
Beowulf clusters in virtually every price
range are readily available today for
purchase in fully integrated form from
a large variety of vendors. At the Uni-

versity of Maryland, Baltimore County (UMBC),
my colleagues and I bought a medium-sized 64-
processor cluster with high-performance inter-
connect and extended disk storage from IBM.
The cluster has several critical components, and
I demonstrate their roles using a prototype prob-
lem from the numerical solution of time-
dependent partial differential equations (PDEs).
I selected this problem to show how judiciously
combining a numerical algorithm and its efficient
implementation with the right hardware (in this
case, the Beowulf cluster) can achieve parallel
computing’s two fundamental goals: to solve
problems faster and to solve larger problems than
we can on a serial computer.

System Configuration
Our cluster—called Kali after the multiarmed In-
dian mother goddess—is an IBM 1350 xSeries clus-

ter with 32 dual-processor nodes, a high-
performance Myrinet interconnect for parallel
computations, and a 0.5-Tbyte central disk array
(www.ibm.com/servers/eserver/clusters/). We run
it with a version of the Linux operating system. We
use only one possible commodity cluster configu-
ration and describe its use in one type of applica-
tion area; however, much more powerful systems
share the same conceptual setup. You can find more
information about Kali at www.math.umbc.edu/
~gobbert/kali/.

All CPUs are Intel Xeon 2.0-GHz processors.
Beowulf clusters became affordable in recent years
because these CPUs are commodity products, mass-
produced for the PC market. To obtain the best per-
formance from their integration into a parallel com-
puter, though, many other vital components must be
specialized and are by no means “commodity” com-
ponents (they’re not cheap, either).

One example of vital specialized hardware is the
Myrinet interconnect from Myricom (www.
myricom.com). Its key features are much-reduced
latency (time delay for a communication to start)
compared to conventional Ethernet and a high vol-
ume of throughput, rated at 2 Gbits per second
(Gbps). Our system includes a 32-port Myrinet
switch composed of four blades with eight ports
each. The ports on each blade and the four blades
themselves are connected via crossbar links.

We use the Myrinet interconnect for communi-

14 COMPUTING IN SCIENCE & ENGINEERING

CONFIGURATION AND PERFORMANCE
OF A BEOWULF CLUSTER FOR LARGE-
SCALE SCIENTIFIC SIMULATIONS

C L U S T E R
C O M P U T I N G

To achieve optimal performance on a Beowulf cluster for large-scale scientific simulations,
it’s necessary to combine the right numerical method with its efficient implementation to
exploit the cluster’s critical high-performance components. This process is demonstrated
using a simple but prototypical problem of solving a time-dependent partial differential
equation.

MATTHIAS K. GOBBERT

University of Maryland, Baltimore County

1521-9615/05/$20.00 © 2005 IEEE

Copublished by the IEEE CS and the AIP

MARCH/APRIL 2005 15

cations in a parallel code. All other network traf-
fic—for example, file serving—travels over a
secondary network of conventional 100-Mbits-
per-second (Mbps) Ethernet. Figure 1 shows a
schematic of the cluster nodes. The 32 dual-
processor computational nodes available for par-
allel computations (shown inside the red dashed
box) are labeled node001, node002, …,
node031, and storage1. The secondary Ether-
net network is shown in blue and purple and con-
nects all the nodes. Although all computational
nodes have two Intel CPUs, storage1 is a special
storage node because it connects to the main 0.5-
Tbyte disk array. This node efficiently serves files
to all other nodes using a special, faster 1-Gbps
port (shown in purple in the figure) in the Ether-
net switch. Additionally, reflecting the storage
node’s importance to the cluster operation, it has
4 Gbytes of memory, two 36.4-Gbyte hard drives
(the second one mirroring the first for fail-safe re-
dundancy), and two hot-swappable power supplies.
The other 31 compute nodes proper have 1 Gbyte of
memory and an 18.2-Gbyte local hard drive. This
cluster constitutes a distributed-memory parallel
computer—each node’s memory can be accessed
only by the CPUs on that node.

In principle, considerable disk space is clearly
available across the compute nodes—more than 32
times 18.2 Gbytes, or 582.4 Gbytes, although parts
of those disks contain operating system utilities,
software locally installed on the nodes for better
performance, and network and management utili-
ties. Central disk storage—in the form of the 0.5-
Tbyte redundant array of independent disks
(RAID) connected to the storage node—allows
more space for either applications driven by large
input data or those with large output files, and pro-
vides user convenience by allowing offline post-
processing in serial on the user node. This RAID
comprises eight 73.4-Gbyte Small Computer Sys-
tem Interface (SCSI) hard disks, one of which is a
hot-swappable spare. The files are stored in
striped form—that is, each file is split into pieces
that are distributed across the hard drives, speed-
ing up disk access significantly by allowing reads
to and writes from all drives to be performed in
parallel. The use of checkbits, which allow for
data recovery in case one of the seven remaining
disks fails, increases the disk space required to
store a file and thus reduces the capacity of the
RAID actually available by the equivalent of
roughly another hard drive. Thus, we actually
have about 367 Gbytes of usable disk space on
the RAID, after we also deduct a spool partition
for the tape backup system. This setup is designed

for a high degree of data safety—up to two hard
drives can fail before you have to resort to the tape
backup system. Although physically in its own case,
the RAID is directly connected to the storage
node’s bus via a SCSI controller (shown in brown
in Figure 1). Another vital benefit of a central stor-
age device is that it lets us effectively manage tape
backups. To accommodate the standard tape ca-
pacity of 100 Mbytes, the RAID’s space is subdi-
vided into a 100-Mbyte /home partition, which is
backed up, and a 267-Mbyte /scratch partition,
which is not.

The management and user node—mgtnode in
Figure 1—is a dual-processor node with the same-
sized memory and fail-safe dual hard drive and
power supply setup as the storage node. However,
the management and user node has a connection to
the outside network and is connected to all other
nodes only via the Ethernet switch. Like the stor-
age node, mgtnode uses a 1-Gbps connection
(shown in purple in Figure 1) to connect to the
other nodes. In addition to performing system
management, such as booting the entire system,
mgtnode doubles as Kali’s user node. Users edit
and compile their programs, submit them to a
scheduler, and postprocess results graphically, ac-
cessing the control RAID via the special, faster
ports in the Ethernet switch, outside of the com-
putational network.

Reviewing the network design, the Myrinet in-
terconnect carries the interprocessor communica-
tions within the parallel code, whereas the Ether-
net switch lets any node connect directly to the
RAID, including the management node. So, when
a job runs in parallel on several computational

node001 node031node002 mgtnode

Myrinet switch

Ethernet switch

High-performance network (2 Gbps)

10
0

M
bp

s

10
0

M
bp

s

10
0

M
bp

s

10
0

M
bp

s

1
G

bp
s

1
G

bp
s

(0.5 Tbytes)
RAID

Outside network

storage1

Figure 1. Schematic of the network connections and their connection
speeds. The high-performance computational network is shown in red.
The secondary Ethernet network, used to serve files from the RAID, is
shown in blue and purple. The management network isn’t shown.

16 COMPUTING IN SCIENCE & ENGINEERING

nodes, including, potentially, the storage node, the
code’s internal communications occur via the
Myrinet, whereas the code accesses input and out-
put files on the RAID via the Ethernet. After com-
pleting the job, the user performs the postprocess-
ing in serial on the user node, outside the
computational network. For alternative choices
for the configuration of the cluster, see the “Al-
ternative Setups” sidebar.

Physical Arrangement
Figure 2 shows a schematic of the two racks con-
taining all the components. We received each
rack essentially fully assembled and we only
needed to connect the networks between them.
The lettering H5 and H6 indicates their place-
ment in the operations room of our Office of In-
formation Technology, which houses Kali. All
compute nodes are stacked in the H5 rack, with
the Ethernet switch located centrally, so the com-
pute nodes can easily connect to the Ethernet.
Due to their low height of 1 U—a height unit
equivalent to 1.75 inches or 44.5 millimeters—
some space remains unused at the top of the 42-
U-high rack. The remaining components are lo-
cated in the H6 rack, with the Myrinet switch at
the bottom and the storage node directly below
the RAID. Because they hold more than one hard

drive, both storage1 and mgtnode are 2-U-
high nodes. Still, significant space remains un-
used in the H6 rack.

Figure 3a shows the thin compute nodes
node001 through node031 stacked up in rack H5,
whereas Figure 3b confirms that several slots in
rack H6 remain empty. The view of the back of
rack H5 in Figure 3c shows nodes node001
through node020 located physically below the
Ethernet switch. The gray cables around the out-
side are the Ethernet cables; black cables connect
each node directly to its neighbor in the center.
The latter are part of the third—so far, neglected—
cluster network; this management network is re-
sponsible for booting the computational nodes in
a daisy-chain fashion from the management node,
starting at node001 and moving up. The red fiber-
optic cables in the picture are the Myrinet cables;
they collect from each node downward into the
floor. Figure 3d shows the back of rack H6, where
the Myrinet cables emerge from the floor again and
connect to the Myrinet switch. You can see the four
horizontal blades in the switch, each containing
eight ports. Above the Myrinet switch is the stor-
age node and the RAID.

Prototype Problem
As I’ve mentioned, two fundamental reasons exist

Alternative Setups

W e did have alternative choices for the cluster’s
setup. On one hand, we could have dispensed

with the mgtnode outside of the Myrinet universe and in-
stead integrated its functions into a combined storage,
management, and user node. This would let us access the
redundant array of independent disks (RAID) directly from
the user node. However, because this node is often busy
with multiple users compiling code or postprocessing data,
we’d usually need to exclude it from parallel computations,
effectively reducing the cluster size to 31 computational
nodes. Thus, it’s advantageous to dedicate an additional
node to the management and user tasks, giving us a true
64-processor cluster. Extending the Myrinet network to this
node would be very costly, because we’d need a larger, 64-
port Myrinet switch.

On the other hand, we could have connected the RAID
to the mgtnode to give the user node direct access to
the user data for postprocessing. This wouldn’t change
the network usage. However, it would have robbed us of
one additional option we wanted for future research on
code performance, because a second way exists in our

setup for transferring data from a compute node to
the RAID: We can dedicate the process running on
storage1 to be a so-called I/O process by making it
the only process among one job’s parallel processes that
accesses the (directly connected) RAID and that commu-
nicates the data to and from the other processes working
on the job via the Myrinet. This might conceivably lead to
significant performance improvements for applications
with large I/O. However, this approach is more cumber-
some to program compared to making disk access
available directly via the Ethernet, and it makes the simul-
taneous running of several jobs on the cluster more com-
plicated to manage because only two jobs can use the
storage node simultaneously (we want to run only as
many processes on the storage node as there are CPUs
available). Thus, our codes don’t presently use this fea-
ture. Additionally, another way to speed up the I/O from
individual computational nodes is to use their local hard
drives; however, if, for instance, graphical postprocessing
of data is intended, we’d need to collect the data at some
point on the RAID anyhow, so we don’t currently use the
local hard drives for this purpose.

MARCH/APRIL 2005 17

for using parallel computing: First, using several
processors in parallel to attack a problem should
help obtain the solution more quickly. Second, and
more fundamentally, distributing a problem onto
several processors can help solve a problem that’s
too large for a serial machine. The following pro-
totype problem will demonstrate both these ad-
vantages. The application concerns the flow of cal-
cium ions in a single human heart cell.1,2 The
model consists of a system of reaction-diffusion
equations with nonlinear reaction terms and a
highly nonsmooth source term with a probabilistic
component in the calcium equation. The simula-
tion domain � represents one heart cell, which we
can acceptably model as a brick � := (–X, X) � (–Y,
Y) � (–Z, Z) � �3 with one longer dimension Z >
X = Y. Realistic numbers are X = Y = 6.4 and Z =
32.0, measured in micrometers.

To focus on parallel computing, let’s consider a
simpler prototype problem that neglects the reac-
tions between the species and the calcium source but
retains the realistic diffusive transport of the calcium
ions. Whenever choices are required in the follow-
ing, we’ll let the application problem guide us. In ef-
fect, the study reported here is a thorough test of our
method’s core and its implementation.

Find u(x, y, z, t) for all (x, y, z) � � and 0 � t � T
such that

in � for 0 < t � T, (1a)

n • (D∇u) � 0 on �� for 0 < t � T, (1b)

u = uini(x, y, z) in � at t = 0, (1c)

where n = n(x, y, z) denotes the unit outward nor-
mal vector at surface point (x, y, z) of the domain
boundary ��. Here, T denotes the final time for
the simulations, and the diagonal matrix D =
diag(Dx, Dy , Dz) consists of the diffusion coeffi-
cients in the three coordinate directions. To model
the diffusion behavior realistically, we pick the
same values as in the application example Dx = Dy
= 0.15 and Dz = 0.30 in micrometers squared over
milliseconds. As the initial distribution, we pick the
smooth function

uini(x, y, z) = .

To get an intuitive feel for the solution behavior,
observe that the PDE in Equation 1a has no

source term and that we prescribe no-flow
boundary conditions on the entire boundary in
Equation 1b. Hence, the chemical will diffuse
through the domain without escaping from it,
starting from the nonuniform initial distribution
(Equation 1c), until the chemical reaches a steady
state, constant throughout the cell. Because the
system conserves mass, we can analytically com-
pute the constant steady-state solution as uSS �
1/8 for future reference.

We can obtain the true solution for this linear
constant-coefficient problem on a rectangular do-
main analytically, for instance, by separation of
variables and Fourier analysis. We give this as

(2)

where �x = �/X, �y = �/Y, and �z = �/Z. Now, we
can use this true solution to gauge a priori what
value of the final time T is suitable for approaching
the steady-state solution. We reach this steady state
when all exponential function terms in Equation 2
become vanishingly small. Given the realistic val-

u x y z t
x D tx x x

y

(, , ,)
cos()exp()

cos(

=
+ −

×
+

1
2

1

2λ λ

λ yy D t

z D t

y y

z z z

)exp()

cos()exp()
,

−

×
+ −

λ

λ λ

2

2
2

1
2

cos cos cos2 2 2
2 2 2
π π πx
X

y
Y

z
Z



















∂
∂

− ∇ ⋅ ∇ =u
t

D u() 0

node001

node002

node003

node031

node030

node020

node021

Rack H6

mgtnode

Screen and keyboard

RAID (0.5 Tbytes)

Ethernet switch

Myrinet switch

storage1

Rack H5

Figure 2. A schematic of the Kali components’
physical arrangement in their two racks. H5 holds all
the compute nodes and the Ethernet switch,
whereas H6 holds the remaining components,
including the Myrinet switch, the storage node, and
the user node.

18 COMPUTING IN SCIENCE & ENGINEERING

ues chosen already for the diffusion coefficients and
the domain size, the choice T = 1,000.0 millisec-
onds is the smallest suitable value because then the
largest exponential term is exp(–Dz�z

2t) 	 0.055.
Although the application problem doesn’t tend to
a steady state, this time scale is still interesting to
study because it reveals the underlying time scale
associated with the diffusion in the system without
source and reaction times.

Numerical Method
We’ve demonstrated in previous work that a
method-of-lines approach using finite elements for
the spatial discretization converges for the applica-
tion problem,3 and we continue using it here. Gen-

eral background on finite-element methods for
time-dependent PDEs is available.4,5 To use as lit-
tle memory as possible, we restrict ourselves to
nodal basis functions that are linear in each coor-
dinate direction. Because the domain � is itself a
brick, it makes sense to discretize it uniformly into
smaller brick elements of volume (
x)(
y)(
z),
where
x,
y, and
z denote the mesh spacings in
the three coordinate directions.

One challenge for numerically solving this ap-
plication problem with the required accuracy re-
sults from the need for an extremely high grid
resolution for the domain. Calcium ions enter the
cell through calcium channels, modeled on this
length scale as point sources at calcium release
units. These CRUs are distributed throughout
the cell at distances of
xCRU =
yCRU = 0.8 and

zCRU = 2.0, measured in micrometers.2 This
gives a CRU lattice that’s 16 � 16 � 32 in our cell
domain �. Using the rule of thumb that we wish
to place at least eight mesh points between
CRUs, we want to use at least 128 elements in the
x and y directions and 256 in the z direction.
However, to further guarantee that the mesh
spacing
z := 2Z/Nz is approximately equal to
x
=
y, we increase the resolution in the z direction
and consider a mesh with 128 � 128 � 512 ele-
ments for the application problem.

To understand this resolution’s complexity, let’s
compute the number of degrees of freedom N,
finite-element terminology for the number of un-
knowns the code must determine. In the method-
of-lines approach, we’re referring to the spatial dis-
cretization here because we must determine these
unknowns at every time step. Denote by Nx = Ny =
129 and Nz = 513 the number of points on which
the solution is based for a mesh with 128 � 128 �
512 elements. This gives N = (Nx)(Ny)(Nz) =
8,536,833, or more thn 8.5 million unknowns. If
the code stores each unknown as one double-
precision number using 8 bytes of memory per
number, it takes roughly 65 Mbytes to store the so-
lution in memory. Table 1 shows these and other
predictions for four possible mesh resolutions. We
can see already that for the finest resolution of 256
� 256 � 1,024, storing its solution with over 67.7
million unknowns requires roughly 517 Mbytes, a
formidable number even on a workstation with, say,
1 Gbyte of memory.

A method-of-lines discretization of a PDE such
as ours results in a stiff system of ordinary differ-
ential equations (ODEs).6 To avoid the severe re-
striction on the time step
t that would result from
using an explicit time-stepping method in this
case, we use the implicit Euler method, which—

(a)

(c)

(b)

(d)

Figure 3. Photographs of the cluster. The (a) compute nodes in rack H5
and the (b) remaining components in rack H6 are connected by
network cables in (c) the back of rack H5 (lower half pictured) and (d)
the back of rack H6 (bottom part pictured). (Photographs courtesy of
Randy Philipp, UMBC Office of Information Technology.)

MARCH/APRIL 2005 19

although only first-order accurate—will require
the least memory among implicit methods. An im-
plicit time-stepping method for our linear PDE
involves the solution of a linear system of di-
mension N in every time step. Using a conven-
tional direct solver, such as Gaussian elimina-
tion, requires us to store the system matrix of
size N � N. Even in sparse storage (meaning only
nonzero entries are stored), this would be prohib-
itively expensive for our desired N values because
27 essentially nonzero diagonals in the system ma-
trix exist from the finite-element discretization in
three dimensions.3 We’ve avoided this storage cost
entirely by switching to an iterative solver for this
linear system—the conjugate-gradient (CG)
method is appropriate for this symmetric prob-
lem—and by using a matrix-free implementation
of the matrix-vector product in the iterative
method. Thus, our only memory requirements are
approximately 10 auxiliary vectors of dimension N
in addition to the solution at the current time step.
(This isn’t necessarily the smallest number of aux-
iliary vectors possible, but because the application
problem will require a couple of extra vectors, we
aren’t yet optimizing the code in this respect.)
With the number of all significantly sized variables
established, we can compute the predicted mem-
ory needed for the entire code on a serial machine
(see Table 1). We see immediately that 128 � 128
� 512, requiring 716 Mbytes of memory, is the
finest resolution that fits on a machine with 1
Gbyte of memory. We can see already that paral-
lel computing will yield a benefit if we can com-
pute the solution with a finer resolution than pos-
sible on a serial machine.

Using the implicit Euler method, the time step

t isn’t restricted due to stability, so we can use any
(positive) value. We exploit this by implementing
automatic time-stepping, which controls
t such
that the estimator for the local truncation error sat-
isfies a chosen tolerance.6 The automatic step-size
control is the key to saving time for simulations of
transient problems with large final times such as T
= 1,000.0. We’re also using the study in this article

to test this part of the code’s functionality.

Output Considerations
To look at the solution at numerous time steps, we
solve the transient problem, first saving solution
data for several chosen time steps to disk, then
postprocessing the data. To realistically determine
how often to save the solution to disk, consider that
the application model2 lets the CRUs open and
close with frequency
tCRU = 1.0 milliseconds.
Thus, we want to save the solution to disk with the
same frequency; for 0 � t � T = 1,000.0, we need to
save 1,001 frames. Currently, we use output in
ASCII format at present for best compatibility with
all versions of our postprocessing software, Matlab
(www.mathworks.com). To accurately capture the
double-precision variables, we use 26 bytes for each
number. The final column of Table 1 shows how
much estimated disk space is required to save this
many frames. For a parabolic problem such as
Equation 1, known to have a very smooth solution,
we could save significant disk space by outputting
the solution at, say, every other point. In the appli-
cation problem however, the probabilistic compo-
nent in the nonsmooth source term can create con-
centration increases in any part of the domain at
any time, so we need to be prepared to save the en-
tire solution for postprocessing.

For the resolution 128 � 128 � 512, for exam-
ple, we need roughly 207 Gbytes of disk space to
save the results of one complete simulation. Al-
though possible in principle in the /scratch par-
tition of our RAID, it could cause problems in
practice if other users already have data stored.
But for the finest resolution 256 � 256 � 1,024, we
would need 1,641 Gbytes to save all 1,001 frames
of the solution simultaneously to disk; this much
disk space isn’t available. To work around this, we
need to postprocess the solution at every time step
on the fly, meaning that the solution is post-
processed in all desired ways immediately after it’s
computed, and then it’s deleted. This also implies
that using ASCII storage isn’t a seriously limiting
factor at present because switching to binary stor-

Resolution Degrees of Predicted memory Predicted memory Predicted disk
freedom N need for solution need for serial space for 1,001

(Mbytes) code (Mbytes) frames (Gbytes)
32 � 32 � 128 140,481 1 12 3
64 � 64 � 256 1,085,825 8 91 26
128 � 128 � 512 8,536,833 65 716 207
256 � 256 � 1,024 67,700,225 517 5,682 1,641

Table 1. Predicted memory and disk space usage (results are rounded).

20 COMPUTING IN SCIENCE & ENGINEERING

age using 8 bytes per double-precision number
would decrease the disk space requirement by a
factor of only 3.25. Although significant, the sav-
ings associated with postprocessing on the fly are
much greater. This shows that output considera-
tions are an issue for the solution of time-
dependent PDEs, and having significant central
disk space is necessary to facilitate the convenient
postprocessing of combined data from all proces-
sors on the user node.

Parallel Implementation
On a distributed-memory cluster, the choice of
data structure is crucial because it can make the
difference between a method that scales well to
many parallel processes and one that doesn’t. We
opted for the simplest one-dimensional decom-
position of the data to get the cleanest code pos-
sible with clear communication patterns. The
domain � is divided into P nonoverlapping sub-
domains, one on each of the P parallel processes,
numbered 0 � p < P. We divide � in the long, or
z, direction. This means that each process con-
tains approximately Nz/P x-y planes of (Nx)(Ny)
points. Using a column-oriented data structure—
such as the one Matlab uses—makes each x-y
plane’s nodal values contiguous. This and the
resulting simplicity of Matlab’s postprocessing in-
terface drove our choice, at the expense of nu-
merical efficiency, which might improve by, say, a
red-black ordering of the points. To fully control
the memory usage, we program in C, using the
Intel compiler icc. We use the message-passing
interface MPI,7 currently the most popular library
for parallel communications, because of its porta-
bility; specifically, we use the Myricom imple-
mentation of MPI based on MPI’s popular
MPICH implementation.7

The most significant amount of communication
is required inside the iterative solver as part of the
matrix-free matrix-vector product, where all
processes 1 � p < P – 1 must receive the values on
the last x-y plane of process p – 1 and on the first x-
y plane of process p + 1 at every iteration; processes
p = 0 and p = P – 1 each require only one of these.
Correspondingly, processes 1 � p < P – 1 need to
send their first x-y plane to process p – 1 and their
last x-y plane to process p + 1. These communica-
tions between neighboring processes are imple-
mented by nonblocking MPI_Isend/MPI_Irecv
commands,8,9 meaning that during the communi-
cation phase, the processes can simultaneously per-
form other calculations that don’t depend on any
of the values being received. The only other type
of communication that occurs in the iterative

method is that of scalar products between vectors.
Because the results of the scalar products are
needed on all processes, MPI_Allreduce com-
mands are used.8,9 Every iteration of the iterative
solver has exactly two such communications, and
our memory-optimal implementation of the CG
method has been shown to scale very well for at
least 32 processes.10

Aside from calling the iterative solver at every
time step, the (not yet fully optimized) ODE
method itself uses three matrix-vector
multiplications per time step as well as a few
MPI_Allreduce communications per time
step—one each for the solution’s norm and the es-
timator of the local truncation error and additional
ones for computing diagnostic output such as
min(u) and max(u), which we choose to calculate
at every time step. There are an order of magni-
tude fewer ODE steps than CG iterations, which
is why communications in the iterative solver are
the most costly.

One adage of successful parallel programming
regarding communication is “don’t.” That is, it’s
best to design algorithms that communicate as
rarely as possible. In MPI, the programmer explic-
itly requests all communications using calls to MPI
functions. Thus, one of MPI’s best features is that
it keeps the programmer aware of all communica-
tions, which often leads to a reflection on the
choice of algorithm or to improvements in the
code’s communication structure.

Simulation Results
and Numerical Performance
We can solve Equation 1 on meshes with the four
resolutions that Table 1 lists. Figure 4 shows slice
plots of the solution for the resolution 32 � 32 �
128 at different times; the domain’s long dimension
is oriented from left to right in the plots. Besides
slices at the bottom and the back of the domain,
which act as visual guides to the domain shape, we
select slices at x = 0, y = 0, and z = 0 through the
center of the domain and two additional ones at z
= –16 and z = +16 in the long dimension. The first
plot shows the initial solution’s symmetry and cov-
ers the full color range from dark blue for u = 0 on
the domain boundary to red for u = 1 in the center.
Throughout the subsequent plots, the solution dif-
fuses rapidly through the domain. By t = 100, the
solution starts approaching its steady-state value of
uSS � 1/8—visible in light blue in the central part
of the domain up to and including the boundaries
in x and y on the slice z = 0. We can see this process
continue by t = 200 and note that the solution at
the boundaries of z = ± Z also starts reaching the

MARCH/APRIL 2005 21

steady-state value. For a color comparison, contrast
the solution near the corners of the domain at t =
200 here and near the corners at t = 0.

To judge the numerical method’s performance,
we collect several diagnostic and performance vari-
ables for the finest resolution of 256 � 256 � 1,024
(see Figure 5). Figure 5a plots the spatial minimum
and maximum solution values min(u) and max(u)
over the domain � at all times t. We see that as t
grows, the minimum and maximum converge to
each other and bracket the steady-state value of uSS
� 1/8. To see this behavior, we had to compute to a
final time on the order of T = 1,000. For this

smooth problem, all coarser resolutions also show
this effect correctly.

We measure the PDE error for a finite-element
method in the spatial L2-norm of the difference be-
tween the true solution u and the finite-element so-
lution uh at every time t, which the finite-element
theory4,5 predicts to be on the order of h2 for h :=
max{
x,
y,
z}. Figure 5b plots this semi-
discretization error against t. The error is largest
during the transient phase up to approximately t =
100, after which it decreases as the solution changes
less rapidly. As expected, the coarser spatial dis-
cretizations show progressively larger PDE errors.

x

5

0

–5
50–5 –30 –20 –10 0 10 20 30

 t = 0

z

y

x

5

0

–5
50–5 –30 –20 –10 0 10 20 30

 t = 10

z

y

x

5

0

–5
50–5 –30 –20 –10 0 10 20 30

 t = 20

z

y

x

5

0

–5
50–5 –30 –20 –10 0 10 20 30

 t = 5

z

y

x

5

0

–5
50–5 –30 –20 –10 0 10 20 30

 t = 15

z

y

x

5

0

–5
50–5 –30 –20 –10 0 10 20 30

 t = 50

z

y

x

5

0

–5
50–5 –30 –20 –10 0 10 20 30

 t = 100

z

y

x

5

0

–5
50–5 –30 –20 –10 0 10 20 30

 t = 200

z

y

Figure 4. Slice plots of the numerical solution at specified times for resolution 32 � 32 � 128. Starting from a
peak at the center at t = 0, it approaches its constant steady state by t = 200.

22 COMPUTING IN SCIENCE & ENGINEERING

Figure 5c plots the local time step
t used to
compute the numerical solution at every time t; re-
call that the code uses variable time-stepping with
automatic control of the estimated local truncation
error, hence
t isn’t constant. We used a tolerance
of 10–6 for this ODE error. The time step starts
out as
t = 0.03125, after which it doubles pro-
gressively to the maximum permitted value of
t =
0.5. Using automatic step-size control gives us a
major gain in efficiency without a loss of accuracy.
This is why we use an implicit method for this
problem, despite the more complicated coding
compared to an explicit method;
t is not re-
stricted in magnitude, and the automatic step-size
control can pick a large value for it. A total of
3,085 time steps are taken, over one-third of those
incurred by t = 100. Somewhat surprisingly, the
number of time steps is practically the same when
using the coarser resolutions.

Recall that at every time step, we use the CG
method to solve a linear system of equations. We
use a tolerance of 10–3; tighter tolerances didn’t
improve the PDE error in Figure 5b appreciably.
Figure 5d reports the number of iterations this
method took at every time t. It uses fewer itera-
tions initially when the time step
t is small and
more around t = 100, where the solution is still
changing somewhat but
t has already increased.
Then, the iteration numbers settle down to
roughly 14 for the remaining time steps. Nearly
half of the total 41,817 iterations are incurred by t
= 100; for the coarser resolutions, fewer CG iter-
ations are needed at each time step. The number
of CG iterations remains reasonably small, even
for the finest resolution 256 � 256 � 1,024, which
justifies using an unpreconditioned iterative
method. This is good because it’s difficult to devise
a preconditioner that doesn’t require additional

0 200 400 600 800 1,000
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

0 200 400 600 800 1,000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 0

4.5×10–3

(a) (b)

0 200 400 600 800 1,000
0.0000

0.0625

0.1250

0.1875

0.2500

0.3125

0.3750

0.4375

0.5000

3,085 steps

0 200 400 600 800 1,000
0

5

10

15

20

25

30

35

41,817 steps

(c) (d)

Figure 5. The diagnostic and performance output plotted versus time t for the finest resolution 256 � 256 �
1,024. They demonstrate that the code computes the solution accurately and that the numerical method is
efficient: (a) minimum and maximum of the solution u over domain �; (b) L2-norm of the true error u – uh; (c)
variable time step
t used; and (d) number of conjugate-gradient (CG) iterations required.

MARCH/APRIL 2005 23

communications (which would make the precon-
ditioning as costly as additional CG iterations
themselves) and that can be implemented in ma-
trix-free form (because we can’t afford any addi-
tional storage).

Parallel Performance
Before discussing Kali’s performance, I must first
present some details regarding the parallel runs.
We ran our code for the four different resolutions
listed in Table 1 and with P = 1, 2, 4, 8, 16, and 32
parallel processes. The code run with 1 process is
actually the parallel code run on 1 process, but, be-
cause all communication commands are condi-
tional on P > 1, this code is equivalent to a serial
code of the same algorithm. In all cases, a run with
P processes uses only one CPU on each of P nodes
used. Thus, each process has each node’s entire 1
Gbyte of memory available.

Memory Performance
In Table 1, we analytically predicted the memory
required for serial code. Using the Unix com-
mand top, we observe now how much memory
the code actually uses per process. We understand
that this might not be the most accurate way to
make these observations, but, if they confirm our
analytic predictions, we feel confident about their
validity, whereas a significant disagreement can
point to bugs (for example, memory leaks, if the
observed memory usage keeps increasing over
time). Table 2 collects these observations for all
studies performed. For P = 1, we see that the ob-
served values in Table 2 are just slightly higher
than the analytic predictions in Table 1. This
confirms that our predictions are reasonable and
that the code doesn’t use any surprising addi-
tional memory. Jumping from the 1-process cases
to the cases of the finest resolution 256 � 256 �
1,024, we notice, as expected, that the finest res-
olution can’t run on one node. In fact, we need to
use at least P = 8 nodes to accommodate the
problem. Recall that only one parallel process
runs on each dual-processor node—otherwise,
this amount of memory per process couldn’t even
be accommodated for P = 8 because both CPUs

on a node share the same 1 Gbyte of memory.
The value of 731 Mbytes itself appears so far to
agree with the predicted memory requirement of
5,682 Mbytes divided by P = 8. Comparing the
memory usage per process from one P value to
the next for the resolution 256 � 256 � 1,024, we
notice that memory per process is not halved ex-
actly, which requires an explanation.

Also surprising is the observed memory usage for
the resolution 32 � 32 � 128 for more than one
process—because the solution and all auxiliary vec-
tors are now split across two processes, we’d expect
the code to use less memory per process, but we
observe the opposite. I believe the explanation is
that the MPI libraries are actually only loaded at
runtime for P > 1 and that they take up a major
chunk of memory for such a coarse resolution.
Looking at the P = 2 case, we hypothesize that this
chunk should be 28 Mbytes minus half of the pre-
dicted serial memory of 12 Mbytes—that is, 22
Mbytes. I can now in turn try to predict the mem-
ory per process required for the P = 2 run of the
resolution 64 � 64 � 256. To the baseline 22
Mbytes, add half of the predicted serial memory of
91 Mbytes from Table 1 to get a prediction of 67
Mbytes, which is close to the observed 70 Mbytes.
This formula—a baseline of 22 Mbytes plus the
predicted serial memory from Table 1 divided by
P—allows surprisingly accurate predictions for all
other resolutions and cases of P. It also explains the
behavior observed in Table 2 for the finest resolu-
tion 256 � 256 � 1,024.

Although appearing rather pedantic, this exer-
cise demonstrates that we can make sense of the
memory usage that the operating system command
top reports. It also shows the benefit of finding a
way to compare predicted and observed memory
usage carefully as a tool to debug and to optimize
memory usage in a parallel code.

Speed Performance
Finally, after we’ve confirmed that the solution is
correct (we wouldn’t want a code that gives in-
correct results, no matter how fast it is), that the
numerical method behaves as desired (we don’t
want a bad numerical method), and that we can

Table 2. Observed memory usage per process (in Mbytes).

Resolution P = 1 P = 2 P = 4 P = 8 P = 16 P = 32
32 � 32 � 128 14 28 28 28 28 22
64 � 64 � 256 97 70 46 34 28 26
128 � 128 � 512 721 379 200 111 68 45
256 � 256 � 1,024 n/a n/a n/a 731 377 202

24 COMPUTING IN SCIENCE & ENGINEERING

indeed solve problems of significant size, we’re
ready to enjoy the final benefit of parallel perfor-
mance: the speedup. We time the method by ob-
taining the wall-clock time from MPI_Wtime
before the start and after the end of the ODE
method and computing their difference. We
must use a measure such as wall-clock time for
parallel code—as opposed to CPU time, for ex-
ample—because communications are inherent to
parallel computing and thus must be taken into
account. Recall that the idea of parallel comput-
ing was to distribute the calculation work into P
parallel processes and to obtain the result P times
as fast. However, although dividing the calcula-
tions into P processes means that the calculation
cost gets better as P increases, a truly parallel code
requires communications among those P
processes, whose cost gets worse as P increases.
This increasing communication cost in the face of
decreasing calculation cost per process quickly be-
comes a challenge, an effect compounded by the
fact that calculations on today’s workstations are
several orders of magnitude faster than commu-
nications. Because of these issues, the only honest
way to measure timing for a parallel code is to in-
clude both calculations and communications,
which we can do by recording wall-clock time, for
instance. This is a tough but realistic measure of
performance because it also includes various un-
avoidable operating system and network slow-
downs associated with real-life system operation
(for an alternative measure of speedup, see the
“Scaled Speedup” sidebar).

Table 3 reports the wall-clock times observed for
the code in hours:minutes:seconds. Comparing the
results for the P = 1 times for the different resolu-
tions shows how rapidly the problem’s complexity

and resulting times increase when refining the nu-
merical mesh. By using more processes, however,
we can reduce the times dramatically. To put the
times for the finest resolution in perspective, we
can solve a problem with no fewer than 67.7 mil-
lion degrees of freedom from t = 0 to T = 1,000.0
in less than an overnight run when using 32 nodes.

The times in Table 3 are approximately halved in
nearly all cases when we double the number of par-
allel processes. This property begins to break down
for the largest number of processes, P = 32. We can
visualize the effect of decreasing times with increas-
ing P by plotting observed speedup SP against P. Here,
we define SP := T1/TP for a fixed problem size as the
fraction of observed time T1 on 1 process over ob-
served time TP on P processes. In the optimal case,
in which TP = T1/P, the speedup will then be SP = P.

Figure 6a shows the observed speedup for all four
resolutions used. The dashed line is the optimal
speedup SP = P. By definition, speedup plots start
at the value SP = 1 for P = 1. As the communica-
tion time increases relative to the calculation time,
the speedup curves eventually fall below the opti-
mal value. To get the comparable visual effect for
the finest resolution 256 � 256 � 1,024, we mod-
ify its definition of speedup to SP := 8T8/TP; thus,
it starts at the optimal value for P = 8, the small-
est P available. The four lines are remarkably
close to the optimal value. At P = 16, we have SP 	
15 for all resolutions, which is still very close to
the optimal value of 16. By P = 32, the different
resolutions start showing a range of values from
SP 	 28 for the coarsest to SP 	 31 for the finest
resolution. Typically, speedup is better the larger
the problem’s complexity. This phenomenon re-
sults from the fact that, in this case, the calcula-
tion time remains a larger percentage of the com-

Scaled Speedup

O ur computational experiments solve problems of
fixed size to observe speedup of the parallel code.

An alternative is the observed scaled speedup, a concept in
which the problem size increases (for example, doubles)
with each increase (doubling) of the number of processes
P. This measure keeps the calculation time and memory
usage per process as high as possible on each process,
which blunts the effect of the communication cost in-
creasing with increasing P. This measure, therefore, nicely
combines a demonstration of solving larger problems
faster with increasing P. For our algorithm, though, this
concept is difficult to apply. We could keep the memory

usage per process constant as P is doubled by doubling
Nz, which would have resulted in the degrees of freedom
N doubling for fixed Nx and Ny. However, the complexity
of a transient run of our algorithm also involves the num-
ber of conjugate-gradient (CG) iterations, which would
have increased with N. Thus, the algorithm’s complexity
per process more than doubles with doubling P, which is
inconsistent with the definition of scaled speedup. Thus,
we restricted ourselves to the conventional definition of
speedup; in this sense, our speedup is a tougher measure
of performance because the decreasing calculation com-
plexity per process works against us as P increases along
with the increasing communication cost.

MARCH/APRIL 2005 25

bined calculation and communication time. One
way to gauge the complexity per process of a
CPU-intensive job is to look at the memory usage
per process. As Table 2 indicates, the memory us-
age per process falls quite dramatically for the
larger P values, letting us conclude that not much
calculation work is left to do per process, at least
for the coarser resolutions.

Figure 6b shows another quantity whose value
can characterize the scalability of parallel code. The
observed efficiency EP is the ratio of speedup SP over
P. Hence, a value of EP = 1 or 100 percent is opti-
mal. The efficiency plot is often useful in bringing
out certain features that are easily overlooked in the
speedup plot. For instance, we see in Figure 6b that
efficiency drops off by P = 4 for several cases, more
rapidly than is visible in the speedup plot. But it
doesn’t drop off any further for larger values of P
and is still roughly 95 percent for most resolutions
at P = 16. At P = 32, we see again a range of values
for the different resolutions, from approximately
87 percent for the coarsest to about 97 percent for
the finest resolution. These speedup and efficiency
results are excellent for a tightly coupled algorithm
on a distributed-memory cluster such as this one,
and illustrates the power of Kali’s high-
performance interconnect.

You might think at this point that we chose to
use only one CPU per node in the parallel study
for memory reasons alone. This isn’t the case.
Rather, the weak point on clusters using today’s
commodity CPUs is the small cache size (512
Kbytes for our Intel Xeon chips) that can quickly
overload the local bus of a node for algorithms
such as ours, particularly if both CPUs are being
used simultaneously. The issue often manifests it-
self for the first time when a 2-process parallel
run, using both of a node’s CPUs, takes much
more than half the time as a 1-process run in a
parallel performance study. In reality, the problem
isn’t trouble with the parallel code or the hard-
ware special to a cluster. Rather, the problem
comes from the fact that algorithms such as ours
incur a significant number of cache misses, and
the local 32-bit bus can’t serve the data fast
enough from memory.

A software solution would be to redesign the al-
gorithm to use a different ordering of the points
that makes the accessed data more contiguous in
memory.11 One hardware solution would be to go
to single-processor nodes, but this isn’t cost-
effective due to the steep cost increase that results
from doubling the size of the network switches and
the number of other expensive components. An-

(a) (b)
5 10 15 20 25 30

5

10

15

20

25

30

Number of processes

O
bs

er
ve

d
sp

ee
du

p

 32 × 32 × 128
 64 × 64 × 256
128 × 128 × 512
256 × 256 × 1024
Optimal value

5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Number of processes

O
bs

er
ve

d
ef

fic
ie

nc
y

 32 × 32 × 128
 64 × 64 × 256
128 × 128 × 512
256 × 256 × 1024
Optimal value

Figure 6. Speedup and efficiency. We can graphically represent our implementation’s parallel performance
with two measures: (a) observed speedup and (b) observed efficiency.

Resolution P = 1 P = 2 P = 4 P = 8 P = 16 P = 32
32 � 32 � 128 00:16:38 00:08:26 00:04:13 00:02:08 00:01:04 00:00:36
64 � 64 � 256 02:19:23 01:10:40 00:36:24 00:18:08 00:09:33 00:05:04
128 � 128 � 512 23:39:26 11:56:59 06:04:43 02:58:58 01:32:11 00:48:57
256 � 256 � 1,024 n/a n/a n/a 35:31:26 18:08:23 09:11:23

Table 3. Observed wall-clock time (in hours:minutes:seconds).

26 COMPUTING IN SCIENCE & ENGINEERING

other hardware solution, by contrast, would be to
use computer chips with significantly larger cache
size—available these days in several Mbytes—pos-
sibly in combination with a faster and wider 64-bit
bus. But using such specialized chips would negate
the fundamental cost advantage of using commod-
ity 32-bit chips mass produced for the PC market.
Moreover, for other types of algorithms that use
less memory and have a less tightly coupled data
structure (for example, those using explicit time-
stepping for hyperbolic transport equations),12 this
type of slowdown hasn’t prevented good perfor-
mance results in practice. Thus, most users con-
tinue to buy Beowulf clusters such as ours with
dual-processor nodes using commodity CPUs be-
cause this approach gives the best return on in-
vestment in a production environment, where
throughput of as many jobs from multiple users is
the ultimate goal.

Building on the present results, my col-
leagues and I are in the process of ex-
tending the method to the application
problem. This involves solving several

coupled reaction-diffusion equations similar to
those in Equation 1, with additional nonlinear
reaction and source terms. We’re presently
considering leveraging available software, for in-
stance, by using a more general parallel com-
puting library such as PETSc (www.mcs.anl.gov/
petsc/) that in turn would call our matrix-free
routines to affect the memory savings. In the
long run, our goal is to simulate high-resolution
PDEs, such as those used for this application
problem, on commodity clusters that are afford-
able to typical researchers or research groups in
science and engineering fields.

The present code, designed for controlling
memory usage, demonstrates that the desired fine
resolutions are attainable on a medium-size Be-
owulf cluster both within the available memory and
within reasonable time frames. For the practitioner,
the relevant observation is that we achieved the re-
sults using a commodity cluster that we purchased
in fully integrated form. Thus, excellent parallel
performance is now accessible to the application-
and software-oriented researcher.

Acknowledgments
The US National Science Foundation’s SCREMS grant
DMS–0215373; principal investigators Jonathan Bell,
Florian Potra, Madhu Nayakkankuppam, and myself;
and additional support from the University of
Maryland, Baltimore County, partially supported the

purchase of the Beowulf cluster Kali. I thank the UMBC
Office of Information Technology for Kali’s setup and
administration. I also thank the Institute for
Mathematics and its Applications (IMA) at the
University of Minnesota for its hospitality during Fall
2004. The IMA is supported by NSF funds. Finally, I
thank Madhu Nayakkankuppam and Robin Blasberg
for their invaluable feedback on a draft of this article.

References
1. L.T. Izu et al., “Large Currents Generate Cardiac Ca2+ Sparks,”

Biophysical J., vol. 80, Jan. 2001, pp. 88–102.

2. L.T. Izu, W.G. Wier, and C.W. Balke, “Evolution of Cardiac Cal-
cium Waves from Stochastic Calcium Sparks,” Biophysical J., vol.
80, Jan. 2001, pp. 103–120.

3. A.L. Hanhart, M.K. Gobbert, and L.T. Izu, “A Memory-Efficient
Finite Element Method for Systems of Reaction-Diffusion Equa-
tions with Non-Smooth Forcing,” J. Computational and Applied
Mathematics, vol. 169, no. 2, 2004, pp. 431–458.

4. A. Quarteroni and A. Valli, “Numerical Approximation of Partial
Differential Equations,” Springer Series Computational Mathe-
matics, vol. 23, Springer-Verlag, 1994.

5. V. Thomée, “Galerkin Finite Element Methods for Parabolic Prob-
lems,” Springer Series Computational Mathematics, vol. 25,
Springer-Verlag, 1997.

6. L.F. Shampine and M.W. Reichelt, “The Matlab ODE Suite,” SIAM
J. Scientific Computing, vol. 18, no. 1, 1997, pp. 1–22.

7. Message Passing Interface Forum, “MPI: A Message-Passing In-
terface Standard,” Argonne Nat’l Laboratory; www.mcs.anl.
gov/mpi.

8. P.S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann,
1997.

9. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed., MIT
Press, 1999.

10. K.P. Allen and M.K. Gobbert, “Coarse-Grained Parallel Matrix-
Free Solution of a Three-Dimensional Elliptic Prototype Problem,”
Proc. Int’l Conf. Computational Science and Its Applications (ICCSA
03), LNCS 2668, V. Kumar et al., eds., Springer-Verlag, 2003, pp.
290–299.

11. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.,
SIAM, 2003.

12. S.G. Webster, “Stability and Convergence of a Spectral Galerkin
Method for the Linear Boltzmann Equation,” doctoral thesis,
Dept. of Mathematics and Statistics, Univ. of Maryland, Baltimore
County, 2004.

Matthias K. Gobbert is an associate professor of math-
ematics at the University of Maryland, Baltimore
County (UMBC). His research interests revolve around
the numerical solution of time-dependent partial dif-
ferential equations, and he enjoys working with re-
searchers in science and engineering whose computa-
tionally significant problems often involve systems of
differential equations, high-dimensional domains, the
necessity for fine resolution, and other challenges.
Gobbert received a PhD in mathematics from Arizona
State University. He is a member of SIAM, the Ameri-
can Mathematical Society, and the Electrochemical So-
ciety. Contact him at gobbert@math.umbc.edu;
www.math.umbc.edu/~gobbert/.

