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Many production steps used in the manufacturing of integrated circuits involve the deposi-
tion of material from the gas phase onto wafers. Models for these processes should account
for gaseous transport in a range of flow regimes, from continuum flow to free molecular
or Knudsen flow, and for chemical reactions at the wafer surface. We develop a kinetic
transport and reaction model whose mathematical representation is a system of transient
linear Boltzmann equations. In addition to time, a deterministic numerical solution of this
system of kinetic equations requires the discretization of both position and velocity spaces,
each two-dimensional for 2-D/2-D or each three-dimensional for 3-D/3-D simulations. Dis-
cretizing the velocity space by a spectral Galerkin method approximates each Boltzmann
equation by a system of transient linear hyperbolic conservation laws. The classical choice
of basis functions based on Hermite polynomials leads to dense coefficient matrices in this
system. We use a collocation basis instead that directly yields diagonal coefficient matrices,
allowing for more convenient simulations in higher dimensions. The systems of conservation
laws are solved using the discontinuous Galerkin finite element method. First, we simulate
chemical vapor deposition in both two and three dimensions in typical micron scale features
as application example. Second, stability and convergence of the numerical method are
demonstrated numerically in two and three dimensions. Third, we present parallel perfor-
mance results which indicate that the implementation of the method possesses very good
scalability on a distributed-memory cluster with a high-performance Myrinet interconnect.
KEY WORDS: Boltzmann transport equation; spectral Galerkin method; discontinuous
Galerkin method; cluster computing; chemical vapor deposition

1 INTRODUCTION

Several production steps in the manufacturing of integrated circuits (ICs) involve gas flow at pres-
sures that range from very low to atmospheric [16]. The Boltzmann transport equation from gas
dynamics [5, 16] is appropriate to model such processes on the micron length scales of patterned
features that populate the wafers during IC fabrication. For atomic layer deposition (ALD), we
introduced a kinetic transport and reaction model (KTRM) that consists of a linear Boltzmann
equation without collision term in two spatial dimensions [10, 14]. We extended it to multiple
species in [12, 13] and three spatial dimensions in [24, 25]. Extending the KTRM to include the
effect of collisions, for the case where the gas flow is dominated by an inert carrier gas, gives the
system of transient linear Boltzmann equations for the ns reactive species

∂f (i)

∂t
+ v · ∇xf

(i) =
1

Kn
Qi(f (i)), i = 1, . . . , ns, (1.1)

with the linear collision operators

Qi(f (i)) =
∫

R3

σi(v,v′)
[
M (i)(v)f (i)(x,v′, t)−M (i)(v′)f (i)(x,v, t)

]
dv′, (1.2)
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stated here in dimensionless form. See also [11] for additional details on the derivation of the model
and its non-dimensionalization.

The left-hand side of (1.1) describes the convective transport of the gas molecules, and the
collision operators (1.2) on the right-hand side of (1.1) describe the effects of molecular collisions.
Here, σi(v,v′) = σi(v′,v) > 0 is a given function that treats the collision events and M (i)(v)
denotes the Maxwellian distribution of species i. The unknown in this kinetic equation is the
scaled probability density f (i)(x,v, t), which we call kinetic density in the following to distinguish
it from other densities, for the molecules of species i to have a position between x and x + dx and
a velocity between v and v + dv at time t.

The model (1.1) is stated in dimensionless form, as indicated by the appearance of the Knudsen
number Kn. Kinetic models take both transport and collisions of molecules into account, and these
require different reference quantities for their non-dimensionalization. Specifically, the transport
involves the characteristic length scale L∗ of the spatial domain, while the collision effects are
characterized by the mean free path λ (average distance traveled by a molecule between collisions)
of the molecules, which is largely determined by the pressure in the chemical reactor. In the non-
dimensionalization, the ratio of these characteristic lengths arises and is defined as the Knudsen
number Kn := λ/L∗ that characterizes the relative dominance of inter-molecular or molecule-wall
collisions in kinetic models [16]. See [12, 14] for the full details of our non-dimensionalization. In
the hydrodynamic regime for Kn � 1.0, inter-molecular collisions dominate and gas flow is fluid-
like. In the transition regime for Kn ≈ 1.0, inter-molecular and molecule-wall collisions balance.
In the Knudsen regime for Kn � 1.0, the effects of inter-molecular collisions are negligible and
the flow is dominated by convective transport. Notice that while the set of equations represented
by (1.1)–(1.2) above for each species appear decoupled, the solutions for all reactive species will
in general be coupled to each other through the boundary conditions at the wafer surface. These
boundary conditions are crucial for our applications and involve coupling to general models for
how the gas phase species interact with the surface, including chemical reactions that occur at the
surface. While we are interested in a method that can handle a wide range of Knudsen numbers
including up to 0.01 ≤ Kn ≤ ∞, the focus is on application problems in the transition regime with
Kn ≈ 1.0, in which the use of kinetic models is most needed [16].

The numerical solution of the linear Boltzmann equation (1.1)–(1.2) presents a challenge for nu-
merical methods due to the large number of independent variables present in a kinetic equation: For
3-D/3-D problems, the three-dimensional spatial domain Ω ⊂ R3 for x and the three-dimensional
velocity vector v ∈ R3 need to be discretized at every time t. Even for 2-D/2-D problems, we
need to discretize the four dimensions of the two-dimensional spatial and two-dimensional velocity
domains at every time step t. Both two-dimensional and three-dimensional models are of interest in
practice; to make the notation concrete, we use three-dimensional notation throughout this paper.

One classical application of the linear Boltzmann equation is neutron transport [5, Chapter IV].
The linearity of this equation is the result of considering the background medium through which the
neutrons travel to be significantly more dense and thus neutron-neutron collisions can be neglected.
Another classical application of the linear Boltzmann equation is charge transport in semiconductor
devices [17]. Here, transport is modeled by the linear Boltzmann equation with forcing term coupled
to the Poisson equation, see [4, 22] and the references therein.

Various numerical methods have been designed for these models; see [4] for a detailed re-
view. Two broad categories into which numerical solutions of the Boltzmann equation may fall are
stochastic methods and deterministic methods. The most popular of the stochastic approaches are
Monte Carlo methods [1]. These methods utilize random sampling and if the number of averag-
ing particles is not chosen large enough, they do not accurately describe transient behavior and
equilibrium states. In [4], a deterministic method for the Boltzmann-Poisson system is developed
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by transforming the linear Boltzmann equation to a system of conservation laws which is linear
when ignoring the coupling with the Poisson equation. This system is solved by a WENO finite
difference method with explicit Runge-Kutta time-stepping. Extensive numerical evidence is pre-
sented to demonstrate the advantages of an efficient deterministic scheme over existing Monte Carlo
methods, whose advantages include “faster speed, noise-free resolution, and easiness for arbitrary
moment evaluations” [4]. These conclusions are also supported in [9].

In the spirit of [4, 9], in order to have direct access to the kinetic density f (i)(x,v, t) as functions
of both x and v in a transient model and to avoid the stochastic variability associated with Monte
Carlo methods, we develop here a deterministic numerical method for the system of linear Boltz-
mann equations in (1.1). We choose to use (a modification of) the numerical method found in [22]
for the semiconductor Boltzmann equation, because the KTRM in (1.1)–(1.2) can be formulated in
a similar way. However, the numerical challenges associated with our KTRM lie in different aspects
of the problem: The fundamental challenge of the semiconductor Boltzmann equation results from
its coupling with a Poisson equation that is driven by an applied voltage whose values vary over
a huge range. But the spatial domain of a transistor channel is often reasonably approximated by
a one-dimensional domain, and symmetry considerations can reduce the dimension of the velocity
space. In our KTRM, we have a simpler transport term and no coupling to another equation (in
the gas phase), but we are keenly interested in developing a model and numerical method that can
handle fully three-dimensional spatial domains of irregular shape with associated three-dimensional
velocity discretizations. The crucial coupling for our applications involves the reaction models at
the wafer surface and affects the solution of (1.1) via the boundary conditions there. Moreover,
we need models for several reactive species in practice, giving us the system of transient linear
Boltzmann equations in (1.1).

Our interest in models in higher dimensions is the reason why we use a modification of classical
Galerkin methods for the linear Boltzmann equation: To discretize the velocity space, Galerkin
methods approximate the kinetic density f (i)(x,v, t) for each species i by an expansion in basis
functions in velocity space, whose expansion coefficients depend on position and time. The Galerkin
ansatz of inserting the expansion for f (i)(x,v, t) in (1.1) and testing against the basis functions ap-
proximates each linear Boltzmann equation by a system of transient linear hyperbolic conservation
laws. The classical choice of basis functions uses Hermite polynomials [7, 15, 21, 22, 23], which
result in dense coefficient matrices in the hyperbolic systems. We use here an alternative choice
of basis functions, a collocation basis, that results in diagonal coefficient matrices. This makes
simulations in higher dimensions substantially more convenient in practice, as diagonalization of
the coefficient matrices is no longer necessary and because the inflow part of the boundary for
each equation in the system can be directly identified. Our method can be related to the clas-
sical method and analytic results from [22] still apply to guarantee stability and convergence of
the velocity discretization. For the solution of the systems of linear hyperbolic conservation laws,
we choose to use the discontinuous Galerkin method (DGM), implemented in the code DG [20],
because the method is perfectly suited for the resolution of irregular spatial domains. The DGM
was first introduced by Reed and Hill [19] for solving similar sets of equations. See, for instance, [8]
for more information about the method. In the studies here, we use linear basis functions on each
element and first-order explicit time-stepping (Euler); this presents only the initial step designed
to focus on the assessment of the code’s parallel performance and obtain reference solutions, before
using automatic mesh refinement and coarsening already available in DG and higher-order finite
elements.

The focus of this paper is to explain our numerical method in detail and to demonstrate (i) that
it can solve realistic application problems in two and three dimensions, (ii) that it exhibits con-
vergence for reasonable resolutions in two and three dimensions, in extension of one-dimensional

3



studies in [22, 23], and (iii) that its parallel implementation scales well on a distributed-memory
cluster with high-performance interconnect. First, we present a brief outline of our model exten-
sion to the process of chemical vapor deposition (CVD) in Section 2, already in dimensionless form.
Second, Section 3 introduces our numerical method in detail, contrasts it with existing series ex-
pansion methods, and discusses its convergence. Third, our numerical studies cover three aspects:
Section 4.1 presents transient studies for single-species CVD that demonstrate that problems of
interest can be solved and that it is useful to be able to access the kinetic density f (i)(x,v, t) itself,
focusing on the transition regime with Kn = 1.0. Section 4.2 contains the numerical demonstrations
of stability and convergence in two and three dimensions for a wide range of Kn from 0.01 to ∞.
Finally, Section 4.3 provides performance studies of our implementation on a parallel computer
with 64 processors to show the speedup possible for our method on such a platform.

2 THE APPLICATION AND ITS MODEL

2.1 The Application: Microelectronics Manufacturing

The starting point for the manufacturing of ICs is most commonly a silicon wafer. Repeatedly
during the manufacturing process, the surface of the wafer has a microstructure of millions of
trenches, via (round holes), and/or other structures, generically called ‘features,’ that were etched
into the surface in a previous production step. The class of processes of interest here involves
the deposition of films that either partly or completely fill these features. Two types of processes
are particularly relevant: atomic layer deposition (ALD) and chemical vapor deposition (CVD).
Depending upon the application, the deposited material, which forms due to reactions of gas phase
species on the surface, may be either an insulating layer of, say, silicon dioxide SiO2, or conductive
metal, say, copper Cu.

Figure 1 shows prototypical examples of two- and three-dimensional spatial domains for the
processes under consideration, both of which are of interest for practical simulations. Specifically,
Figure 1 (a) shows the two-dimensional cross-section of a trench that is modeled as infinite in
the third dimension. The mathematical domain Ω ⊂ R2 of our model is the region filled by gas
inside and just above the feature. The domain boundary is comprised of three distinct sections:
∂Ω = Γw ∪ Γt ∪ Γs. Here, Γw denotes the solid wafer surface indicated by the hash marks in
Figure 1 (a), Γt is the top boundary of the domain that forms the interface with the bulk gas in
the reactor chamber, and Γs denotes the union of the portion of the boundary on the left and right
sides of the domain above the wafer surface; by construction, all segments that comprise Γs are
orthogonal to one of the coordinate axes. The length L denotes the width of the feature mouth and
can be 0.25 µm or less in typical applications today. The number A specifies the feature aspect
ratio (depth over width of the feature).

Figure 1 (b) sketches the corner of a trench designed to analyze the 3-D effects of a sharp
corner on the behavior of the manufacturing process. Each trench is modeled as semi-infinite in the
direction away from the corner. L and A denote again the width and aspect ratio of the feature.
The domain Ω ⊂ R3 of our model comprises the gas-filled area inside and just above the surface.
Again, the boundary of Ω is comprised of three distinct sections: ∂Ω = Γw ∪ Γt ∪ Γs. Here, Γw

denotes the solid wafer surface indicated by the gray shading in Figure 1 (b), Γt is the top of the
boundary of the domain that forms the interface with the bulk gas in the reactor chamber (at
the top of the figure), and Γs denotes the union of the remaining portions of the boundary; by
construction, the segments of Γs are orthogonal to one of the coordinate axes.

Figure 2 shows a schematic to demonstrate the evolution of the deposition of a thin initial
layer during chemical vapor deposition. The figure shows a single-species model with the (generic)
reactive gas A fed from the bulk gas above the wafer surface. Upon reacting at the wafer surface,
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a layer of solid material deposits. Starting with an empty trench in Figure 2 (a), deposition starts
in areas that ‘see’ most of the gaseous reactant, the flat wafer areas to the left and right of the
trench and the bottom of the trench as well as its side walls in (b). As deposition continues in (c),
it becomes clear that the corners at the bottom of the trench take the longest time to cover with
solid, so that by that time already additional layers of solid have deposited on the areas to the left
and right of the trench in (d).

The operating conditions of a typical reactor are high temperature T = 500 K (approximately
400 ◦F) and total pressures Ptotal ranging over a wide range of values. For our simulations, we assume
a fixed temperature T and vary the total pressure Ptotal. A low total pressure of Ptotal = 1 Torr
(atmospheric pressure is 760 Torr) corresponds to a mean free path (the average distance that a
molecule of gas travels between collisions) of about λ = 100 µm = 10−4 m. Higher total pressures
such as Ptotal = 102 and 104 Torr correspond to smaller mean free paths of about λ = 1 µm =
10−6 m and λ = 10−2 µm = 10−8 m, respectively. Models of interest range from feature scale
models designed to represent individual features as sketched in Figure 1 with a typical length
scale of L∗ = 1 µm = 10−4 cm to mesoscopic scale models of several hundred or several thousand
features with typical length scales of L∗ = 0.01 cm to 0.1 cm. Here, we focus on the feature scale
and thus fix the length scale of interest L∗. Therefore, with L∗ fixed, varying the total pressure in
the reactor changes λ and hence the Knudsen number Kn. We directly use Kn as the parameter
that controls the transport regime represented by the dimensionless model (1.1)–(1.2), from the
near-hydrodynamic regime (Kn = 0.01) through the transition regime (Kn = 1.0) to the Knudsen
regime (Kn = ∞).

2.2 The Model Equations

As discussed in the Introduction, we use the Boltzmann equation of gas dynamics as our starting
point for modeling processes such as atomic layer deposition or chemical vapor deposition, for
Knudsen numbers above 0.01. More precisely, we formulate a system of Boltzmann transport
equations for all gaseous species present in the reactor. In addition to the reactive species i =
1, . . . , ns, this includes an inert carrier gas, denoted by i = 0, that is present in the processes under
consideration. Then the appropriate model is a system of equations for all of the distribution
functions f (i)(x,v, t), i = 0, 1, . . . , ns. Following the approach suggested in [5, Chapter II], we
obtain a system of Boltzmann transport equations for all gaseous species

∂f (i)

∂t
+ v · ∇xf

(i) =
1

Kn

ns∑
j=0

Qij(f (i), f (j)), i = 0, 1, . . . , ns, (2.1)

with the collision operators given by

Qij(f (i), f (j)) =
∫

R3

∫ 2π

0

∫ π/2

0

[
f (i)(v′)f (j)(v′∗)− f (i)(v)f (j)(v∗)

]
Bij(ϑ, |V|) dϑ dε dv∗. (2.2)

We state the model already in dimensionless form here, as indicated by the factor 1/Kn. Here,
Bij(ϑ, |V|) models the details of the collisions between molecules of species i and j. The short-hand
notation under the integral implies the same position x and time t for all f (i) and f (j).

As stated, (2.1)–(2.2) is a system of coupled, non-linear Boltzmann transport equations for all
gaseous species and is challenging to solve numerically, because of the high dimensionality of the
space (x,v) ∈ Ω×R3, because of the five-fold integral in the collision operators, and because of the
non-linearity in the integral. Using properties of the applications considered here, which results in
a system of linear Boltzmann equations for the reactive species only, it is possible to alleviate the
latter two challenges significantly.
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We make four realistic assumptions about the class of processes considered: We observe that
(i) the reactive chemical species present in the reactor are typically an order of magnitude less dense
than the inert carrier gas. This is common operating practice, in order to keep the reactant species
from interacting in the gas phase, which could cause gas phase reactions. Such gas phase reactions
in general are detrimental. Generalizing [5, Chapter IV] to multiple species, the dominant collisions
are then given by those involving the carrier gas j = 0 on the right-hand side of (2.1), and it is
therefore justified for all equations i = 0, 1, . . . , ns to consider only the collision operators Qi0 and to
neglect the collision operators Qij , j = 1, . . . , ns [11, 12, 14]. In other words, only collisions between
molecules of each reactive species with molecules of the carrier gas are considered. We also observe
that (ii) since the carrier gas is inert, i.e., it does not react with the reactive species, its equation
i = 0 decouples completely from the remaining equations for i = 1, . . . , ns; the inertness is materially
needed here to justify the decoupling in the reaction boundary condition. Additionally, we make
the reasonable model assumptions that the carrier gas (iii) is itself in steady-state (∂f (0)/∂t = 0)
and (iv) is uniformly distributed in space (∇xf

(0) = 0) [5]. Then the equation for i = 0 in (2.1)
reduces to Q00(f (0), f (0)) = 0 only, which has as its solution a Maxwellian f (0)(x,v, t) = M (0)(v)
[5, 6]. We note that our formulation of the KTRM also tacitly assumes that reactions among the
reactive species in the gas phase are even less likely to occur than collisions among them; this
assumption is appropriate for processes of interest here [11, 16].

Retaining only the collision operators Qi0 and using the solution for f (0) in the equations for
the reactive species i = 1, . . . , ns in (2.1) yields the problem (1.1) with the linear collision operator
Qi(f (i)) := Qi0(f (i), f (0)). Following again [5, Chapter IV], we can rewrite the linear collision
operator in the form given in (1.2) that contains the known solution f (0)(v) of species i = 0
inside σi(v,v′) that can be precomputed or modeled directly [11]. The scattering term σi(v,v′)
is a positive function satisfying the symmetry relation σi(v,v′) = σi(v′,v) due to the principle
of detailed balance [5, Chapter IV]. Besides being a traditional formulation of the linear collision
operator in this context, we are interested in writing it in this form, because it facilitates the
application of the numerical method below.

2.3 Boundary Conditions and Initial Condition

In this section, we discuss the boundary and initial conditions for our application. For simplicity,
we use a scalar f(x,v, t) in this section, appropriate for a single-species example. Recall from
Section 2.1 that the boundary ∂Ω is composed of three distinct sections, ∂Ω = Γw ∪Γt ∪Γs, where
a different boundary condition will be prescribed for each of the three portions. In the following,
n = n(x) denotes the unit outward normal vector at a surface point x ∈ ∂Ω.

At the inflow boundary along the interface to the bulk of the gas phase at the top of the
domain Γt, we assume that the distribution of f is known; specifically, the inflow of the reactants
is prescribed by a Maxwellian distribution:

f(x,v, t) =
ctop

[2π(v∗)2]3/2
exp

(
− |v|2

2(v∗)2

)
, x ∈ Γt, n · v < 0. (2.3)

Here, v∗ is chosen to be the thermodynamic average speed and ctop represents the (dimensionless)
concentration at the top of the domain [12, 14].

At each portion of the vertical boundaries above the mean wafer surface Γs, specular reflection
is used

f(x,v, t) = f(x,v′, t), x ∈ Γs, n · v < 0, n · v′ > 0, (2.4)

with v = v′ − 2n(n · v′).
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The crucial boundary condition for the two applications under consideration is the one at the
wafer surface Γw that results in the deposition of the solid film. The general form is given as

f(x,v, t) = α(x, t)M(v), x ∈ Γw n · v < 0. (2.5)

Observe that the separation of variables indicates that the molecules will re-emit from the wafer
surface with a Maxwellian distribution, M(v). The term α(x, t) contains all details of any conserved
quantities, reaction rates, etc., and depends on the application. For atomic layer deposition, we refer
to [12, 14] and references therein for specific details of this boundary condition. For chemical vapor
deposition, we pose the following single-species model; see [11] for more details and a generalization
to multi-species models. A model for the deposition rate R(x, t) at the wafer surface for chemical
vapor deposition can be written as R(x, t) = γ0 η(x, t), where γ0 is the constant, dimensionless
sticking factor representing the percentage of molecules that “stick” to the wafer surface and η(x, t)
is the flux of the gaseous species to the surface

η(x, t) =
∫
n·v′>0

|n · v′|f(x,v′, t) dv′, x ∈ Γw. (2.6)

At the wafer surface, then, we use the boundary condition

f(x,v, t) = C [η(x, t)−R(x, t)]M(v), x ∈ Γw, n · v < 0. (2.7)

With R(x, t) = γ0η(x, t), we obtain

f(x,v, t) = C [1− γ0] η(x, t)M(v), x ∈ Γw, n · v < 0, (2.8)

with the scaling factor C chosen such that, in the absence of reactions (R(x, t) = 0), mass conser-
vation is guaranteed. In other words, we demand that influx must equal outflux for R = 0:∫

n·v<0
|n · v|f(x,v, t) dv =

∫
n·v>0

|n · v|f(x,v, t) dv. (2.9)

Finally, at the initial time t = 0, the distribution of the gaseous species is again assumed known
with a Maxwellian distribution

f(x,v, 0) = fini :=
cini

[2π(v∗)2]3/2
exp

(
− |v|2

2(v∗)2

)
x ∈ Ω, v ∈ R3, at t = 0, (2.10)

where cini denotes a constant. For instance, cini = 0 models the situation in which no reactive gas
is present at the beginning of the simulation.

Our boundary conditions are a special case of those in [22] and allow us to use the analytical
results of that work later. Specifically, using the notation from [22], we have ∂Ωin = Γt with
boundary condition

f(x,v, t) = fin(x,v, t), x ∈ ∂Ωin, n · v < 0, (2.11)

and ∂Ωre = Γw ∪ Γs with

f(x,v, t) =
∫
n·v′>0

r(x,v,v′)f(x,v′, t) dv′, x ∈ ∂Ωre, n · v < 0. (2.12)

As in [22], we make the following assumptions about r(x,v,v′) on the reflecting boundary ∂Ωre:

M(v) =
∫
n·v′>0

r(x,v,v′)M(v′) dv′, x ∈ ∂Ωre, n · v < 0, (2.13)

7



and

|n · v| r(x,v,v′)M(v′) = |n · v′| r(x,−v′,−v)M(v), x ∈ ∂Ωre, n · v < 0, n · v′ > 0. (2.14)

Equation (2.13) implies the preservation of the steady-state distribution. Equation (2.14) implies
that the number of molecules reflected from the wall from a velocity range of (v′,v′ + dv′) to a
velocity range of (v,v + dv) is equal to the number of molecules reflected from the wall from a
velocity range of (−v,−v − dv) to a velocity range of (−v′,−v′ − dv′) [5], i.e., the microscopic
behavior at the boundary is time reversible. Additionally, we require that for the initial and inflow
data ∫

Ω

∫
R3

f2
ini

dv
M(v)

dx ≤ Bini <∞, (2.15)∫
∂Ωin

∫
n·v<0

|n · v| f2
in

dv
M(v)

dS ≤ Bin <∞, (2.16)

for constants Bin, Bini for all t. These assumptions are reasonable for the application under con-
sideration.

3 THE NUMERICAL METHOD

For clarity of the presentation, we explain and analyze the numerical method for a single species
model (ns = 1) and drop the species superscripts. The generalization to several reactive species is
straightforward, since we plan on using explicit time-stepping to evaluate the boundary conditions
and right-hand side at the old time step. Hence, the concrete equation to be solved for f(x,v, t)
with x ∈ Ω ⊂ R3 and v ∈ R3 reads

∂f

∂t
+ v(1) ∂f

∂x1
+ v(2) ∂f

∂x2
+ v(3) ∂f

∂x3
=

1
Kn

Q(f), (3.1)

where v(1), v(2), and v(3) are the components of the velocity vector v in the x1-, x2-, and x3-
directions, respectively, and Q(f)(x,v, t) is the linear collision operator for a single-species model.
In this section only, we use superscripts for the components of the velocity vector v = (v(1), v(2), v(3))
to have the subcripts available for the indexing of the velocity mesh.

3.1 Series Expansion Methods based on Hermite Polynomials

In this section, we detail classical series expansions and the corresponding choice of basis functions
following [22, 23]. However, our notation is different in a number of ways: In particular, we
introduce a mapping from the indices in three dimensions to a one-dimensional counting scheme
instead of using a vector-valued index in 3-D; this choice makes the implementation of the velocity
discretization in computer code more convenient.

An approximation to the kinetic solution is obtained through a series expansion of the form

f(x,v, t) ≈ fK(x,v, t) :=
K−1∑
k=0

f̃k(x, t)ψk(v), (3.2)

where ψk(v), k = 0, 1, . . . ,K − 1, form an orthonormal set of basis functions in velocity space with
respect to the weighted L2-inner product

〈f, g〉G :=
∫

R3

f(v) g(v)
dv

M(v)
, (3.3)
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whose weight function 1/M(v) is motivated by theoretical considerations for the linear Boltz-
mann equation [18, 23]. This choice of weight function leads naturally to a family of orthonormal
basis functions defined by ψk(v) = M(v)H(1)

k1
(v(1))H(2)

k2
(v(2))H(3)

k3
(v(3)) which uses products of a

Maxwellian with one-dimensional (modified) Hermite polynomials H(δ)
kδ

(v(δ)), kδ = 0, . . . ,Kδ − 1,
δ = 1, 2, 3, as underlying orthonormal basis functions. This approach was already proposed by
Grad [15] and used in early work on this problem by Chorin [7].

To construct these basis functions, the weight function e−(v(δ))2 of the conventional Hermite
polynomials is transformed to the one-dimensional Maxwellian M (δ)(v) = exp(−(v(δ))2/2)/

√
2π for

v(δ) ∈ R in each of the dimensions δ = 1, 2, 3. Then the set {H(δ)
i (v(δ)), i = 0, 1, 2, . . .} forms a

family of orthonormal polynomials, where H(δ)
i (v(δ)) is a polynomial of degree i and H(δ)

i (v(δ)) and
H

(δ)
j (v(δ)) satisfy∫ +∞

−∞
M (δ)(v(δ))H(δ)

i (v(δ))H(δ)
j (v(δ)) dv(δ) = δij for all i, j ∈ {0, 1, 2, . . .}.

Here, δij denotes the Kronecker delta function, which is 1 for i = j and 0 for i 6= j. We use
these modified Hermite polynomials to define the following Gaussian quadrature rule for a function
p(v(δ)) ∫ +∞

−∞
M (δ)(v(δ))p(v(δ)) dv(δ) ≈

Kδ−1∑
`=0

q
(δ)
`

(
M (δ)(v(δ)

` )
)2
p(v(δ)

` ) (3.4)

with (modified, factored) quadrature weights q(δ)` . By choosing the roots of the Kδ-th degree Her-
mite polynomialH(δ)

Kδ
(v) as the collocation points v(δ)

` , ` = 0, . . . ,Kδ−1, and the quadrature weights

q
(δ)
` , ` = 0, . . . ,Kδ−1, appropriately, this approximation will be a unique Gaussian quadrature and

exact for polynomials up to degree 2Kδ − 1. The collocation points v(δ)
` will be symmetric about

0, that is, v(δ)
` = −v(δ)

Kδ−1−` for all ` = 0, . . . ,Kδ − 1.
We would now like to write a three-dimensional quadrature rule based on a Cartesian product

of three of the one-dimensional quadrature rules (3.4). Denote by v(δ)
µδ and q(δ)µδ , µδ = 0, . . . ,Kδ − 1,

the nodes and weights in the xδ-direction in (3.4) for δ = 1, 2, 3. We can now write the quadrature
rule for a function p(v) = p(v(1), v(2), v(3)) as∫

R

∫
R

∫
R
M (1)(v(1))M (2)(v(2))M (3)(v(3))p(v(1), v(2), v(3)) dv(1)dv(2)dv(3) (3.5)

≈
K1−1∑
µ1=0

K2−1∑
µ2=0

K3−1∑
µ3=0

q(1)µ1
q(2)µ2

q(3)µ3
(M (1)(v(1)

µ1
))2(M (2)(v(2)

µ2
))2(M (3)(v(3)

µ3
))2p(v(1)

µ1
, v(2)

µ2
, v(3)

µ3
).

We would like to define a more compact notation for both the nodes and weights of this quadrature
rule. Therefore, define the nodes vk ∈ R3 as vk = (v(1)

k1
, v

(2)
k2
, v

(3)
k3

) for kδ = 0, . . . ,Kδ − 1, δ =
1, 2, 3. The index k then must range from 0 to K − 1 with K := K1K2K3. As notation for this
transformation, introduce a mapping π(·) that maps the set {0, . . . ,K − 1} to {0, . . . ,K1 − 1} ×
{0, . . . ,K2 − 1} × {0, . . . ,K3 − 1} such that (k1, k2, k3) = π(k). We will also write component-wise
k1 = π1(k), k2 = π2(k), and k3 = π3(k), i.e., π = (π1, π2, π3). Since the mapping is one-to-one, an
inverse mapping π−1(·, ·, ·) exists, and k can be computed from (k1, k2, k3) as k = π−1(k1, k2, k3).
The mapping π−1 is explicitly defined as k = π−1(k1, k2, k3) = k1 +K1k2 +K1K2k3.
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We can now write the quadrature rule (3.5) for a function p(v) more compactly as∫
R3

M(v)p(v) dv ≈
K−1∑
µ=0

qµ (M(vµ))2 p(vµ) (3.6)

if we also define qµ = q
(1)
µ1 q

(2)
µ2 q

(3)
µ3 with (µ1, µ2, µ3) = π(µ). This quadrature is exact for functions

p(v) that are products of polynomials in each component v(δ) up to degree 2Kδ − 1 for δ =
1, 2, 3. Similarly, we can now write the basis functions ψk(v) := M(v)Hk(v) for k = 0, . . . ,K − 1
with M(v) = M (1)(v(1))M (2)(v(2))M (3)(v(3)) and Hk(v) := H

(1)
k1

(v(1))H(2)
k2

(v(2))H(3)
k3

(v(3)) for kδ =
0, . . . ,Kδ−1, δ = 1, 2, 3. By construction, the basis functions are orthonormal with respect to the
inner product 〈·, ·〉G.

To obtain an approximation of (3.1) by the spectral Galerkin ansatz, replace f(x,v, t) by
fK(x,v, t) =

∑K−1
`=0 f̃`(x, t)ψ`(v) and test against ψk(v) with respect to the inner product 〈·, ·〉G

to obtain

∂f̃k

∂t
+

K−1∑
`=0

〈
v(1)ψ`, ψk

〉
G

∂f̃`

∂x1
+

K−1∑
`=0

〈
v(2)ψ`, ψk

〉
G

∂f̃`

∂x2

+
K−1∑
`=0

〈
v(3)ψ`, ψk

〉
G

∂f̃`

∂x3
=

1
Kn

K−1∑
`=0

〈Q(ψ`), ψk〉G f̃`,

where the orthonormality of the basis functions has already been used. Introducing the coefficient
matrices Ã(δ), B̃ ∈ RK×K for δ = 1, 2, 3 with components of the coefficient matrices Ã(δ)

k` :=〈
v(δ)ψ`, ψk

〉
G

and B̃k` := 〈Q(ψ`), ψk〉G, we obtain the following system of conservation laws

∂F̃

∂t
+ Ã(1) ∂F̃

∂x1
+ Ã(2) ∂F̃

∂x2
+ Ã(3) ∂F̃

∂x3
=

1
Kn

B̃F̃ , x ∈ Ω, t > 0 (3.7)

for the vector of coefficient functions F̃ (x, t) := (f̃0(x, t), . . . , f̃K−1(x, t))T . Observe that (3.7) is a
first-order hyperbolic system of conservation laws where one must prescribe boundary conditions
on that part of ∂Ω that comprises the inflow boundary. The fact that the constant coefficient
matrices Ã(δ) are not diagonal makes it difficult to identify which part of ∂Ω constitutes the inflow
boundary for each f̃k.

In [22], the choice of a transformation matrix is based on the insight that the summation in
the quadrature rule

∑K−1
µ=0 qµψk(vµ)ψ`(vµ) can be split into “equal” parts to define an orthogonal

matrix P = (Pk`) that is shown to simultaneously transform all coefficient matrices Ã(δ), δ = 1, 2, 3,
to diagonal ones.

Lemma 1 Let A(δ)
k` = v

(δ)
kδ
δk`, Pk` = ψk(v`)

√
q`, (P T )k` = ψ`(vk)

√
qk for k, ` = 0, . . . ,K−1. Then

PP T = I and Ã(δ) can be simultaneously diagonalized as Ã(δ) = PA(δ)P T for all δ = 1, 2, 3.

Applying this transformation P to (3.7) results in the transformation of the system for the trans-
formed unknown ˜̃F (x, t) := P T F̃ (x, t). A straightforward computation shows that

˜̃
fk(x, t) =

K−1∑
µ=0

(P T )kµf̃µ(x, t) =
K−1∑
µ=0

√
qk ψµ(vk)f̃µ(x, t) =

√
qk fK(x,vk, t), (3.8)

where ˜̃
fk(x, t) is the k-th element of the transformed vector of coefficient functions given by ˜̃F (x, t) =

( ˜̃
f0(x, t), . . . ,

˜̃
fK−1(x, t))T . The fact that direct evaluation of the approximation fK(x,vk, t) at one
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of the discrete velocities v = vk does not give us f̃k(x, t) demonstrates that the application of
the initial and boundary conditions could be made simpler. In the next section, we introduce a
transformation which allows us to obtain the coefficient functions of a suitable expansion directly
from the evaluation of fK(x,v, t) at the velocity vector vk without any extraneous factor.

Stability and asymptotic convergence of the numerical solution fK obtained by the transforma-
tion described in Lemma 1 can be shown, which we quote here for later reference [22]. First, define
the norm ‖f‖2

G
:= 〈f, f〉G induced by the weighted L2-inner product (3.3) that depends on x and

t if f = f(x,v, t). Then, also define the following G(t)-norm

‖f‖2
G(t)

:=
∫

Ω
‖f‖2

G
dx =

∫
Ω

∫
R3

f2 dv
M(v)

dx, t ≥ 0, (3.9)

which is solely a function of time t if f = f(x,v, t) [22].

Theorem 2 The solution of the system obtained by transforming (3.7) with initial condition and
boundary conditions with (2.15)–(2.16) satisfies

‖fK‖2
G(t)

≤ Bini +
∫ t

0
Bin dτ for all t ∈ [0, tfin]. (3.10)

The proof in [22] follows in the spirit of Boltzmann’s H-Theorem by bounding the discretized
‖fK‖G(t)

. A convergence result is also available [22].

Theorem 3 Let f(x,v, t) denote the solution of (3.1) and fK(x,v, t) the solution of the system
(3.7). If f is assumed to be sufficiently smooth, then the error between the two solutions satisfies

‖f − fK‖G(t)
→ 0 as K →∞. (3.11)

The proof of this asymptotic convergence result is only available in the case when the reflecting
boundaries are assumed orthogonal to a coordinate axis with specular reflection [22].

3.2 A Series Expansion Method based on a Collocation Basis

In this section, we show that it is possible to choose alternative basis functions ϕk(v) in a series
expansion

f(x,v, t) ≈ fK(x,v, t) =
K−1∑
k=0

fk(x, t)ϕk(v) (3.12)

that lead directly to a diagonal system of conservation laws and explicit identification of the bound-
ary conditions. To demonstrate that such a choice is feasible, consider again the system of con-
servation laws with non-diagonal coefficient matrices (3.7). It was shown in Lemma 1 that the
non-diagonal coefficient matrices Ã(δ) could be simultaneously diagonalized; however, the trans-
formed unknowns ˜̃

fk(x, t) in (3.8) could not be computed by direct evaluation of fK(x,v, t) at a
particular vk. The following lemma holds, which shows that another choice of the transformation
matrix P leads to the same diagonal matrices A(δ) and the computation of the unknown coefficient
functions fk(x, t) in (3.12) by direct evaluation of fK(x,v, t) at the discrete velocity vk.

Lemma 4 Let A(δ)
k` = v

(δ)
kδ
δk`, Pk` = q`ψk(v`), (P−1)k` = ψ`(vk) for k, ` = 0, . . . ,K − 1. Then

PP−1 = I and Ã(δ) can be simultaneously diagonalized as Ã(δ) = PA(δ)P−1 for all δ = 1, 2, 3.
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Proof. Since the polynomial degree of the product v(δ)H
(δ)
`δ

(v(δ))H(δ)
kδ

(v(δ)) is never larger than
2Kδ − 1, the quadrature rule (3.6) is exact and the components of Ã(δ) can be computed as

(PA(δ)P−1)k` =
K−1∑
µ=0

K−1∑
ν=0

(qµψk(vµ))
(
v(δ)
µδ
δµν

)
(ψ`(vν))

=
K−1∑
µ=0

qµv
(δ)
µδ
ψk(vµ)ψ`(vµ) =

K−1∑
µ=0

qµ (M(vµ))2 v(δ)
µδ
H`(vµ)Hk(vµ)

=
∫

R3

M(v) v(δ)H`(v)Hk(v) dv =
∫

R3

v(δ)ψ`(v)ψk(v)
dv

M(v)
=

〈
v(δ)ψ`, ψk

〉
G

= Ã
(δ)
k` .

To verify that PP−1 = I, we compute, using (3.6),

(PP−1)k` =
K−1∑
µ=0

qµψk(vµ)ψ`(vµ) =
K−1∑
µ=0

qµ (M(vµ))2H`(vµ)Hk(vµ)

=
∫

R3

M(v)H`(v)Hk(v) dv =
∫

R3

ψ`(v)ψk(v)
dv

M(v)
= 〈ψk, ψ`〉G = δk`.

2

If we now consider the transformed unknown F (x, t) := P−1F̃ (x, t), direct computation shows

fk(x, t) =
K−1∑
µ=0

(P−1)kµf̃µ(x, t) =
K−1∑
µ=0

f̃µ(x, t)ψµ(vk) = fK(x,vk, t). (3.13)

Observe that this is the analogous result to (3.8) without the scaling factor
√
qk. Thus, the coeffi-

cient functions fk(x, t) can be computed by evaluating fK(x,vk, t) and the unknowns fk(x, t) are
exactly the unknowns in (3.12) we would like to solve for.

The fact that fk(x, t) = fK(x,vk, t) dictates that we must construct basis functions with the
property ϕk(vµ) = δkµ. This condition implies that the basis functions ϕk(v) are the collocation
basis functions based on the Gaussian quadrature roots with respect to the Maxwellian weight
function defined above. We construct the basis functions ϕk(v) again as a product of a Maxwellian
M(v) and polynomials based on these roots, which ensures that span {ψk} = span {ϕk}. This
guarantees that both methods produce the same numerical solution fK(x,v, t), that is, we have

fK(x,v, t) =
K−1∑
µ=0

f̃(x, t)ψµ(v) =
K−1∑
µ=0

f(x, t)ϕµ(v). (3.14)

This equivalence immediately guarantees stability and convergence from Theorems 2 and 3, re-
spectively. Additionally, since the Gaussian quadrature is exact for all needed integrals, the basis
functions have the following properties.

Lemma 5 For all k, ` = 0, . . . ,K − 1, the basis functions ϕk(v) satisfy the properties 〈ϕ`, ϕk〉G =
qk δk` and

〈
v(δ)ϕ`, ϕk

〉
G

= qk v
(δ)
kδ
δk` for δ = 1, 2, 3.

To obtain an approximation of (3.1) by the spectral Galerkin ansatz, insert the approximation
fK(x,v, t) =

∑K−1
`=0 f`(x, t)ϕ`(v) into (3.1) and test against ϕk(v) with respect to the inner product
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〈·, ·〉G to obtain

〈ϕk, ϕk〉G
∂fk

∂t
+

K−1∑
`=0

〈
v(1)ϕ`, ϕk

〉
G

∂f`

∂x1
+

K−1∑
`=0

〈
v(2)ϕ`, ϕk

〉
G

∂f`

∂x2

+
K−1∑
`=0

〈
v(3)ϕ`, ϕk

〉
G

∂f`

∂x3
=

1
Kn

K−1∑
`=0

〈Q(ϕ`), ϕk〉G f`.

Introducing the coefficient matrices A(δ) ∈ RK×K , δ = 1, 2, 3, and B ∈ RK×K with components
A

(δ)
k` :=

〈
v(δ)ϕ`, ϕk

〉
G
/qk = v

(δ)
kδ
δk`, δ = 1, 2, 3, and Bk` := 〈Q(ϕ`), ϕk〉G /qk, we obtain the following

system of linear hyperbolic partial differential equations

∂F

∂t
+A(1) ∂F

∂x1
+A(2) ∂F

∂x2
+A(3) ∂F

∂x3
=

1
Kn

BF, x ∈ Ω, t > 0, (3.15)

for the vector of coefficient functions F (x, t) := (f0(x, t), . . . , fK−1(x, t))T . Observe that the ma-
trices A(δ) are exactly those that we would have obtained through the diagonalization procedure
in Lemma 1. Since the coefficient matrices in (3.15) are diagonal and constant allows us in turn to
rewrite the system in conservation form

∂fk

∂t
+∇x · (akfk) =

1
Kn

bk, k = 0, . . . ,K − 1, (3.16)

with constant vectors ak := (A(1)
kk , A

(2)
kk , A

(3)
kk )T = (v(1)

k1
, v

(2)
k2
, v

(3)
k3

)T = vk for all k = 0, . . . ,K − 1 and
the right-hand side functions bk(x, t) :=

∑K−1
`=0 Bk`(x, t)f`(x, t).

Another advantage of ϕk(v) is that they lead directly to the appropriate treatment of the
boundary conditions. Each hyperbolic partial differential equation for fk(x, t) in (3.15) or (3.16)
needs to be supplied with boundary conditions on that part of ∂Ω that constitutes its inflow
boundary Γ−k := {x ∈ ∂Ω : n(x) · ak < 0} with ak in (3.16) and where n(x) denotes the unit
outward normal vector at x ∈ ∂Ω. Consider a generic kinetic boundary condition at x ∈ ∂Ω for
the inflow part of the density function f(x,v, t), that is,

f(x,v, t) = f−(x,v, t), x ∈ ∂Ω, n · v < 0, (3.17)

with a given function f−(x,v, t). Using the fact that ϕ`(vk) = δk`, we have f(x,vk, t) = fk(x, t),
and we obtain by letting v = vk in (3.17)

fk(x, t) = f−(x,vk, t), x ∈ ∂Ω, n · vk < 0. (3.18)

Since ak = vk for all k = 0, . . . ,K − 1, this condition is exactly the desired condition at the inflow
boundary Γ−k . That is, for each equation in (3.16), we have the boundary condition

fk(x, t) = f−(x,vk, t), x ∈ Γ−k , (3.19)

given exactly on the inflow part of Γ−k ⊂ ∂Ω defined above.

3.3 Spatial Discretization and Parallel Implementation

Considering either the system (3.15) or the conservative form (3.16), the problem is now posed in
standard form amenable for numerical computations. However, due to the large size K of each
system, the irregular shape of the spatial domain Ω ⊂ R3, and the requirement to compute for
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long times in transient simulations for realistic application examples, they still pose a formidable
challenge. We choose to use the discontinuous Galerkin method (DGM) [8], implemented in the
code DG [20], applied to the conservation form (3.16) to solve each system, because it is perfectly
suited for the resolution of problems in conservation form on domains with potentially very irregular
shape. In the studies here, we use linear polynomials on each element. This work does not focus
on the time discretization and explicit Euler time-stepping is used at present.

For the parallel computations, the domain Ω is partitioned in a pre-processing step, and each
parallel processor is assigned one subdomain. Certain pairs of disjoint subdomains will share edges
for two-dimensional domains and faces for three-dimensional domains, and the processors on which
they reside will have to communicate with each other at every time step to pass information
on fluxes across their shared element edges or faces, respectively. Since we wanted to focus on
the performance of the parallel implementation, we do not use automatic mesh refinement and
coarsening at present, which would incur additional work and result in additional communications
to redistribute elements for load balancing.

The domains in Figure 1 are in fact relatively regular in shape, and we use quadrilateral elements
in 2-D and brick elements in 3-D for them; however, DG also implements, for instance, tetragonal
elements in 3-D; see [11] for an example. For our convergence studies and parallel performance
studies, the shape of the elements is of minor relevance. In 2-D, the degrees of freedom are the values
of the K solution components f (i)

k (x, t), k = 0, . . . ,K − 1, for each reactive species i = 1, . . . , ns on
all 4 vertices of each of the Ne quadrilaterals; hence the complexity of the computational problem
is given by 4NensK degrees of freedom. In 3-D, we use brick elements with 8 vertices, resulting in
8NensK degrees of freedom. Hence, the complexity of the computational problem is proportional
to the number of elements Ne, to the number of species ns, and to the system size K.

4 NUMERICAL RESULTS

All computational results presented are for single-species simulations (ns = 1) of chemical vapor
deposition (CVD) in both two and three spatial dimensions on the computational domains of
Figure 1 with the width of the feature mouth L = 0.25 µm and an aspect ratio A = 3. The
problem is given by (1.1)–(1.2) with i = 1, and we drop the species index in all variables f (i), M (i),
σi, etc. We use a relaxation time approximation for the collision operator by choosing σ = 1/τ
with relaxation time τ = 1 in a dimensionless single-species model [11, 21, 23, 24]. Section 4.1
demonstrates the capabilities of the KTRM and its implementation for an application example both
in two and three dimensions. For both choices of the spatial dimension, the evolution over time
of two quantities is shown: the dimensionless concentration c(x, t) =

∫
f(x,v, t) dv as a function

of x ∈ Ω and the kinetic density f(x,v, t) as a function of v at a selected point x ∈ Ω. The
application example has operating conditions in the transition regime with Kn = 1.0 that justifies
the use of a kinetic model. Additional results for different Kn are available [24]. Section 4.2
demonstrates the numerical stability and convergence for the velocity discretization of our method
for a wide range of Kn from 0.01 to ∞ in two and three dimensions. These studies are important,
because they demonstrate that the asymptotic convergence predicted by the analytical results is
attainable for reasonable resolutions. Finally, Section 4.3 contains parallel performance studies
for the implementation of our numerical method. The studies use Kn = ∞, which is the most
conservative case, as no calculations are required for the right-hand side in (1.1).

4.1 Application Results

The purpose of CVD is to deposit material in features: either a thin film (liner or layer), or to fill
them. This is accomplished by feeding a reactive gas stream over the surface of the silicon wafer.
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Specifically, we simulate just the initial, transient layer of deposition, as opposed to feature fill of
the entire trench. Such a simulation is particularly relevant to processes designed to deposit thin
films of material (a few tens of nanometers thick in practice).

We assume that no reactive gas is present in the feature initially: f(x,v, 0) = 0. The reactive
gas is then fed into the top of the domain with a Maxwellian distribution M(v). When the gas
reaches the wafer surface, a fraction of the molecules “stick” to the surface and react with the silicon
surface. The fraction of the molecules that stick to the wafer surface is given by the sticking factor
γ0, which can range from 0 (all particles re-emit) to 1 (all particles stick to the wafer surface).
We model the re-emission of the remaining molecules as a Maxwellian distribution, as given by
the wafer surface boundary condition (2.8). The sticking factor is chosen as γ0 = 0.01, which is a
typical values for processes under consideration [3]. This choice indicates that approximately 1%
of the gas molecules stick and react with the wafer surface; the remaining molecules are re-emitted
with a Maxwellian velocity distribution.

Two-Dimensional Application Studies

In this subsection, we report results for the evolution of dimensionless concentration and kinetic
density for the 2-D/2-D simulations in the domain sketched in Figure 1 (a). Figure 3 shows the
dimensionless concentration of the reactive species for Kn = 1.0 at six (re-dimensionalized) points
in time. In Figure 3 (a), the dimensionless concentration is shown for the initial state t = 0 ns.
Since none of the reactive gas is present, c = 0 everywhere. Figures 3 (b)–(c) show that after
t = 1 ns the gas has already reached the feature and after t = 5 ns the gas has reached the bottom
of the feature, respectively. We also see an increase in concentration just above the flat areas of the
wafer surface, which is due to re-emission of molecules from the surface. The feature fill is relatively
rapid in this regime, but the concentration profile is not very smooth; in particular, the jumps at
the sharp corners in Figure 3 are expected in this regime [2]. Figures 3 (d)–(e) show the further
increase in concentration through t = 20 ns. Finally, Figure 3 (f) shows that at approximately
t = 40 ns the feature is nearly filled with the reactive species.

One of the advantages of deterministically solving the Boltzmann equation is the direct access
to the kinetic density f(x,v, t). In addition to being able to compute c(x, t) as a function of x, this
also allows for the ability to analyze f(x,v, t) as a function of v at a chosen point x ∈ Ω. We choose
the point x = (0.0, 0.0) at the center of the mouth of the feature to avoid the effect of re-emissions
from the flat areas of the wafer surface, since we are particularly interested in understanding the
directionality of the flow observed in the concentration results.

Figure 4 shows the kinetic density f(x,v, t) for Kn = 1.0 as a function of v ∈ R2 at the
same times as the concentration plots in Figure 3 with x = (0.0, 0.0) at the mouth of the feature.
The plots in this figure are oriented analogously to the concentration plots in Figure 3, such that
flow downwards into the feature, to the right in Figure 3, corresponds to a kinetic density with
larger values also on the right of a plot. Figure 4 (a) confirms the initial condition f = 0. As
Figure 4 (b) shows, molecules have already reached the position x by t = 1 ns in this regime, but
the kinetic density distribution is skewed in the negative v2-direction (the right side of the plot).
This indicates that the flow is directional. This is due to the fact that the molecules have not been
re-emitted from the wafer surface and have not been randomized by collisions yet in this regime.
In Figures 4 (c), one sees a continued increase in the kinetic density for v2 < 0 (the right side of
the plot), however one also sees an increase in density in the v2 > 0 direction (the left side) due
to re-emission from the surface. An examination of the concentration in Figure 3 shows that the
gas reaches the mean wafer surface after only a few nanoseconds. Thus, re-emission in the positive
v2-direction is seen and, hence, an increase in the corresponding components of the kinetic density.
Observe in Figures 4 (d)–(f) that the density becomes apparently uniform about the origin due
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to collisions and re-emission with a Maxwellian velocity distribution; actually, the density is not
uniform, but an inspection of the individual numbers reveals that its upward velocity components
are slightly smaller than the downward components due to the deposition of material at the wafer
surface.

In summary, the flow for Kn = 1.0 gives rapid feature fill, yet the gas profile is relatively rough.
This corresponds to a less collisional flow in the transition regime. The directionality of the flow
is clearly visible in the plots of the kinetic density f and explains our interest in directly accessing
f(x,v, t) as function of v.

Three-Dimensional Application Studies

In this subsection, we report results for the evolution of dimensionless concentration and kinetic
density for the 3-D/3-D simulations in the domain sketched in Figure 1 (b). Figure 5 shows
slice plots of the dimensionless concentration of the reactive species for Kn = 1.0 at several (re-
dimensionalized) points in time. The slices are four horizontal cross-sections of the domain Ω at
heights x3 = −0.75, −0.50, −0.25, and 0.00. The shapes of the three lower slices indicate the
shape of the trench corner domain, while the top slice at x3 = 0.0 includes the flat areas of the
wafer surface. The different shades of gray indicate the value of the dimensionless concentration
0 ≤ c(x, t) ≤ 1. The lightest shade of gray corresponds to c = 0 and the darkest shade indicates
c = 1. We do not show the initial concentration c = 0 at t = 0 ns. Figure 5 (a) shows that the
concentration has started reaching the flat parts of the wafer surface at x3 = 0.0 already after
1 ns. Examining Figure 5 (b), one sees that that a high concentration on the flat parts of the wafer
surface has already been attained after only 2 ns. Less concentration is still seen above the mouth
of the L-shaped trench, as the molecules continue to travel down into the feature there. But after
just 5 ns, some molecules have reached the bottom of the feature in Figure 5 (c). Figures 5 (d)–(f)
show the evolution of the concentration up to t = 40 ns, at which point all slices show significant
levels of concentration. The short transport time is a function of the less collisional flow in this
regime.

We now study the kinetic density f(x,v, t) in three dimensions. Figure 6 shows the kinetic
density f(x,v, t) in the transition regime for Kn = 1.0 as a function of v ∈ R3 with x at the
mouth of the feature in the corner with the physical point x = (0.375, 0.375, 0.0) at the same times
as in Figure 5. Figure 6 shows isosurface plots of the kinetic density at f∗ = 0.005 at several
(re-dimensionalized) points in time. That is, the shape in each plot shows all points of the velocity
domain with f(x,v, t) = f∗, up to the resolution of the velocity discretization. The reference
value f∗ = 0.005 is selected such that a Maxwellian distribution results in an isosurface that fits
in the axis limits in the plots in Figure 6 given by the discrete velocities. Figure 6 (a) shows an
empty plot, which indicates that by t = 1 ns, the kinetic density f(x,v, t) at this position x is
still strictly less than f∗ in all velocity components. This agrees with Figure 5 (a) that indicates a
very low concentration at the mouth of the feature. Figure 6 (b) shows that by t = 2 ns molecules
with downward velocity components have reached the point x, indicated by f > f∗ for v3 < 0
components. Observe that the density is skewed heavily in the negative v3-direction. This is due to
the fact that the flow is downward into the feature. In Figure 6 (c) at t = 5 ns, f has now attained
values above f∗ also in the components for v3 > 0, but the flow continues to show directionality
indicated by the slightly angled sides of the isosurface shape. As Figures 6 (c)–(f) show, this
directionality becomes less pronounced over time, but does persist in this regime up to t = 40 ns.

These 3-D/3-D results confirm that the flow is less collisional for Knudsen numbers in the
transition regime. The plots of the kinetic density show that significant fractions of the incoming
reactive species get to the bottom of the feature relatively rapidly. While this is clearly visible in
the plots of the kinetic density in Figure 6, notice that the concentration plots in Figure 5 do not
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reveal this. This again explains our interest in directly accessing the kinetic density as a function
of velocity.

4.2 Numerical Convergence of the Spectral Galerkin Method

In this section, we present two- and three-dimensional numerical stability and convergence demon-
strations for our numerical method. Its asymptotic stability and convergence are guaranteed by
theorems in [22] as the number of expansion coefficients K → ∞. But the computational studies
in [22] only cover one spatial dimension; our studies extend the results to higher dimensions. This
is important to establish that reasonable values of finite K give acceptable results.

As the true solution f in Theorem 3 is unknown, we use instead f := fK(x,v, t), where K =
32 × 32 = 1024 is the finest solution in velocity space that we obtained for the two-dimensional
case. The spatial mesh with mesh size h = 0.03125 and the constant time step ∆t = 10−4 were
chosen such that the velocity error dominates [24]. The simulations were run for 10 ns starting
from an initial condition fini with cini = 0.9 in (2.10) for all x ∈ Ω.

Table 1 displays numerical stability and convergence for our method with Kn = 0.01, 1.0,
100.0, and ∞. Column 1 shows the level of velocity discretization ranging from K = 2× 2 = 4 to
K = 16×16 = 256. The second column contains the G(t)-norm of the numerical solution ‖fK‖G(t)

,
which converges to the G(t)-norm of f , as predicted by Theorem 2, where ‖f‖

G(t)
= 0.48547,

0.52547, 0.52922, and 0.52926 for Kn = 0.01, 1.0, 100.0, and ∞, respectively. Column 3 contains
the error between the norm of f and the norms of fK . The decreasing errors indicate that the
norms of the numerical solution fK are converging to the norm of f . The fourth column contains
the ratio of successive errors between these norms. The fifth column shows the error between f
and the numerical solution fK in the G(t)-norm. As K increases, the error ‖f−fK‖G(t)

decreases
and demonstrates numerical convergence of our method in all regimes, as predicted by Theorem 3.
Notice for completeness that the theorem is only proved for specular reflection on ∂Ωre [22], so
our numerical studies using the reaction condition on the wafer surface Γw ⊂ ∂Ωre constitute an
extension beyond the theory. The last column contains the observed convergence rates for our
method. A comparison of the values in column 6 indicates that the convergence is better in the
near-hydrodynamic regime than in the other regimes.

We now present three-dimensional numerical stability and convergence results. As the true
solution f is unknown, we define again f := fK(x,v, t), where K = 8 × 8 × 8 = 512 is the finest
solution in velocity space that we obtained in three dimensions. The spatial mesh with mesh size
h = 0.0625 and constant time step ∆t = 10−4 were chosen such that the velocity error dominates
[24]. The simulations were run for 10 ns starting from an initial condition fini with cini = 0.9 in
(2.10) for all x ∈ Ω.

Table 2 summarizes the stability and convergence results for the 3-D/3-D case. Column 1 shows
the level of velocity discretization for K = 2×2×2 = 8 and K = 4×4×4 = 64. The second column
contains the G(t)-norm of the discrete solution fK that approaches the G(t)-norm of f , as predicted
by Theorem 2, where ‖f‖

G(t)
= 0.62035, 0.65907, 0.66249, and 0.66314 for Kn = 0.01, 1.0, 100.0,

and ∞, respectively. Column 3 contains the error between the norms of f and fK . The decreasing
errors indicate that the norms of the numerical solution fK are converging to the norm of f . The
fourth column contains the ratio of successive errors between these norms. The fifth column shows
the error between f and the numerical solution fK in the G(t)-norm. As K increases, the error
‖f−fK‖G(t)

decreases and demonstrates convergence in all regimes, as predicted by Theorem 3.
The last column contains the observed convergence rate for our method. A comparison suggests
again that the order of convergence may be higher in the near-hydrodynamic regime.

These studies in two and three dimensions show that asymptotic convergence is achieved as
K → ∞ in agreement with Theorem 3 for a range of Knudsen numbers 0.01 ≤ Kn ≤ ∞ and that
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K ‖fK‖G(t)
‖f‖

G(t)
−‖fK‖G(t)

‖f‖
G(t)

−‖fK/4‖G(t)

‖f‖
G(t)

−‖fK‖
G(t)

‖f−fK‖G(t)

‖f−fK/4‖G(t)

‖f−fK‖
G(t)

Kn = 0.01
4 0.47861 6.86e-03 N/A 8.73e-03 N/A

16 0.48252 2.95e-03 2.3254 3.69e-03 2.3676
64 0.48425 1.22e-03 2.4180 1.51e-03 2.4364

256 0.48508 3.90e-04 3.1282 4.94e-04 3.0640
Kn = 1.0

4 0.52021 5.28e-03 N/A 9.31e-03 N/A
16 0.52299 2.51e-03 2.1036 4.70e-03 1.9813
64 0.52455 9.20e-04 2.7283 4.63e-03 1.0144

256 0.52522 2.50e-04 3.6801 2.88e-03 1.6052
Kn = 100.0

4 0.52303 6.20e-03 N/A 1.11e-02 N/A
16 0.52615 3.10e-03 2.0162 5.73e-03 1.9470
64 0.52801 1.20e-03 2.5371 5.63e-03 1.0177

256 0.52887 3.50e-04 3.4571 4.33e-03 1.3026
Kn = ∞

4 0.52306 6.20e-03 N/A 1.12e-02 N/A
16 0.52599 3.27e-03 1.8960 8.78e-03 1.2738
64 0.52805 1.21e-03 2.7025 6.63e-03 1.3227

256 0.52891 3.50e-04 3.4571 4.34e-03 1.5261

Table 1: Demonstration of numerical stability and convergence for the spectral Galerkin discretiza-
tion of 2-D velocity space for Kn = 0.01, 1.0, 100.0, and ∞.

K ‖fK‖G(t)
‖f‖

G(t)
−‖fK‖G(t)

‖f‖
G(t)

−‖fK/8‖G(t)

‖f‖
G(t)

−‖fK‖
G(t)

‖f−fK‖G(t)

‖f−fK/8‖G(t)

‖f−fK‖
G(t)

Kn = 0.01
8 0.61551 4.84e-03 N/A 5.89e-03 N/A

64 0.61848 1.87e-03 2.5882 1.79e-03 3.2905
Kn = 1.0

8 0.65713 1.94e-03 N/A 8.43e-03 N/A
64 0.65869 3.80e-04 5.1052 5.09e-03 1.6561

Kn = 100.0
8 0.65953 2.96e-03 N/A 1.01e-02 N/A

64 0.66137 1.12e-03 2.6429 6.73e-03 1.5007
Kn = ∞

8 0.65956 3.58e-03 N/A 1.01e-02 N/A
64 0.66142 1.72e-03 2.0814 6.75e-03 1.4963

Table 2: Demonstration of numerical stability and convergence for the spectral Galerkin discretiza-
tion of 3-D velocity space for Kn = 0.01, 1.0, 100.0, and ∞.
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Ne K DOF p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
320 64 81,920 16 8 5 3 1 < 1 < 1
320 256 327,680 125 73 43 22 10 6 3
320 1024 1,310,720 1785 887 450 227 122 67 35

Table 3: Observed wall clock time Tp in minutes for p processors for 2-D/2-D simulations for
Kn = ∞.

results obtained for finite resolutions K that are attainable in practice are reliable.

4.3 Parallel Performance Studies

In this section, we present results from parallel performance studies for the KTRM using the DGM
code DG on a 64-processor Beowulf cluster, in extension of earlier demonstrations on a cluster with
8 processors [26]. Specifically, the machine is an IBM 1350 cluster arranged as 32 dual-processor
nodes with 2.0 GHz Intel Xeon (512 kB L2 cache) chips and 1 GB of memory per node. The nodes
are connected by a high-performance Myrinet interconnect, and files are served by a fast ethernet.
Communication among nodes is accomplished using the Message-Passing Interface (MPI) standard.

The motivation for parallel computing is that several processors working on a problem (with
fixed size) should be able to solve the problem faster than a single processor, because the calculation
operations in the algorithm are distributed across the processors and executed in parallel. That
is, ideally, a computation using p processors should be p times as fast as a computation on 1
processor. But for algorithms, such as DGM, that require information exchange between the
processors (fluxes between finite elements at boundaries of subdomains; see Section 3.3), using more
processors necessitates additional communication operations. Therefore, using more processors
simultaneously causes decreasing calculation time and increasing communication time, leading to
a point of diminishing returns; discovering this point is the purpose of parallel performance studies
in practice.

Since both calculations and communications are an inherent part of parallel computing, both
types of operations must be included in timings of parallel programs, which are therefore based on
wall clock time (and not CPU time or similar). We compute the wall clock time of a simulation as
the difference between time stamps assigned by the operating system to the first and last output
file created during the simulation; this is the most pessimistic timing measure possible, because in
addition to calculations and communications of our code, it includes any other delays associated
with the operating system and, for instance, writing of output files. Using this pessimistic measure,
we cannot rely on the resolution of simulation times of less than 1 minute; such timings will be
reported as < 1 minute.

The parallel performance results presented involve simulations with Kn = ∞. A Knudsen
number of Kn = ∞ corresponds to a Boltzmann equation with zero right-hand side. Since there
are no arithmetic operations needed to compute the right-hand side, these simulations contain fewer
calculations than those with Kn <∞. Thus, speedup results based on simulations with Kn = ∞ are
again the most pessimistic ones possible, because cases with Kn <∞ involve more calculations —
without incurring additional communications — and hence may exhibit better parallel performance.

In 2-D, we choose a mesh with Ne = 320 elements and vary K to control the computational
complexity of the problem. We expect to see an increase in observed wall clock times for larger
K, but also better speedup. Table 3 contains the observed wall clock times Tp in minutes for
computations using p processors for three cases of progressively finer velocity resolution; on p =
1 processor, a serial implementation of the same algorithm is used. An examination of each column
for a fixed p indicates that, as expected, an increase in run time is seen for larger K. For each fixed

19



Ne K DOF p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
1984 8 126,976 19 11 6 4 2 1 < 1
1984 64 1,015,808 120 59 30 16 12 5 3
1984 512 8,126,464 3307 1663 902 480 218 124 60

Table 4: Observe wall clock time Tp in minutes for p processors for 3-D/3-D simulations for Kn = ∞.

resolution though, as we increase the number of processors, a decrease is seen in the simulation
times; some of the simulations for K = 64 are so short that we cannot resolve their timings with
our resolution of 1 minute accuracy.

Figure 7 contains speedup and efficiency plots for the 2-D/2-D simulations. The first plot in the
figure contains speedup Sp := T1/Tp, defined as ratio of the wall clock time T1 using 1 processor
over the time Tp using p processors, for the three resolutions with the horizontal axis denoting the
number of processors p and the vertical axis denoting speedup. The optimal value is Sp = p and
shown as a dashed line for visual guidance. The speedup is very good up to 16 processors in all
cases; we cannot plot any speedup for p = 32 and 64 for K = 64. For the more complex cases,
speedup tapers off a little for p > 16. The best speedup is seen for the most computationally
complex case K = 1024. The second plot in Figure 7 shows the efficiency Ep := Sp/p for the three
test cases. The optimal value is Ep = 1 and shown as a dashed line for visual guidance. Since
the efficiency is a function of speedup, we see the same results as in the speedup plot in principle.
But an advantage of the efficiency plot is that it allows us to determine that there is a drop-off in
efficiency from 1 to 2 as well as to 4 and 8 processors in some cases; this may be a result of initial
startup associated with a parallel code on the cluster combined with possibly less than optimal
splitting of the spatial domain Ω into subdomains for certain values of p. But this initial drop-off
in efficiency does not continue as p grows, giving very good results for p ≥ 16 in fact. The best
efficiency is seen for the most complex case K = 1024, which stays above 80% all the way up to
64 processes.

We now conduct analogous 3-D/3-D parallel performance studies. We choose a mesh with
Ne = 1984 elements and vary K. Table 4 contains the observed wall clock time for computations
using p processors for the three different velocity resolutions. As expected, we see longer simulation
times for the more complex problems and a decrease in computation time with the use of additional
processors.

Figure 8 contains speedup and efficiency results for the 3-D/3-D studies. The first plot in in
the figure shows the parallel speedup. We see again that the more complex cases lead to better
performance. The efficiency plot in Figure 8 allows us again to see in more detail that there is
a drop-off in efficiency from 1 to 2 processors. But both plots show that speedup and efficiency
remains excellent all the way up to 64 processors for the most complex case with K = 512.

The performance results demonstrate that time is saved by parallel computations in all cases,
while the improvement with each doubling of process numbers p is not very uniform in some cases.
This non-uniformity may be the result of the particular partitioning of the domain Ω into subdo-
mains; notice that the partitioning is independently chosen for every p, so doubling the number of
processes may or may not introduce additional communications. But all studies demonstrate that
for the most complex cases with the largest numbers of degrees of freedom, parallel performance
is excellent, with efficiency remaining above at least 80% all the way up to 64 processes. Recall
that the choice of Kn = ∞ reduced the complexity of the cases shown as no right-hand side is
computed and recall that our measure of wall clock time as a difference in time stamps of output
files make these results pessimistic predictors of performance. These results are also consistent with
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additional performance studies with K fixed and Ne varying [24].

5 CONCLUSIONS

In Section 2, we sketched the application problem of chemical vapor deposition and the extension
of the kinetic transport and reaction model (KTRM) to include the effect of collisions. The KTRM
is given by a system of transient linear Boltzmann equations for the reactive species.

In Section 3, we presented a spectral Galerkin method used to discretize velocity space that
approximates each linear Boltzmann equation by a system of linear conservation laws. We show
how our choice of basis functions leads directly to diagonal coefficient matrices in the system of
conservation laws and also allows for the explicit identification of the inflow boundary condition
for each equation in the system. Since the expansion of the Galerkin method is equal to the one
obtained classically, Theorems 2 and 3 also guarantee stability and convergence of our method.

Section 4 presented examples of application results in two and three dimensions that show the
capability of the model and its numerical method. The results indicate that the application for
Knudsen numbers in the transition regime admits solutions that are different from Maxwellians at
some points in time, justifying our interest in accessing the kinetic density directly. Meanwhile,
the solutions are still close enough to Maxwellians to allow for the use of a moment method of
our type. We have numerically demonstrated convergence and stability for 2-D/2-D and 3-D/3-D
simulations. While these results are guaranteed from previous analysis in the limit as the number
of expansion terms K tends to infinity, these demonstrations are important to convince ourselves
that convergence can indeed be achieved with the finite values for K that are realistically possible
for high-dimensional simulations. Finally, we demonstrate that the parallel implementation of our
method provides an efficient tool for large numbers of processors on a distributed-memory cluster
with high-performance interconnect.
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Figure 1: Schematics of (a) two-dimensional and (b) three-dimensional domains defining the feature
width L and aspect ratio A.
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Figure 2: Schematic of the evolution of deposition of a thin initial layer during chemical vapor
deposition.
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(a) t = 0 ns (b) t = 1 ns

(c) t = 5 ns (d) t = 10 ns

(e) t = 20 ns (f) t = 40 ns

Figure 3: Dimensionless concentration c(x, t) as function of x ∈ Ω for Kn = 1.0 at selected (re-
dimensionalized) times.
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(a) t = 0 ns (b) t = 1 ns

(c) t = 5 ns (d) t = 10 ns

(e) t = 20 ns (f) t = 40 ns

Figure 4: Kinetic density f(x,v, t) as function of v ∈ R2 for Kn = 1.0 at selected (re-
dimensionalized) times. Coordinates of spatial point at the feature mouth: x = (0.0, 0.0).
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(a) t = 1 ns (b) t = 2 ns

(c) t = 5 ns (d) t = 10 ns

(e) t = 20 ns (f) t = 40 ns

Figure 5: Slice plots of the dimensionless concentration c(x, t) as function of x ∈ Ω for Kn = 1.0 at
selected (re-dimensionalized) times. The horizontal slices are at heights x3 = −0.75, −0.50, −0.25,
and 0.00. Gray scale from light color for c = 0 to dark color for c = 1.
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(a) t = 1 ns (b) t = 2 ns

(c) t = 5 ns (d) t = 10 ns

(e) t = 20 ns (f) t = 40 ns

Figure 6: Isosurface plots of the kinetic density f(x,v, t) as function of v ∈ R3 for Kn = 1.0 at
selected (re-dimensionalized) times. Coordinates of spatial point above the corner trench: x =
(0.375, 0.375, 0.0).
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Speedup Efficiency

Figure 7: Speedup and efficiency for 2-D/2-D simulations with Ne = 320 for Kn = ∞.

Speedup Efficiency

Figure 8: Speedup and efficiency for 3-D/3-D simulations with Ne = 1984 for Kn = ∞.
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