t) = 1 if the CRU at x̂ is open and 0
otherwise, so Σk = σ if xk is a CRU and it is open, and 0 otherwise.

The discretization of the other terms in (1.1) is standard, see, e.g., [16, 23] for
general information, and see [8] for the concrete derivation of all terms. Let u(i)

k (t) ≈
u(i)(xk, t) denote the approximation to the true solution at node xk ∈ Ωh at time
t, then the finite element solution is denoted by u

(i)
h (x, t) =

∑
k u(i)

k (t)ϕk(x). The
methods of lines approach yields the semi-discrete problem in vector form for u(i) =
(u(i)

k) as

(3.2) M̂
du(i)

dt
= −(K(i) +M (i)

a)u(i) +r(i) + δi0 (jpl +Σ)+ f (i), i = 0, 1, . . . , ns − 1.

Here, K(i) denotes the stiffness matrix, M̂ is the lumped mass matrix (which is the
same for all species) [23], and M (i)

a is mass matrix involving the constant a(i) (and is
thus species dependent). The remaining vector terms come from the discretization of
their corresponding terms in (1.1), with Σ from above and the pump and leak terms
combined in jpl.

The error in the finite element solution uh(·, t) of the semi-discrete problem (3.2)
is measured in the L2(Ω)-norm. Under standard assumptions [16, 23], it has the form

(3.3) ‖uh(·, t)− u(·, t)‖
L2(Ω)

≤ C hq, as h→ 0,

where q > 0 for convergence and C denotes a generic constant of moderate size
independent of the maximum mesh spacing h := max{∆x,∆y,∆z}. To guarantee
the optimal convergence order for linear FEM shape functions of q = 2 in (3.3),
the source terms of (1.1) need to lie in the function space L2(Ω). This is not the
case for the application problem because of the Dirac delta distributions in JSR. In
[8], we have in the past argued heuristically and demonstrated computationally that
convergence does hold for linear basis functions also in this case, with a convergence

Long-Time Simulations on High Resolution Meshes 11

order of q = 0.5. Notice that we cannot expect better convergence for higher-order
elements, which explains our use of the low-order linear finite elements. More recent
work extends these heuristic arguments rigorously and presents numerical tests in all
space dimensions [6].

The simulations in [12] use the same finite elements, but on an unstructured
mesh of tetrahedra and hexahedra with about 200,000 DOFs. A small difference is
that their domain is of cylindrical shape with a diameter slightly smaller than our x-y-
cross-section. The significant difference is that their domain is really a cross-section of
the cell in the z-direction, encompassing only two x-y-planes of CRUs [12, pp. 96–97].

3.2. Time discretization. The next step in the method of lines approach is
the time discretization for (3.2), which becomes a standard initial value problem
M (ode)y′(t) = f (ode)(t, y) with mass matrix, if the unknown vectors u(i)(t) for all
species are concatenated into one vector y(t) of unknowns. This is one large problem
of neq = nsN non-linear ordinary differential equations (ODEs). For reaction-diffusion
equations with second-order spatial derivatives, the time step restrictions due to the
CFL condition are generally considered too severe to allow for explicit time stepping
methods. One might also try various splitting methods that decouple the ODEs and
solve the ODEs for only one species u(i)(t) at a time. In [8], we tried a very simple
splitting method by lagging the reaction terms in time, which also makes each smaller
ODE system linear for this application problem. It turns out that this approach has
degraded stability properties and might also not conserve mass as well as desired. In
the terminology of [17], which reports extensive tests of time stepping methods for
problems of the type considered here, a “fully implicit and balanced” is preferable,
in which the ODE system is discretized fully implicitly (and thus does not decouple
by species) and the discretization has all reaction terms at the same time. The same
applies to the pump and leak terms, however, the CRU term JSR is necessarily taken
explicitly to implement its probabilistic model.

The reaction-diffusion problem (1.1) is very smooth as such, hence when using
an implicit time stepping, we expect to be able to take fairly large time steps most
of the time. However, the JSR term in (2.1) also includes the Sx̂ functions at all
CRUs that may switch from 0 to 1 or vice versa at the spark times. At these times,
a small time step will be necessary to enable the non-linear and linear solvers to
converge and also to control the ODE error reasonably. Therefore, to reach the very
large final times desired, we must adopt some variable time stepping strategy with
automatic error control. It is understood that the theory behind any error control will
probably not be rigorously valid at the spark times due to the discontinuities in the
source terms. One approach would be to simply set ∆t to a small value manually at
these times. We are not using any special strategy at the moment, because the error
control appears to overcome the spark times successfully without it. We must now
expect that the computer code to be developed will be quite complex. With this the
case anyway, we decided to also implement a variable-order scheme with automatic
selection of the ODE method order. Concretely, we use the numerical differentiation
formulas (NDFk) with method order 1 ≤ k ≤ 5 from [21], which are generalizations
of the well-known BDFk methods and are the basis of MATLAB’s ode15s function
(www.mathworks.com).

We use relative and absolute tolerances of 10−6 and 10−8, respectively, on the
relative and absolute error estimators of the ODE method. In the application studies
in section 4.4, the steps vary widely in size, with small steps on the order of 10−5 ms
= 0.01 µs immediately after CRUs open or close; this means that the time scales

12 Matthias K. Gobbert

of channel openings or closings of about 1 µs [18] are well-resolved. But since the
reaction-diffusion system is very smooth away from these times, the time steps increase
steadily afterwards up to 10−1 ms, all the while the error controller ensures that
the total error incurred from the time-stepping remains bounded by the selected
tolerances. This high variation in step size allows the solver to reach the desired
final time of 1,000 ms in under 60,000 time steps. The most interesting observation
regarding the ODE solver is that the average method order is about 3, with typical
orders ranging from 2 to 4. This shows that we are definitely profiting significantly
from the variable order method, as compared to using fixed order methods such as
implicit Euler or the trapezoidal rule in time. This is the case in [12], where the
trapezoidal rule with a fixed step size of 0.01 without error controller takes 10,000
steps to reach the final time of 100 ms. Analogously, if we only computed to 100 ms,
we would need about 6,000 time steps and would still have a smaller error, owing
to the smaller time steps used, whenever opening or closing channels introduce the
largest variation in the solution.

3.3. The non-linear solver. One price of the fully implicit time discretization
is that we have to solve the fully coupled non-linear system of nsN equations that
arises from discretizing (3.2) in time. We choose the Newton method and follow the
control structure for managing error control and convergence in MATLAB’s ode15s
function. We also profit from the low-order spatial discretization on a uniform mesh
used, because we are able to compute analytically all matrices in (3.2) [8]. We use this
here to supply an analytic Jacobian to the Newton method. Since the matrix-vector
products in the Krylov subspace method used as linear solver below are implemented
in matrix-free form, this Jacobian is automatically evaluated at the current New-
ton step without any additional cost. This combination of a Newton method with
a Krylov subspace method as linear solver and a matrix-free Jacobian is known as
Jacobian-free Newton-Krylov (JFNK) method [14]. Besides the obvious memory sav-
ings associated with not storing any matrix, the up-to-date Jacobian also has the
potential to accelerate convergence of the non-linear solver.

A classical problem encountered when solving reaction-diffusion equations numer-
ically is the problem maintaining the non-negativity of the numerically computed con-
centrations. Clearly, they should be non-negative physically. Also, it can be rigorously
established that the unique true solution to the problem (1.1) along with its bound-
ary and initial conditions is non-negative [10]. In combination with a suitable spatial
discretization, such as ours, it can be shown that an implicit Euler time discretiza-
tion admits a non-negative solution [10]. Notice however that it is well-understood
that despite this fact, the Newton method does not necessarily find this non-negative
solution, even when started with the non-negative solution at the previous time step
as initial guess [10, 19].

Techniques such as clipping, in which negative solution components are set to
0, clearly degrade mass conservation properties, because these corrections add mass
whenever they increase a component from a negative value to zero. Recently, MAT-
LAB has introduced a non-negativity preserving feature in its ode15s function, dis-
cussed in [22]. Its idea is to modify the right-hand side function of the ODE problem
(3.2) such that it returns 0 instead of any negative slope; the intention is to have the
solution “follow the constraint” [22]. This technique is applied on the level of the ODE
solver, though. This means that the Newton steps themselves can still have negative
components. This can be a problem, for instance, if the right-hand side function of
the ODE involves square roots or other expressions that become invalid even for small

Long-Time Simulations on High Resolution Meshes 13

negative values. Therefore, we are using a line-search strategy for the Newton step: If
a negative solution component is encountered in a full Newton step, it determines the
smaller step size necessary to ensure non-negativity of all components [7]. This strat-
egy is also applied to the computation of the initial guess of each Newton solve, which
thus can still be based on the predictor formula usually used in the NDFk methods
[21], as opposed to having to use the solution at the previous time step. Analogously
to MATLAB’s strategy, our approach is free of cost if all components are non-negative
and only of modest cost otherwise. We note that we have run studies with and with-
out non-negativity preservation and found that it is not crucial for this application
problem, as none of the coefficient functions becomes invalid and the solution in fact
recovers on its own from negative components. We use a relatively tight tolerance of
10−8 in the Newton solver, but it still converges typically within 2 steps on average
due to the tight ODE tolerance and the good initial guess thus available. This agrees
with the observations in [12], where also 1 to 2 Newton steps are reported.

3.4. The linear solver. At each Newton step, we need to solve a linear system
of equations, also of size neq = nsN . Here, we profit directly from the fact that we are
able to compute analytically all matrices in (3.2), because this enables a matrix-free
implementation of products of vectors with any of these matrices, which is all that is
needed for each iteration of the Krylov subspace methods. The obvious advantage of
not storing any system matrix is its memory savings. For the finite element method
used, there would be 3 × 3 × 3 = 27 non-zero bands in the system matrix, each
requiring about neq = nsN entries to store, where Table 3.1 lists these numbers for
various mesh resolutions. Moreover, as already explained in the previous section,
another advantage of our matrix-free implementation is that the system matrix in
each iteration of the Newton method is automatically evaluated at the most recent
solution without any cost incurred for this feature.

Based on a decision tree in [3, p. 321] (non-symmetric system matrix, with ma-
trix transpose available) and backed up by tests of various Krylov subspace methods
in MATLAB, we choose the quasi minimum residual (QMR) method for our non-
symmetric problem. We usually use a tolerance of 10−3 on the relative residual and
a stagnation tolerance of 10−14 for the iterative linear solver.

We do not use any pre-conditioning presently, because a matrix-free precondi-
tioner that avoids parallel communications was not readily apparent. This is prob-
ably not a significant problem, since the tests show that the linear solver tends to
converge within fewer than 4 iterations on average due to the tight ODE and Newton
tolerances enforced. This compares reasonably to the results reported in [12], where a
GMRES method, with an approximate incomplete LU preconditioner on each parallel
subdomain, took fewer than 10 iterations.

3.5. Parallel implementation. Parallel computing is a crucial ingredient to
our code for two reasons: (i) It enables the simulations on the fine meshes listed in
Table 3.1 and (ii) it speeds up the computations sufficiently to enable simulations up
to large final times within a reasonable amount of wall clock time. The code is written
in C with MPI commands for the parallel communications for maximum portability.
We split the domain Ω into non-overlapping subdomains, with one on each of the
P parallel processes, by cutting in the long dimension of Ω. This choice makes the
x-y-planes of nodes whose values need to be exchanged between neighboring processes
as small as possible, i.e., is the optimal decomposition in a graph partitioning sense.
Our code is capable of using any number of parallel processors. The communications
between neighbors occur in each matrix-vector product and are implemented by non-

14 Matthias K. Gobbert

blocking MPI_Isend/MPI_Irecv commands. These have proven to be faster than
blocking communication commands on our system and as fast as any other MPI
point-to-point communication commands available. MPI_Allreduce commands are
needed for all norm computations as well as for various diagnostic quantities such as
minimum and maximum values of the solutions. The wall clock times are measured
using MPI_Barrier and MPI_Wtime in sequence. We use the genrand() function from
[15], with different seeds on each parallel process, to generate sequences of uniformly
distributed pseudo-random numbers.

The simulations reported below were performed on the cluster kali in the Depart-
ment of Mathematics and Statistics at the University of Maryland, Baltimore County.
This distributed-memory cluster has 32 compute nodes, each with two 2.0 GHz Intel
Xeon CPUs and 1 GB of memory. One of the compute nodes also serves as storage
node and is connected to a 0.5 TB RAID array. The compute nodes are connected by
a low-latency Myrinet interconnect as well as by a fast ethernet for file serving. An
additional management and user node connects the cluster to the outside network.
The cluster runs the Linux RedHat EL3 operating system, and the Intel compiler
suite is used for this code. See www.math.umbc.edu/~gobbert/kali for more infor-
mation. For the application studies, we typically use approximately 16 dual-processor
nodes. For the simulations up to the final time tfin = 1,000 ms in section 4.4, the code
ran about 2 to 4 hours for the 32 × 32 × 128 mesh and about 20 to 40 hours for the
64×64×256 mesh. Thus, for a simulation to only 100 ms, we would expect about 2 to
4 hours on 16 dual-processor nodes for the finer mesh. This is clearly faster than the
times in the range of 12 to 36 hours reported in [12] using comparable computational
resources of from 4 to 16 dual-processor nodes with processor speeds from 1 to 3 GHz.

4. Results. The numerical results are presented in four sections. The results in
section 4.1 analyze first what size of problem the parallel code will be able to solve and
that it does so efficiently. This is used in the following sections 4.2 and 4.3 because to
compute the reference solution on the finest mesh requires the parallel code. These
sections summarize results from convergence studies to confirm that the numerical
method is reliable, for a linear test problem with a smooth source term in section 4.2
and with a single calcium release unit in section 4.3. Finally, section 4.4 presents two
representative long time simulations of the full application problem up to the large
final time tfin = 1,000 that show that our method allows for the thorough investigation
of the given model.

4.1. Parallel Performance Results. The first purpose of parallel computing
is to enable the solution of larger problems. To demonstrate this ability, Table 4.1 (a)
estimates the amount of memory in MB per process required to solve the application
problem with ns = 3 species on the meshes listed in Table 3.1 that lists the degrees
of freedom neq for each mesh. Table 4.1 (a) is based on a count of the variables with
major memory usage in the code. This count reveals that the ODE solver uses 13+K
vectors of length neq. Here, 1 ≤ K ≤ 5 denotes a chosen maximum method order for
the NDFk, 1 ≤ k ≤ K, method, which is commonly K = 5; we use this value, as well,
but it has turned out that the application problem only uses orders up to 4, so we
could save a little memory here by selecting K smaller. By re-using 5 auxiliary vectors
from the ODE solver, the QMR method only requires 3 additional vectors. Thus the
total number of vectors of length neq in the code is 16 +K = 21 for K = 5. For each
of the lengths neq = nsN specified in Table 3.1 and with 8 B per double-precision
number, we obtain the total amount of memory needed for each mesh resolution in
the P = 1 processor column of Table 4.1 (a). We note already that resolutions finer

Long-Time Simulations on High Resolution Meshes 15

Table 4.1
Memory usage in MB per process for the application problem with ns = 3 species. The storage

requirements are 21 vectors, each of length neq from Table 3.1.

(a) Predicted memory usage in MB per process
P = 1 P = 2 P = 4 P = 8 P = 16 P = 32 P = 64

16× 16× 64 9 5 2 1 1 < 1 < 1
32× 32× 128 68 34 17 8 4 2 1
64× 64× 256 522 261 130 65 33 16 8

128× 128× 512 4103 2052 1026 513 256 128 64
256× 256× 1024 32540 16270 8135 4068 2034 1017 508

(b) Observed memory usage using dedicated nodes
P = 1 P = 2 P = 4 P = 8 P = 16 P = 32 P = 64

16× 16× 64 11 27 25 23 23 22 N/A
32× 32× 128 71 57 40 31 27 25 N/A
64× 64× 256 523 283 153 91 57 41 N/A

128× 128× 512 N/A N/A N/A 541 285 157 N/A
(c) Observed memory usage using non-dedicated nodes

P = 1 P = 2 P = 4 P = 8 P = 16 P = 32 P = 64
16× 16× 64 11 8 27 25 25 24 N/A

32× 32× 128 71 39 42 33 29 27 26
64× 64× 256 523 267 155 93 60 43 35

128× 128× 512 N/A N/A N/A N/A 287 159 98

than 64 × 64 × 256 cannot be accommodated on a single node of our system. This
memory gets divided into the P processors as shown in the following columns.

Tables 4.1 (b) and (c) list the memory in MB per process actually used by the
code for each case, as observed by monitoring the output of the Linux utility top
during the program execution. Table 4.1 (b) considers the case of ‘dedicated’ nodes,
that is, only one CPU per node is used with the second one idling. This dedicates the
entire memory of each node to the process and avoids any contention for resources of
the node among the 2 CPUs, but is also wasteful in the sense that half of the CPUs
reserved by the scheduler for the job are idling. Table 4.1 (c) shows the memory
usage observed in the case of ‘non-dedicated’ nodes, that is, with both CPUs on each
node being used. Thus, the two CPUs do not have dedicated memory, but rather
share the memory of the node and might also suffer from resource contention, e.g.,
for the use of the single Myrinet port on the node, of the memory of the node, and
of the bus that connects both CPUs to all components of the node. The results in
Tables 4.1 (b) and (c) are in agreement with the predictions in Table 4.1 (a), with a
modest amount of baseline usage associated probably with the use of MPI functions;
notice the much smaller overhead for the P = 1 cases. These considerations indicate
problems of which size we will be able to attack and it gives confidence in the proper
understanding of the code’s memory usage.

The second purpose of parallel computing is to solve a problem of a given size
faster. Ideally, a run using P processors should be P times as fast as the 1-processor
run. To quantify this, we first need to time the code. In the context of a true
parallel code for which the processors need to communicate with each other, the
correct measure of time is wall clock time TP when using P processors. This time
includes both the calculation time associated with arithmetic and similar operations

16 Matthias K. Gobbert

(a) Speedup (b) Efficiency

(c) Speedup (d) Efficiency

Fig. 4.1. (a) Observed speedup and (b) observed efficiency up to 32 processors using dedicated
nodes (only one CPU per node used). (c) Observed speedup and (d) observed efficiency up to
64 processors using non-dedicated nodes (both CPUs per node used). Notice the different scales on
the axes.

that are local to a CPU and the communication time associated with the sending and
receiving of messages between the parallel processes. For a fixed problem size, speedup
defined as SP := T1/TP quantifies how much faster the P -processor run is over the
1-processor one; for the 256×256×1024 mesh, the definition of speedup is modified to
SP := 8T8/TP , since the 8-processor case is the first one to fit in memory. The optimal
value of SP is P . Thus, by plotting SP vs. P , one can get a visual impression how
fast the actual performance deteriorates from the ideal one. Figure 4.1 (a) shows the
speedup observed for simulations with up to 32 dedicated nodes, as described above.
We see that the scalability of the code is excellent and gets better as the size of the
problem increases. For the finest mesh, the results plotted are better than optimal
by a small margin. This reflects the slight variability of timing results. Another way
to quantify how close the speedup SP is to its optimal value P is to plot efficiency
EP = SP /P vs. P , whose optimal value is 1. Even though Figure 4.1 (b) is directly
derived from the data in the previous plot, an efficiency plot is very useful to bring out
whether there is any abrupt deterioration of the parallel performance for small values
of P , where a speedup plot is too cluttered to read accurately. In Figure 4.1 (b), there
is no noticeable deterioration in that area; rather, the efficiency decreases slowly, but
is at very respectable levels of over 80% throughout for all meshes but the coarsest
one.

Long-Time Simulations on High Resolution Meshes 17

Figures 4.1 (c) and (d) contain the speedup and efficiency plots for the studies
with non-dedicated nodes associated with Table 4.1 (c). The speedup is nearly as
good up to 32 processors as for the dedicated nodes; notice the different scale on
the axes here. However, the efficiency plot clearly brings out an abrupt deterioration
of performance, as we go from 1 processor to 2 processors; this demonstrates the
usefulness of the efficiency plot, because this effect is not readily visible in the speedup
plot. This effect is caused by the code running on both CPUs on one node competing
for the node’s resources, in particular the single bus connecting both CPUs to memory.
We have been able to reproduce this effect by running two completely independent
serial jobs running on one node, so we conclude that the problem is not associated
with the Myrinet interconnect. This effect is quite typical on commodity clusters
because the two CPUs on one node indeed share all other components on the node
with each other. One might think now that therefore it would be best to use always
only one CPU per node, and this is true when comparing runs using the same total
number of CPUs. But in practice, a user often reserves nodes from the scheduler in
order to have dedicated access to their memory, and then a run using both CPUs per
node will use twice as many CPUs and be faster than one that only uses one CPU
per node, though not necessarily twice as fast. Hence, unless the memory of a node
cannot accommodate a run with using both CPUs, one should use both CPUs when
available. The parallel runs in the following sections use this approach.

4.2. Scalar test problem with smooth source term. We first consider
briefly the scalar linear test problem ut − ∇ · (∇u) = 0, already used to test an
earlier version of this code [4], obtained from (1.1) by setting ns = 1 to get a
scalar problem and then D = 1, a = 0, f ≡ 0, and all application-related func-
tions to 0. We consider this problem on the same domain as the application problem
Ω = (−X,X)×(−Y, Y)×(−Z,Z) with X = Y = 6.4 and Z = 32.0. This test problem
also continues to use the no flow boundary conditions of the application problem. The
initial condition is specified in agreement with the chosen true solution

u(x, y, z, t) =
1 + cos(λxx) e−Dxλ2

xt

2
1 + cos(λyy) e−Dyλ2

yt

2
1 + cos(λzz) e−Dzλ2

zt

2

using the notations λx = x/X, λy = y/Y , λz = z/Z, and x = (x, y, z) ∈ Ω.
The finite element solution for this problem using linear basis functions satisfies

(3.3) with q = 2 at every point in time t. Therefore, we expect the L2-error of
the numerical solution against the true solution to decrease by a factor 4, whenever
the mesh spacings ∆x, ∆y, ∆z are halved. This is born out by the L2-errors listed
in Table 4.2 (a) at three representative times t = 2, 3, 4. Notice that this confirms
that the ODE tolerances are chosen small enough to ensure that the spatial errors
dominate. To formally estimate the convergence order q in (3.3) from numerically
observed errors, one can use the estimation formula

(4.1) q(est) = log2

(
‖u2h(·, t)− u(·, t)‖

L2(Ω)

‖uh(·, t)− u(·, t)‖
L2(Ω)

)
.

The results of this formula are listed in the parentheses in Table 4.2 (a), and we note
them to be consistent with q = 2.

The above procedure uses the true solution u(x, t), which is not available in prac-
tice. An alternative in that case is to use the numerical solution on the finest possible
mesh as reference solution in place of u(x, t). We use here the numerical solution on the

18 Matthias K. Gobbert

Table 4.2
Convergence study for scalar test problem with smooth source term.

(a) Error on Ω against true solution (estimated convergence order)
t = 2 t = 3 t = 4

16× 16× 64 4.0121e–02 5.6277e–02 7.0185e–02
32× 32× 128 1.0100e–02 (1.990) 1.4148e–02 (1.992) 1.7650e–02 (1.992)
64× 64× 256 2.5074e–03 (2.010) 3.5055e–03 (2.013) 4.3869e–03 (2.008)

128× 128× 512 6.0012e–04 (2.063) 8.3361e–04 (2.072) 1.0591e–03 (2.050)

(b) Error on Ω against reference solution (estimated convergence order)
t = 2 t = 3 t = 4

16× 16× 64 3.9999e–02 5.6112e–02 6.9959e–02
32× 32× 128 9.9770e–03 (2.0033) 1.3984e–02 (2.0046) 1.7424e–02 (2.0054)
64× 64× 256 2.3849e–03 (2.0647) 3.3408e–03 (2.0655) 4.1608e–03 (2.0661)

128× 128× 512 4.7750e–04 (2.3204) 6.6881e–04 (2.3205) 8.3285e–04 (2.3207)

mesh 256×256×1024 with maximum mesh spacing h = max{∆x,∆y,∆z} = 0.0625.
The results of the observed errors and the convergence order estimates in Table 4.2 (b)
show agreement with the results based on the true solution above. The purpose of
these tests was to validate the choice of ODE tolerances, to carefully test the code,
and to confirm that the post-processing procedure to estimate the convergence order
q(est) only using available numerical data is reliable.

4.3. Scalar test problem with non-smooth source term. In this section,
we solve the same scalar test problem as in the previous section, except that the right-
hand side of (1.1) contains now the term JSR from (2.1) on a CRU lattice of one single
CRU centered at x = 0 that opens at t = 1 and stays open for the duration of the
simulation. We again use the domain of the application problem in this test. Notice
that this is a scalar problem containing only the calcium equation; since the reaction
terms are 0, there is no coupling to the other species. The initial condition is now
u = 0.1, also as in the application problem. In the terminology of the application,
we have 1 centered CRU in the cell that starts firing at t = 1 and stays open for
the duration of the test. For this case, the classical finite element theory does not
apply, but considerations and computational results in [6, 8] lead us to expect q = 0.5
in (3.3). Since no true solution is available for this problem on a finite domain, the
errors in Table 4.3 (a) against a reference solution on the finest mesh 256×256×1024
with maximum mesh spacing h = max{∆x,∆y,∆z} = 0.0625. are computed by the
post-processing procedure tested in the previous section. They do converge, but it is
hard to tell by what ratio the errors decrease. But the q(est) in the parentheses show
that the errors decrease with a convergence order that is consistent with the expected
number q = 0.5.

Another way to check convergence is possible by combining the results of Ta-
bles 4.3 (b) and (c). Table 4.3 (b) considers the L2-norm on the domain Ω with a
small area centered about the calcium release unit removed. Specifically, let Ω0 :=
(−εx, εx)× (−εy, εy)× (−εz, εz) with εx, εy, εz chosen as the mesh spacings ∆x, ∆y,
∆z of the coarsest mesh 16 × 16 × 64, then we consider the L2(Ω\Ω0)-norm. The
errors in this norm listed in Table 4.3 (b) clearly converge quadratically again. Since
we have removed Ω0 from consideration, the question remains whether the solution at
the center of the domain, where the single CRU is located can be trusted. We answer
this question by considering the total mass in the system mh(t) :=

∫
Ω
uh(x, t) dx at

time t; we indicate by the subscript h that mh(t) is the mass associated with the

Long-Time Simulations on High Resolution Meshes 19

Table 4.3
Convergence study for scalar test problem with non-smooth source term.

(a) Error on Ω against reference solution (estimated convergence order)
t = 2 t = 3 t = 4

16× 16× 64 1.8651e+03 1.8503e+03 1.8415e+03
32× 32× 128 1.7120e+03 (0.124) 1.6974e+03 (0.124) 1.6951e+03 (0.120)
64× 64× 256 1.4537e+03 (0.236) 1.4531e+03 (0.224) 1.4529e+03 (0.222)

128× 128× 512 9.6843e+02 (0.586) 9.6832e+02 (0.586) 9.6829e+02 (0.585)

(b) Error on Ω\Ω0 against reference solution (estimated convergence order)
t = 2 t = 3 t = 4

16× 16× 64 2.6478e–01 9.8039e–01 2.2494e+00
32× 32× 128 1.2526e–01 (1.080) 3.7741e–01 (1.377) 6.6924e–01 (1.749)
64× 64× 256 3.7324e–02 (1.747) 1.1385e–01 (1.729) 1.8863e–01 (1.827)

128× 128× 512 8.0971e–03 (2.205) 2.3743e–02 (2.262) 3.8368e–02 (2.298)

(c) Error in species mass (estimated convergence order)
t = 2 t = 3 t = 4

16× 16× 64 1.4332e+00 3.6992e+00 4.4979e+00
32× 32× 128 1.2033e+00 (0.252) 1.2032e+00 (1.620) 1.2032e+00 (1.902)
64× 64× 256 3.1122e–01 (1.951) 3.1111e–01 (1.951) 3.1110e–01 (1.951)

128× 128× 512 7.8784e–02 (1.982) 7.8737e–02 (1.982) 7.8707e–02 (1.983)

numerical solution uh on mesh Ωh. For this scalar problem with no flow boundary
conditions and the release unit as the only source, we know that this mass should
equal the mass at the initial time m(0) =

∫
Ω
uini(x) dx plus the mass released into the

cell up to time t given by
∫ t

0
σ nopen(t′) dt′, where nopen(t′) denotes the number of open

CRUs at time t′. Since the sole CRU in this system opens at t = 1, the latter integral
is equal to (t− 1)σ for t ≥ 1. Table 4.3 (c) lists the errors |mh(t)−m(0)− (t− 1)σ|
for t = 2, 3, 4, and we observe quadratic convergence for this quantity; note that
the apparently large values for the mass error must be viewed in the context of the
large size of the domain which is (12.8)(12.8)(64.0) = 10,485.76. Thus, we conclude
from Table 4.3 (c) that mass is conserved by the numerical method, which shows
together with the convergence on Ω\Ω0 in Table 4.3 (b) that also the error at x = 0
is converging.

4.4. Case studies for the full application problem. In this section, we
present two case studies for the full application problem described in section 2. Recall
from section 2.1 that the calcium current through a CRU, ISR, determines the amount
of calcium released into the cell through an open CRU and thus influences whether
a calcium wave self-organizes or not [12]. We consider here the values ISR = 10 pA
and ISR = 20 pA resulting in the corresponding values of σ in Table 2.1. The initial
concentration of calcium is chosen at rest, u(0) = 0.1 µM, throughout the cell and
the other species concentrations computed such that r(i) = 0 for all i. Also, we have
Jleak = Jpump for u(0) = 0.1 µM. Initially, all CRUs are closed, hence, JSR = 0. The
numerical parameters used for the studies are specified and discussed in section 3.

Since no CRUs are triggered artificially, the first test for the model is whether any
CRUs will open randomly and whether the diffusion of the calcium released causes
any neighboring CRUs to open. Figures 4.2 and 4.3 show results for the case study
with ISR = 10 pA. Figure 4.2 shows the plots indicating any CRU open in the domain
at ten selected times from 100 ms to 1,000 ms. Each dot indicates that the CRU at the
spatial point is open (and does not represent the value of any quantity). We observe

20 Matthias K. Gobbert

that a number of CRUs open randomly over time, thus the probability mechanism of
the model works. However, no systematic opening of CRUs develops. Figure 4.3 shows
isosurface plots of the calcium concentration u(0) throughout the cell with a critical
isolevel of 65 µM indicated by each surface. It is clear that the concentration around
open CRUs does increase. It then diffuses and thus the concentration in the area falls
below the critical isolevel again. We notice that the level of calcium concentration
does not rise high enough anywhere to cause more CRUs in the area to open.

Figures 4.4 and 4.5 show results for the case study with ISR = 20 pA. We see in
Figure 4.4 that at time t = 100 ms a number of CRUs are open without any discernible
pattern. But by t = 200 ms, two waves of CRUs opening have self-organized in this
case. At some time between 100 and 200 ms, the concentration near the left end
of the domain as well as just to the right of center at the top has reached higher
levels that caused several neighboring CRUs to open at the same time. In turn, more
neighboring CRUs of those opened and by t = 200 ms we have one wave traveling
left to right with its front at about z = −12 and a second wave expanding from a
center at about (x, y, z) = (5, 5, 5). The formation of the waves is clearly visible in the
movies available at the website mentioned at the end of section 1. After the CRUs,
where the two waves started, have been closed for a time period of tclosed = 100 ms,
they open again and re-start a wave similar to each first one. This process is repeated
several times throughout the simulation. The reason why several of the snapshots
look remarkably similar is that the time between them of 100 ms approximates the
period of time between wave initiations of topen + tclosed = 105 ms. These results
demonstrate that the model at this higher value of current ISR = 20 pA promotes
the self-organization of waves, as intended by the model. Notice that it took some
time of between 100 and 200 ms for the first wave to form, which demonstrates
the importance of being able to perform long-time simulations for this application
problem. Even more so, the effect of waves traveling through the cell several times
could only be seen by simulating to a large final time such as 1,000 ms.

Figure 4.5 shows isosurface plots of the calcium concentration u(0) throughout the
cell with a critical isolevel of 65 µM. We see at t = 100 ms that the concentration has
crossed this isolevel only around a few CRUs that happen to be open. By t = 200 ms
however, in the wake of both waves, we see significantly increased levels of calcium,
which by t = 400 ms have reached levels above the critical isolevel throughout the
domain. Clearly, the model exhibits the feedback mechanism of open CRUs releasing
calcium and the diffused calcium in turn promoting the initiation of a new wave
after the time period of closure tclosed has passed. In fact, we note from our log
files that about 300 CRUs are open at any given moment in time for all times t ≥
200 ms. Plots of the maximum concentration vs. time for each species (not shown
here) demonstrate that the calcium concentration grows without bound and the other
free species are practically completely consumed. It appears that this behavior is not
physical, because the calcium concentration should not grow without bound in a cell.
This indicates that some effect is missing from the model or coefficient values being
not appropriate. Notice here that this fact is simply not apparent until simulations to
times significantly larger than tclosed = 100 ms are performed, because we have to wait
for waves to travel through the cell several times to see this effect. This demonstrates
the key advantage of our simulation platform for the validation of models for this
application problem.

Long-Time Simulations on High Resolution Meshes 21

t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Fig. 4.2. Open calcium release units throughout the cell with ISR = 10 pA.

22 Matthias K. Gobbert

t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Fig. 4.3. Isosurface plots of the calcium concentration throughout the cell with ISR = 10 pA.

Long-Time Simulations on High Resolution Meshes 23

t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Fig. 4.4. Open calcium release units throughout the cell with ISR = 20 pA.

24 Matthias K. Gobbert

t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Fig. 4.5. Isosurface plots of the calcium concentration throughout the cell with ISR = 20 pA.

Long-Time Simulations on High Resolution Meshes 25

5. Conclusions. We consider a model for calcium waves in a heart cell proposed
in [11, 12, 13]. To validate this model and recreate the conditions of an experiment,
it is necessary to be able to perform simulations up to large final times, to allow for
waves to re-generate several times, and on a domain that encompasses the entire cell.
This requires a high resolution mesh to adequately resolve the given lattice of calcium
release units throughout the cell. Section 3 presents all choices for the development
of a simulation platform for this model from the ground up. The key to our ability to
perform the desired long-time simulations on a high resolution mesh are the use of a
variable-order, variable step size ODE solver and the matrix-free implementation of
all linear solves.

The code is applied to the application problem in section 4.4. The results show
that the model successfully allows for the self-organization of a wave at a random
location in the cell, without any artificial triggering of calcium release. To see this
result, it was already necessary to simulate up to final times over 100 ms. But to
see waves re-generate and travel through the cell several times, we need to be able to
reach final times of at least 1,000 ms. This is possible for our special-purpose code,
and the results indicate that the model, in the form stated in [11, 12, 13] and with the
model parameters available from these references, may eventually accumulate more
calcium in the cell than is physically reasonable. This observation can only be made
because our code can compute to sufficiently large final times.

We note that our application studies follow careful convergence studies in sec-
tions 4.2 and 4.3 for a scalar linear test problem with smooth and non-smooth source
term, respectively, designed to evaluate the accuracy and reliability of our method
and its implementation as thoroughly as possible. The results also demonstrate that
the method converges and results on a coarser uniform mesh gives reliable answers
for the physical effect under consideration. Notice that a convergence study for the
full application problem including the probabilistic term would be problematic, be-
cause its behavior is influenced by the random number generator and also by the
calcium concentration, which is not exactly the same at different resolutions. Finally,
section 4.1 demonstrated the effectiveness of using parallel computing to solve this
large problem and the scalability of our implementation. In summary, our simulation
platform is demonstrated to be able to solve the given model reliably and within a
reasonable time frame on actually available computational resources, thus it is per-
fectly suited to investigate which parts of the model need improvements so that its
results better match experimental results.

In section 3, we also include a number of comparisons to the simulator used in
[12]. One difference between [12] and this work is actually the use of a general-purpose
code vs. the development of a special-purpose one. This distinction is independent
of the mesh used, because, as long as the mesh is regular in some way and fixed in
time, we can still compute all matrices analytically and implement all linear solves in
matrix-free form, which is one key to the efficiency of our code. But we believe this
is not the direction of most promise to pursue, because this still does not take full
advantage of the knowledge about the application: A fine mesh around the location of
a calcium release unit is needed only if that release unit is open; not when it is closed,
as is the case far most of the time (compare topen = 5 ms with tclosed = 100 ms). So,
the most significant advance in efficiency could be achieved by an automatic mesh
refinement and coarsening strategy that uses a finer mesh only around those release
units that are open. In this context, the current simulation platform can serve to
produce reference solutions for any more sophisticated code.

26 Matthias K. Gobbert

REFERENCES

[1] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, B. F. Smith, and H. Zhang, PETSc users manual, Tech. Rep. ANL–95/11 —
Revision 2.1.5, Argonne National Laboratory, 2004.

[2] Y. Chen-Izu, S. L. McCulle, C. W. Ward, C. Soeller, B. M. Allen, C. Rabang, M. B.
Cannell, C. W. Balke, and L. T. Izu, Three-dimensional distribution of ryanodine
receptor clusters in cardiac myocytes, Biophys. J., 91 (2006), pp. 1–13.

[3] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
[4] M. K. Gobbert, Configuration and performance of a Beowulf cluster for large-scale scientific

simulations, Comput. Sci. Eng., 7 (2005), pp. 14–26.
[5] , A technique for the quantitative assessment of the solution quality on particular finite

elements in COMSOL Multiphysics, in Proceedings of the COMSOL Conference 2007,
Boston, MA, V. Dravid, ed., 2007, pp. 267–272.

[6] M. K. Gobbert, M. Kruž́ık, and T. I. Seidman, Numerical approximation of a heat equation
with measure-valued data. In preparation.

[7] M. K. Gobbert, M. Muscedere, T. I. Seidman, and R. J. Spiteri, A non-negativity pre-
serving Newton method for high-order implicit time stepping. Submitted.

[8] A. L. Hanhart, M. K. Gobbert, and L. T. Izu, A memory-efficient finite element method for
systems of reaction-diffusion equations with non-smooth forcing, J. Comput. Appl. Math.,
169 (2004), pp. 431–458.

[9] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers, ACM Trans. Math. Software, 31 (2005), pp. 363–396.

[10] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations, vol. 33 of Springer Series in Computational Mathematics,
Springer-Verlag, 2003.

[11] L. T. Izu, J. R. H. Mauban, C. W. Balke, and W. G. Wier, Large currents generate cardiac
Ca2+ sparks, Biophys. J., 80 (2001), pp. 88–102.

[12] L. T. Izu, S. A. Means, J. N. Shadid, Y. Chen-Izu, and C. W. Balke, Interplay of ryanodine
receptor distribution and calcium dynamics, Biophys. J., 91 (2006), pp. 95–112.

[13] L. T. Izu, W. G. Wier, and C. W. Balke, Evolution of cardiac calcium waves from stochastic
calcium sparks, Biophys. J., 80 (2001), pp. 103–120.

[14] D. A. Knoll and D. E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches
and applications, J. Comput. Phys., 193 (2004), pp. 357–397.

[15] M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Transactions on Modeling and Computer
Simulation, 8 (1998), pp. 3–30.

[16] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations,
vol. 23 of Springer Series in Computational Mathematics, Springer-Verlag, 1994.

[17] D. L. Ropp, J. N. Shadid, and C. C. Ober, Studies of the accuracy of time integration
methods for reaction-diffusion equations, J. Comput. Phys., 194 (2004), pp. 544–574.

[18] S. Rüdiger, J. W. Shuai, W. Huisinga, C. Nagaiah, G. Warnecke, I. Parker, and M. Fal-
cke, Hybrid stochastic and deterministic simulations of calcium blips, Biophys. J., 93
(2007), pp. 1847–1857.

[19] A. Sandu, Positive numerical integration methods for chemical kinetic systems, J. Comput.
Phys., 170 (2001), pp. 589–602.

[20] J. Shadid, A. Salinger, R. Schmidt, T. Smith, S. Hutchinson, G. Hennigan, K. Devine,
and H. Moffat, MPSalsa: A finite element computer program for reacting flow problems;
part 1 — theoretical development, Tech. Rep. SAND98–2864, Sandia National Laboratories,
1998.

[21] L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18
(1997), pp. 1–22.

[22] L. F. Shampine, S. Thompson, J. A. Kierzenka, and G. D. Byrne, Non-negative solutions
of ODEs, Appl. Math. Comput., 170 (2005), pp. 556–569.

[23] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, vol. 25 of Springer
Series in Computational Mathematics, Springer-Verlag, second ed., 2006.

