
A NON-NEGATIVITY PRESERVING NEWTON METHOD FOR
HIGH-ORDER IMPLICIT TIME STEPPING

MATTHIAS K. GOBBERT∗, MICHAEL MUSCEDERE∗ , THOMAS I. SEIDMAN∗ , AND

RAYMOND J. SPITERI†

Abstract. Large classes of mathematical models approximate the evolution of quantities that
are inherently non-negative because of what they represent physically, e.g., chemical concentrations
or populations. However, even if a mathematical model is guaranteed to have a non-negative solution,
the non-negativity of a numerical solution is often destroyed by the discretization of the mathematical
model. In the case of implicit time discretizations of ordinary differential equations (ODEs), the non-
negativity of the numerical solution is often destroyed by the truncated Newton method used to solve
them. We propose a modification to standard implicit initial-value problem solvers that guarantees
the non-negativity of the numerical solution and all intermediate Newton iterates by controlling the
size of the Newton step. The algorithm is implemented in the context of the numerical differentiation
formulas, a fully implicit family of high-order time-stepping methods, for a general system of first-
order ODEs with mass matrix. The effectiveness of the method is demonstrated through comparisons
against other non-negativity preserving methods on the classical Robertson kinetics problem and on
a three-species reaction-diffusion system with transient and moving internal layers.

Key words. Numerical differentiation formulas, Newton method, reaction-diffusion equations,
method of lines, finite difference method.

AMS subject classifications. 35K57, 65L06, 65M06, 65M50, 90C53.

1. Introduction. Large classes of mathematical models approximate the time
evolution of quantities that are inherently non-negative because of what they represent
physically, e.g., chemical concentrations or populations. However, even if it can be
guaranteed that a mathematical model has a non-negative solution, the non-negativity
of its numerical solution is often destroyed by the discretization of the mathematical
model, for instance by the time discretization of an ordinary differential equation
(ODE) with a time step that exceeds the radius of monotonicity; see, e.g., [13, 24] for
extensive discussions. In particular, if an implicit time-stepping method is used for
the time evolution, so that a system of non-linear algebraic equations must be solved
at each time step, then the process of approximating the solution (typically by some
form of Newton’s method) may destroy the non-negativity property of the numerical
solution, even if the non-linear algebraic equations have a non-negative exact solution
[19, page 592].

In this paper we propose an algorithm that modifies the Newton iteration inside an
implicit high-order time-stepping method to guarantee non-negativity of the resulting
numerical solution and all intermediate iterates. Our algorithm is designed for the
general initial-value problem (IVP)

M
dy

dt
= f(t, y), 0 < t ≤ tfin, y(0) = yini,(1.1)

where y(t) is a vector of time-dependent functions. Here, M denotes a mass ma-
trix, such as would result from the use of the finite element method as the spatial
discretization in a method-of-lines approach to discretize a PDE. We assume that

∗Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000
Hilltop Circle, Baltimore, MD 21250, U.S.A. ({gobbert,mmusce1,seidman}@math.umbc.edu).
†Department of Computer Science, University of Saskatchewan, 110 Science Place, Saskatoon,

SK S7N 5C9, Canada (spiteri@cs.usask.ca). The research of this author was supported in part by
grants from MITACS, Martec, Ltd., and NSERC Canada.

1

2 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

M is non-singular and constant for now and that the given problem (1.1) is stiff.
For reliability and efficiency of the code, it is vital that the ODE solver include de-
pendable mechanisms for error estimation as well as automatic step size and order
control. Well-known and recommended IVP codes for this problem include VODE [3],
CVODE and IDA in SUNDIALS [10], and DASSL [2], which implement the family of
backward differentiation formulas (BDFk), as well as RADAU5 [9], which implements
an implicit Runge–Kutta method based on 3-stage Radau collocation. We use the
ode15s function in Matlab [16, 23] as the starting point for our development because
it implements the attractive family of numerical differentiation formulas (NDFk) that
generalizes the BDFk family and has potential for greater efficiency [8, 23]. The well-
known paper by Shampine and Reichelt [23] explains Matlab’s ODE suite in detail.

For large classes of problems, such as reaction-diffusion equations, it has been es-
tablished analytically that their mathematical models in the form of ODEs, including
those resulting from appropriate spatial discretizations of PDEs, have non-negative
solutions [13, Chapter 1] . Thus, we consider problems of the form (1.1) that have a
non-negative solution y(t) for an appropriately defined non-negative vector of initial
conditions yini. Accordingly we also assume the existence of a suitable non-empty
neighborhood N+ of non-negative solutions around y(t) for all t ∈ [0, tfin].

The standard approach for handling non-negativity in a numerical solution pro-
duced by an IVP code is to perform multiple runs with increasingly tighter error
tolerances, as suggested for example in the User Documentation for CVODE [12,
Subsection 5.5.2]. The idea here is that as the error tolerances are tightened, the
numerical solution should ultimately lie in N+. However, this approach is not always
applicable. For example, it is not always possible to sensibly handle negative values
in the definition of f(t, y) or its Jacobian, e.g., if these functions contain logarithmic
terms or square roots. Moreover, some problems become unstable for negative solu-
tions of any size. It should also be noted that eliminating negative solutions entirely
with this approach may incur a significant increase in computational cost because the
tighter tolerances force smaller time steps.

For a given sequence of step sizes, it is also possible for a numerical solution yn to
exit N+ at some t− ∈ (0, tfin). In such a case, there may be no ∆t > 0 for which the
local solution (i.e., the exact solution starting at yn) re-enters N+. In other words,
the non-linear system for the numerical solution at the next time step may no longer
admit a non-negative solution. In principle, it is possible to go back to some time
before t− (perhaps even as far as t = 0) and, with another sequence of (presumably
smaller) time steps, produce another numerical solution that would be in N+ at t−.
However, this requires global error control and is not a feature of the most popular
IVP codes, which rely on local error control. This is an understood and accepted risk
of using local error control. We propose here a strategy that will nonetheless allow
these codes to be used and efficiently produce non-negative solutions.

One of the first ways proposed to deal with preventing negative solution values in
the context of an arbitrary time-stepping method is the so-called clipping method, in
which negative solution components are set to zero whenever they occur. For reaction
systems, this approach has the disadvantage that it destroys mass conservation: mass
is effectively added to the system whenever a negative concentration is increased to
zero [19]. It also adversely affects time stepping and error estimation algorithms.

An additional problem with clipping is that unless the Jacobian of f(t, y) in (1.1)
is re-evaluated after the solution is clipped, its slope in the next Newton step will
still point “downwards,” and the next iterate will likely yield negative solution values

A NON-NEGATIVITY PRESERVING NEWTON METHOD 3

again. Partially motivated by this observation, a strategy described as constraint-
following is proposed in [24] for the case M = I in (1.1), where the components in
f(t, y) that correspond to zero solution components are “redefined” to be zero in the
case of a negative slope, and thus the numerical solution will “follow” the constraint.
The solution only moves off the constraint again if the slope becomes positive. This
strategy has been implemented in several of Matlab’s ODE solvers including ode15s
(starting with Release R14 Service Pack 3). The approach implemented there incor-
porates part of the non-negativity preservation into the test for accepting or rejecting
an ODE solution, i.e., the final iterate of the Newton solver. This makes the method
efficient in that it incurs cost only when negative components are encountered. How-
ever, because it works as part of the ODE error control mechanism, it does not apply
to intermediate Newton iterates; i.e., these intermediate iterates can still have nega-
tive components, and this can be problematic if f(t, y) or its Jacobian cannot handle
them.

The IVP code IDA in the SUNDIALS suite and its predecessor DASSL have some
facility for dealing with enforcement of non-negativity in the numerical solutions they
produce. These codes clip undesirable negative solution components provided their
total size is smaller than the tolerance used in the Newton iteration. The idea is that
the clipped solution remains an equally valid numerical solution, since the clipping
error is no larger than the ODE error. If the size of the clip would have to be too large,
the Newton iteration is deemed to have failed and steps are taken accordingly, e.g.,
the step size is reduced, etc. However, this should not be seen as a general purpose
method for dealing with non-negativity preservation. Indeed the documentation for
DASSL gives the advice: “If you know that the solutions to your equations will always
be nonnegative, it may help to set this parameter. However, it is probably best to try
the code without using this option first, and only to use this option if that doesn’t
work very well.” We note that in this approach the user does not have direct control
over the amount of non-negativity that can be tolerated in the numerical solution.

Finally we mention the approach suggested in [19] to project the solution into
its non-negative domain via a constrained optimization. Drawbacks of this approach
include the complication of its implementation and the computational cost associated
with solving an optimization problem within an ODE solver.

To ensure the non-negativity of all Newton iterates, our algorithm limits the
length of each Newton step in a technique that turns out to be similar to that described
in [10, pages 373–374] for the non-linear solver KINSOL in SUNDIALS. The idea is
that if any solution component becomes negative, we damp the Newton step with
the largest factor such that the solution components do not become more negative
than a user-prescribed amount −1 � −ε(neg) < 0, and then clip any remaining
negative components; the clipped components are necessarily no greater than ε(neg)

in magnitude. An obvious advantage of this approach is that ε(neg) explicitly indicates
the acceptable amount of clipping error and implicitly ensures the damping parameter
in the Newton step does not vanish. Moreover the right-hand side function f(t, y)
and its Jacobian are never called with negative arguments.

The use of such an algorithm inside a general IVP solver is new. Besides those
already mentioned, in principle it may also be possible to reformulate a given problem
as a differential-algebraic equation (DAE) where the algebraic equations are the active
constraints, e.g., variables that are zero. However, DAEs are not ODEs, and it is more
satisfying to impose non-negativity as an invariant (an inherent property of the exact
solution of the ODE) rather than as a constraint (an otherwise arbitrary property

4 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

of the solution). Additional drawbacks of the DAE approach include a complicated
and expensive detection and accounting of the active constraints. Arguably in some
situations, this may be the only way to proceed; however for the problem (1.1) for
which a non-negative solution is known to exist, a specialized technique as we describe
here may be more desirable.

Theoretical analyses of convergence for Newton, truncated Newton, and inexact
Newton methods are available, e.g., [4, 5, 6, 7, 15]. These generally require that the
initial guess be “close enough” to the solution. These analyses apply to a Newton
method inside an ODE solver, if one assumes that the ODE solver can decrease
the time step in response to convergence problems of the Newton method and thus
implicitly improve the quality of the initial guess. The analyses apply then in the same
way to our proposed method, because when the time step is sufficiently reduced, such
that the solution stays in N+, no damping occurs. We note that a rationale for
considering damping of the step size rather than any more general inexact Newton
method is the preservation of mass conservation. For instance standard Runge-Kutta
and linear multistep methods conserve mass (and other linear invariants) [21, 22],
and changing the length of the Newton step does not destroy this property. As we
show below, we do not change the Newton convergence tests, the error control, or
the step-size or order selection. As in the standard usage, the user would balance
tolerance and time step as needed to ensure convergence of the Newton method.

To study the effectiveness and efficiency of our method in practice, we present
test calculations for two examples. The first is the well-known Robertson problem
[18], which is a stiff system of three reaction ODEs. Computation of the solution to
steady state constitutes a significant challenge for automatic step size control algo-
rithms; because of this, it has been used as example in textbooks [9, pages 3 and 157],
[1, page 61], and in the documentation for ODE packages such as EPISODE [11],
VODE [3], CVODE in SUNDIALS [10], and Matlab’s ode15s function [16, see function
hb1ode]. This example is also interesting in the context of non-negativity preservation
because it is known that for final times on the order of 1011, one or more solution
components can become negative, causing the solution to blow up [9, page 157], and
leading to failure of the solver.

The second example is a system of ODEs obtained by spatially discretizing a
system of three reaction-diffusion equations. The problem is characterized by moving
internal layers at the interfaces between regions characterized by the relative size of the
concentrations of two of the reactants, so we refer to it briefly as the interface problem.
In the method-of-lines approach, the resulting problem is a system of stiff nonlinear
ODEs. Similar to the Robertson problem, the solution has mostly smooth behavior,
but it also has localized sharp transients [17, 25], so the use of a dependable error
control and automatic step size selection algorithm is vital for a reliable and efficient
solution of the problem. The two examples allow us to analyze different features of
the strategies under consideration: The Robertson problem conserves mass; hence it
is useful to study the effect of the different non-negativity preservation strategies on
this property. However this problem is too small to observe meaningful computation
times. Accordingly it is interesting to consider the more computationally demanding
interface problem.

The solutions of the two examples represent chemical concentrations and hence
should be non-negative for physical reasons. Moreover, it has been established theo-
retically that both problems maintain non-negativity [13, Chapter 1]. These examples
have been chosen for the tests here so that all methods described for non-negativity

A NON-NEGATIVITY PRESERVING NEWTON METHOD 5

preservation can be used without breaking down, thus allowing a full comparison to
our proposed approach. To this end, we have deliberately selected problems which
do not have any terms that would become undefined upon encountering negative so-
lution components, so that the ODE solver can proceed to the final time in all cases,
in order to allow the full comparison of all solvers considered. As discussed above
however, catastrophic failure in the form of blow-up of the solution because of nega-
tive components can still and does occur for the Robertson problem. Also, although
our method applies to (1.1), we restrict ourselves to M = I so that Matlab’s non-
negativity preservation technique can be applied. We also analyze the impact of other
method parameters on the effectiveness and efficiency of the ODE solver.

The remainder of the paper is organized as follows. Section 2 reviews the NDFk
methods implemented in ode15s and explains in detail how our algorithm is imple-
mented within it. The subsequent sections 3 and 4 present the Robertson and interface
problems, respectively, with detailed descriptions and analyses of the results from the
comparisons between the different strategies for non-negativity preservation. To test
the methods, we compare several other choices, such as choices for the initial guess
of the Newton iteration, of component-wise vs. norm-wise error control, and whether
to force a Jacobian update for every linear solve. Finally, section 5 summarizes the
conclusions from the numerical tests.

2. Time Discretization and Non-Negativity Preservation.

2.1. Numerical Differentiation Formulas. We review the NDFk following
[23] but generalized to (1.1) with a mass matrix. Thus, the following formulas actually
detail the code implemented in the Matlab function ode15s, using a notation that is
inspired by, but slightly modified from [23]. Throughout the development, we leave
other parts of the code unchanged, in particular the error control and automatic time
step size and order selection algorithms.

The NDFk methods generalize the well-known BDFk methods. The BDFk meth-
ods approximate the derivative in (1.1) by backward difference approximations of or-
der k. With pseudo-constant time steps ∆t, we have y′(tn+1) ≈ (1/∆t)

∑k
m=1(1/m)∇myn+1,

with∇my` := ∇m−1y`−∇m−1y`−1 for m ≥ 1 and ∇0y` := y`. The NDFk are defined
by adding −αkγkM(yn+1 − pn) to the BDFk to get

M

(
k∑

m=1

1
m
∇myn+1

)
−∆t f(tn+1, yn+1)− αk γkM

(
yn+1 − pn

)
= 0,(2.1)

with γk :=
∑k
j=1

1
j . The quantity defined by

pn := yn +
k∑

m=1

∇myn(2.2)

can be interpreted as a predictor for yn+1 at the new time t = tn+1 = tn + ∆t, using
the solution and approximations to its derivatives at t = tn. The truncation error of
the NDFk method is (αkγk + 1

k+1) (∆t)k+1y(k+1)(tn+1) and has the same order (i.e.,
k + 1) as that of BDFk [23]. The parameter αk can now be chosen for each method
order 1 ≤ k ≤ 5 to make the method more efficient, and [23] explains the values that
appear in ode15s. The notation for the predictor (2.2) in [23] is y(0)

n+1 because its
use as initial guess for the Newton method is hard-coded in ode15s; we introduce a
separate notation for the predictor here so that we can choose another initial guess
for the Newton method later.

6 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

2.2. The Newton Method inside NDFk. The fully implicit time discretiza-
tion (2.1) constitutes a non-linear system of equations for yn+1. Using the identity∑k
m=1

1
m∇

myn+1 = γk
(
yn+1 − pn

)
+
∑k
m=1 γm∇myn, we collect terms independent

of yn+1 and write (2.1) as a root-finding problem for yn+1:

f (newt)(yn+1) := M
(
yn+1 − pn

)
+MΨn −

∆t
(1− αk)γk

f(tn+1, yn+1) = 0,

with Ψn := 1
(1−αk)γk

∑k
m=1 γm∇myn. The Newton method then reads: Choose the

initial guess y(0)
n+1, then iterate for i = 0, 1, 2, . . .

Solve
(
J (newt)(y(i)

n+1)
)

∆(i) = −f (newt)(y(i)
n+1) for ∆(i),

Update y(i+1)
n+1 = y

(i)
n+1 + ∆(i),

(2.3)

where the Jacobian J (newt)(yn+1) of f (newt)(yn+1) with respect to unknown vector
yn+1 is given by

J (newt)(yn+1) := ∇yn+1f
(newt)(yn+1) = M − ∆t

(1− αk)γk
J(tn+1, yn+1)(2.4)

involving the Jacobian J(t, y) := ∇yf(t, y) of the right-hand side function in (1.1).
The code must also decide whether or not to accept y

(i+1)
n+1 , and to this end

one needs an ODE error estimator for the term (∆t)k+1y(k+1)(tn+1) ≈ ∇k+1yn+1

in the truncation error. From the definition of pn from (2.2) follows the alternative
expression ∇k+1yn+1 = yn+1 − pn for the approximation to the truncation error
explicitly involving yn+1. By introducing d(i+1) := ∇k+1y

(i+1)
n+1 = y

(i+1)
n+1 − pn =

y
(i)
n+1 + ∆(i) − pn = d(i) + ∆(i) for every Newton iterate y(i+1)

n+1 and d(0) := y
(0)
n+1 − pn,

one derives a method that gives the needed ODE error estimator. In turn, one can
re-write the Newton update in (2.3) to use d(i+1) in its calculation and

d(i+1) = d(i) + ∆(i),

y
(i+1)
n+1 = pn + d(i+1).

(2.5)

These formulas are used in ode15s to simultaneously compute the Newton update
y

(i+1)
n+1 and its ODE error estimator d(i+1).

As initial guess for the Newton iteration, one choice is the solution at the previous
time step: y(0)

n+1 = yn. In this case, d(0) = y
(0)
n+1 − pn needs to be computed from its

definition. But the predictor (2.2) uses additional information about the derivatives,
and thus the initial guess y(0)

n+1 = pn is expected to lead to better performance of the
non-linear solver. In this case, d(0) = y

(0)
n+1−pn ≡ 0. To allow us to study the effect of

both initial guesses in our numerical studies, we write the algorithm in the following
form: Choose y(0)

n+1 either as pn or yn, compute d(0) = y
(0)
n+1 − pn, then iterate for

i = 0, 1, 2, . . .

b(i) = ∆t
(1−αk)γk

f(tn+1, y
(i)
n+1)−M

(
Ψn + d(i)

)
,

Solve
(
M − ∆t

(1−αk)γk
J(tn+1, y

(i)
n+1)

)
∆(i) = b(i) for ∆(i),

d(i+1) = d(i) + ∆(i),

y
(i+1)
n+1 = pn + d(i+1).

(2.6)

A NON-NEGATIVITY PRESERVING NEWTON METHOD 7

This form of the algorithm brings out how the coefficient functions f(t, y) and J(t, y)
of (1.1) enter and is useful to explain possible trade-offs between accuracy and ef-
ficiency: The linear solve in the second step of (2.6) is accomplished by computing
an LU decomposition of the iteration matrix M (iter) := M − ∆t

(1−αk)γk
J . The effi-

ciency of this approach lies in re-using the decomposition for several Newton iterations
and in fact for several (potentially many) time steps. In addition, Matlab’s ode15s
code further minimizes the number of Jacobian evaluations by holding J constant in
memory until the error control algorithm requests a re-evaluation. This means that
when the LU decomposition of M (iter) is re-computed in response to a change in the
step size ∆t or the ODE method order k (hence changing αk and γk in M (iter)), the
Jacobian may not be up-to-date at the current time. This approach minimizes the
number of times that J is evaluated and is thus appropriate if this is the costliest
step in the algorithm, in particular compared to the LU decomposition. Since we
will use an analytic expression for J(t, y), the evaluation of the Jacobian is cheap,
and the LU decomposition is the costliest step of the algorithm. Hence, we also test
a different compromise in our numerical studies, in which the Jacobian is always re-
evaluated whenever an LU decomposition of M (iter) is required, that is, whenever the
error control mechanism either requests the re-evaluation of J or when it changes ∆t
or k.

2.3. A Non-Negativity Preserving Newton Method. The classical Newton
iteration may produce an iterate y(i+1)

n+1 = y
(i)
n+1 + ∆(i) with negative components even

if y(i)
n+1 is non-negative because ∆(i) from the linear solve in (2.6) is not restricted

in size or sign. To prevent the introduction of negative components, we introduce
a damping parameter 0 < si ≤ 1 in the Newton update as y(i+1)

n+1 = y
(i)
n+1 + si ∆(i)

that guarantees that no component of the new Newton iterate y(i+1)
n+1 is smaller than

−ε(neg). The choice of ε(neg) > 0 ensures that si never vanishes; i.e., the Newton
iteration is guaranteed not to stall. Reformulating the terms again as for (2.5), our
damping algorithm can be written in a form comparable to (2.6) as follows: Choose
y

(0)
n+1 either as pn or yn, compute d(0) = y

(0)
n+1 − pn, then iterate for i = 0, 1, 2, . . .

b(i) = ∆t
(1−αk)γk

f(tn+1, y
(i)
n+1)−M

(
Ψn + d(i)

)
,

Solve
(
M − ∆t

(1−αk)γk
J(tn+1, y

(i)
n+1)

)
∆(i) = b(i) for ∆(i),

si = max{s ∈ (0, 1] : y(i)
n+1 + s∆(i) ≥ −ε(neg)},

d(i+1) = d(i) + si ∆(i),

y
(i+1)
n+1 = pn + d(i+1).

(2.7)

We complement this damping with two ideas from the constraint-following algorithm
in ode15s. First, any remaining negative components are set to zero now, but by con-
struction these components are of size less than ε(neg). Second, we set the derivative
approximations ∇myn+1 to zero for these components to help with the non-negativity
of the predictor of the next step.

To ensure non-negativity of all Newton iterates by the above construction, it is
also necessary to ensure that the initial guess be non-negative. The general initial
guess y(0)

n+1 = pn from (2.2) can have negative components. If so, we try again with
an initial guess based on a predictor with shorter memory than (2.2) by computing
y

(0)
n+1 = yn+∇1yn. If this still yields negative components, then we compute a damped

predictor by the same construction described above with yn in the role of y(i)
n+1 and

8 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

∇1yn in the role of ∆(i).
Overall, these steps construct a non-negative Newton iterate with explicit user

control of the acceptable mass error because the components set to zero in the second
step are no larger than the user-supplied ε(neg). The proposed algorithm ensures that
f(t, y) and J(t, y) are never evaluated with y having negative components. Although
somewhat more computationally expensive, this approach maintains the philosophy
of [24] regarding efficiency in that it costs nothing if there are no negative compo-
nents, and it is reasonably inexpensive if there are. Moreover, this approach is easily
implemented in the Newton method inside an implicit ODE solver of any method
order k.

The Newton iterate y(i+1)
n+1 is accepted as converged when the norm of ∆(i) (not

including the damping factor si) is less than the usual Newton tolerance defined from
the user-supplied absolute and relative tolerances on the numerical solution. In other
words, when accepted as converged, the numerical solution obtained via the proposed
damping algorithm is as valid as the one obtained by the standard Newton iteration.
Hence the order of the truncation error is preserved in the same way as for the stan-
dard Newton implementation, and the rest of the time-stepping algorithm (e.g., the
choice of step size and order, etc.) can proceed without modification. In particular,
the quantity d(i+1) = d(i) + si ∆(i) is the correct ODE error estimator associated with
the new solution y

(i+1)
n+1 , following an analogous derivation as the one for (2.5). If a

converged solution cannot be found within the maximum number of Newton itera-
tions allowed, the time-stepping algorithm still proceeds without modification, e.g.,
the Jacobian is re-evaluated and/or the time step is reduced. It is possible for the
damping algorithm to cause the code to halt because of non-convergence of the New-
ton iteration. However, this can happen in any other standard IVP code that uses
local error control. In this case, the lack of convergence may be because the local
solution is not able to re-enter N+, as discussed in section 1. In practice, the user is
expected to react by changing method parameters such as ODE tolerances, the mini-
mum acceptable ODE step size, among others, and in our algorithm additionally the
amount of acceptable negativity ε(neg). In our fully instrumented version of Matlab’s
ode15s function, the user can additionally control several other aspects of the meth-
ods, such as which initial guess is used for the Newton method, whether the errors
are controlled component-wise or norm-wise, and whether the Jacobian is updated
whenever the LU factorization is computed or not.

3. The Robertson Problem. The Robertson problem [9, 18] describes chem-
ical reactions among three reactants A, B, and C as

A 0.04−→ B, 2 B 3·107

−→ B + C, B + C 104

−→ A + C.

Introducing u(t), v(t), w(t) as the chemical concentrations of the species A, B, C,
respectively, the evolution of the concentrations is described by the ODE system

ut = −0.04u + 104 v w, u(0) = 1,
vt = 0.04u − 104 v w − 3 · 107 v2, v(0) = 0,
wt = 3 · 107 v2, w(0) = 0.

(3.1)

We choose to consider the final time tfin = 4 · 1011, which is beyond the time interval
over which many IVP solvers are stable [9, 16]. To phrase the problem in the standard
form y′ = f(t, y), we define y(t) = [u(t), v(t), w(t)]T .

A NON-NEGATIVITY PRESERVING NEWTON METHOD 9

(a) u, (104 v), w vs. t (b) ∆t vs. t

(c) k vs. t (d) #iter vs. t

Fig. 3.1. Results for the Robertson problem. (a) Plots of the solution components u (solid),
104 v (dashed), and w (dash-dotted) vs. t, (b) ODE time step ∆t vs. t, (c) ODE method order k
vs. t, (d) number of Newton iterations vs. t. (The results shown in this figure are computed by the
NDFk method with non-negativity preservation using damping, with the predictor as initial guess,
with Jacobian update forced whenever ∆t or k change, and with norm-wise error control.)

Figure 3.1(a) plots the three solution components as functions of time on a loga-
rithmic time scale; the second solution component is scaled by 104 to make it visible
as done in, e.g., [16, function hb1ode]. Figures 3.1(b)–(d) show plots of some per-
formance indicators. Figure 3.1(b) shows that the time steps ∆t selected by the
automatic step size control increase exponentially up to the maximum allowed value
of ∆tmax. Figure 3.1(c) shows the method order k selected by the automatic order
control in the NDFk family with 1 ≤ k ≤ 5. Finally, Figure 3.1(d) shows the number
of Newton iterations needed to solve the non-linear system of equations at each time
step; typically, 1 or 2 Newton iterations are required.

Figure 3.1 shows results of one particular choice of method parameters, but the
behavior for other (convergent) cases is qualitatively similar. To compare the effect
of the different cases more precisely, Tables 3.1–3.4 list indicators that quantify the
effectiveness and efficiency of the different method and parameter choices. Following
the defaults for ode15s in Matlab, we use the NDFk method with 1 ≤ k ≤ 5, a relative
tolerance of 10−3, an absolute tolerance of 10−6, an initial time step ∆tini = 5.48·10−4,
and a maximum ∆tmax = tfin/10 = 4 · 1010. The non-linear Newton solver uses an
analytically supplied Jacobian matrix. The tolerance for accepting a Newton solution
is 100 εmach ≈ 2.22 ·10−14, and the maximum number of Newton iterations is 4, again
following the choices implemented in ode15s. We use ε(neg) = 10−12; we also tested

10 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

the values 10−10 and 10−14 and observed comparable results. The focus of this work
is on comparing the effect and cost of different non-negativity preservation methods
in the context of an IVP solver with error control for a set of fixed ODE tolerances for
all methods; thus no results for other tolerances are reported. For the methods with
non-negativity preservation, tighter tolerances lead to higher computational cost, as
expected. But for the case without non-negativity preservation, tests with different
tolerances for the Robertson problem show in fact that one of the solution components
always eventually becomes negative, and this is followed by blow-up of the solution (no
matter how small the magnitude of the negative component). This blow-up behavior
is only postponed, not eliminated, by the use of tighter tolerances, thus this is a good
example of the need for non-negativity preservation.

Each table collects results (i) with no enforcement of non-negativity (“none”) and
with non-negativity enforced by (ii) clipping (“clip”), (iii) clipping as implemented
by DASSL (“dassl”), (iv) constraint following (“constraint”) in Matlab using the
NonNegative option for all solution components, and (v) damping the Newton iterates
(“damp”) as described in section 2.3.

The first four quantities listed for each method quantify the effectiveness of the
method, i.e., its ability to compute physically correct results. Specifically, we track the
number of times that any intermediate Newton iterate contains a negative component
as well as the value of the smallest negative component among all intermediate iterates
over all times; these are reported in the first two rows as nneg and min(y). Next,
we report max(y) = ‖y(t)‖∞ over all times; this value should be no larger than 1 for
this problem. The Robertson problem conserves mass, and the total mass m(t) :=
u(t)+v(t)+w(t) should satisfy m(t) ≡ 1; so we list the maximum of the error in total
mass as max |m(t)− 1| over all times. In exact arithmetic, the NDFk (without any
non-negativity preservation) should conserve mass. In finite-precision arithmetic, one
thus expects mass error on the order of a small multiple of unit round-off. However,
in cases where the solution does not converge (e.g., blows up), the formally reported
mass error becomes meaningless and can have any value due to effects of cancellation
of significant digits between the components that are blowing up. In any case, a
solution with blow-up is meaningless, and its results are reported in the tables only
for completeness.

The remaining results for each method quantify the efficiency of the method.
Specifically, we report the number of (successful) time steps in nsteps, the number of
failed time steps in nfailed, the number of evaluations of the ODE function f(t, y) in
nfevals, the number of evaluations of the Jacobian J(t, y) = ∇yf(t, y) in npds, the
number of LU decompositions in ndecomps, and the number of linear solves (using a
pre-computed decomposition) in nsolves; these are the same statistics as reported by
Matlab’s ode15s. Additionally, in nclips, we report the number of times that one or
more negative solution components are set to zero in “clip,”“dassl,” and “constaint”
or the number of times that a Newton iteration is damped in “damp.” Finally,
the entries for mean(k) and mean(it) report the ODE method order used and the
number of Newton iterations taken, respectively, averaged over all time steps. For the
Robertson problem, we do not report any observed wall clock times because they are
small.

We start in Table 3.1(a) with the NDFk method using settings that are default
in Matlab for ode15s, i.e., component-wise error control (NormControl switched off)
and with the predictor pn as initial guess to the Newton iteration. This means that, in
the cases of no enforcement and constraint-following, our code gives identical results

A NON-NEGATIVITY PRESERVING NEWTON METHOD 11

Table 3.1

Solution statistics for the Robertson problem with Jacobian update not forced and component-
wise error control.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping dassl constraint damping

nnegative 654 0 0 4 0
min(y) –1.49e+08 0.0 0.0 –1.54e+02 0.0
max(y) 1.49e+08 1.0 1.0 1.0 1.0
max |m(t)− 1| 6.17e+00 1.40e–05 4.99e–07 2.58e–14 4.33e–15
nsteps 450 241 237 237 238
nfailed 164 20 18 18 18
nfevals 1113 479 461 464 463
npds 70 13 13 13 13
ndecomps 262 71 68 67 68
nsolves 1112 478 460 462 462
nclips N/A 44 26 0 17
mean(k) 2.36 2.81 2.84 2.84 2.84
mean(iter) 1.69 1.81 1.80 1.79 1.79

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping dassl constraint damping

nnegative 0 0 0 0 0
min(y) 0.0 0.0 0.0 0.0 0.0
max(y) 1.0 1.0 1.0 1.0 1.0
max |m(t)− 1| 1.03e–13 1.03e–13 1.03e–13 1.03e–13 1.03e–13
nsteps 218 218 218 218 218
nfailed 17 17 17 17 17
nfevals 568 568 568 569 568
npds 14 14 14 14 14
ndecomps 63 63 63 63 63
nsolves 567 567 567 567 567
nclips N/A 0 0 0 0
mean(k) 2.74 2.74 2.74 2.74 2.74
mean(iter) 2.42 2.42 2.42 2.42 2.42

to ode15s without and with the NonNegative option used, respectively. As the large
magnitudes of min(y) and max(y) show, the solution from ode15s blows up in the
case of no enforcement and default settings of the tolerances. We point out that for a
fixed final time, in principle there exists a sufficiently tight tolerance to avoid negative
values and hence blow-up, but this tolerance gets tighter for larger final times, and all
performance statistics deteriorate rapidly. Accordingly, our proposed algorithm aims
to maintain the physical correctness of the solution for any final time without paying
a large penalty in efficiency. Next we notice that clipping avoids negative solution
values and hence prevents blow-up. However, a fairly significant amount of mass is
gained. The clipping as implented in DASSL, which ensures that clipping remains
within the ODE error, indeed has less mass error than standard clipping. The results
for both constraint-following, which uses the NonNegative option in ode15s, and
damping exhibit physically correct behavior, with mass being conserved to within
round-off and essentially the same efficiency as clipping. However, we see here that
the algorithm of constraint-following, which only considers the final Newton solution,
can produce negative values in the intermediate Newton iterations.

Table 3.1(b) shows the results with the Newton method using yn as initial guess

12 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

Table 3.2

Solution statistics for the Robertson problem with Jacobian update not forced and norm-wise
error control.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping dassl constraint damping

nnegative 559 0 0 42 0
min(y) –1.92e+08 0.0 0.0 –1.39e+03 0.0
max(y) 1.92e+08 1.0148 1.0013 1.0023 1.0
max |m(t)− 1| 8.39e+00 1.48e–02 1.26e–03 2.29e–03 6.67e–09
nsteps 310 147 145 175 140
nfailed 144 25 30 49 13
nfevals 781 297 295 376 278
npds 69 14 18 26 12
ndecomps 221 61 66 92 46
nsolves 780 296 294 374 277
nclips N/A 89 64 0 18
mean(k) 2.00 1.91 1.99 1.98 2.32
mean(iter) 1.56 1.66 1.66 1.57 1.79

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping dassl constraint damping

nnegative 2 0 0 1 0
min(y) –1.87e+00 0.0 0.0 –3.67e–03 0.0
max(y) 1.0 1.0 1.0 1.0 1.0
max |m(t)− 1| 1.70e–11 1.70e–11 1.70e–11 1.70e–11 1.70e–11
nsteps 127 127 127 127 127
nfailed 10 10 10 10 10
nfevals 300 300 299 301 301
npds 11 11 11 11 11
ndecomps 40 40 40 40 40
nsolves 299 299 298 299 300
nclips N/A 1 1 0 2
mean(k) 2.30 2.30 2.30 2.30 2.30
mean(iter) 2.19 2.19 2.19 2.19 2.19

instead of pn. We notice that ode15s without non-negativity enforcement no longer
blows up. In fact, using the initial guess yn for the Newton iterations allows the
method to maintain non-negativity of the solution at all times without any enforce-
ment. However, there is no theoretical guarantee of such behavior for the NDFk
method and certainly not for the non-linear solver; hence one cannot rely on this
behavior. This is demonstrated in section 4 for a larger system of ODEs, where
this choice of initial guess produces negative solution values. Because there is no
non-negativity to enforce, all other methods give identical performance statistics and
only differences to within round-off in the physical quantities. We also note that the
ODE-related efficiency for the cases with initial guess of yn is slightly better than
for the predictor pn. This is somewhat counter-intuitive because the predictor pn
contains more information about the solution than yn; this fact itself is borne out by
the non-linear solver taking more iterations per ODE step as reported in mean(it).

Table 3.2 shows the results of the methods when norm-wise error control is used
(NormControl on). Table 3.2(a) shows that the method with no non-negativity en-
forcement still blows up. The methods with non-negativity enforcement do not blow
up, but all of them introduce non-negligible error in the total mass; in some cases,

A NON-NEGATIVITY PRESERVING NEWTON METHOD 13

Table 3.3

Solution statistics for the Robertson problem with Jacobian update forced and component-wise
error control.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping dassl constraint damping

nnegative 569 0 0 5 0
min(y) –1.71e+08 0.0 0.0 –2.84e–03 0.0
max(y) 1.71e+08 1.0 1.0 1.0 1.0
max |m(t)− 1| 6.70e+00 5.24e–08 5.24e–08 1.38e–14 1.38e–14
nsteps 447 226 226 232 226
nfailed 108 2 2 6 2
nfevals 858 298 298 311 296
npds 207 51 51 57 51
ndecomps 207 51 51 57 51
nsolves 858 297 297 309 295
nclips N/A 22 22 0 8
mean(k) 2.27 2.64 2.64 2.60 2.64
mean(iter) 1.42 1.30 1.30 1.28 1.29

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping dassl constraint damping

nnegative 0 0 0 0 0
min(y) 0.0 0.0 0.0 0.0 0.0
max(y) 1.0 1.0 1.0 1.0 1.0
max |m(t)− 1| 4.97e–14 4.97e–14 4.97e–14 4.97e–14 4.97e–14
nsteps 222 222 222 222 222
nfailed 1 1 1 1 1
nfevals 421 421 421 422 421
npds 49 49 49 49 49
ndecomps 49 49 49 49 49
nsolves 420 420 420 420 420
nclips N/A 0 0 0 0
mean(k) 2.68 2.68 2.68 2.68 2.68
mean(iter) 1.87 1.87 1.97 1.87 1.87

max(y) is even above its theoretical maximum of 1. DASSL clipping is an order of
magnitude better than standard clipping. The constraint-following method suffers
again from negative intermediate Newton iterates. The effectiveness and efficiency of
damping is seen to be somewhat better than that of the other methods. As before, we
notice in Table 3.2(b) that using the initial guess of yn for the Newton iterations leads
to better efficiency results. Some smaller, but still significant negative intermediate re-
sults appear in the cases with no non-negativity preservation and constraint-following.
Overall, comparing Tables 3.1 and 3.2, we notice that norm-wise error control leads
to somewhat less accurate physical results but also to significantly better efficiency.

Tables 3.1 and 3.2 report results for cases where the Jacobian J(t, y) of the ODE
function f(t, y) is held constant in memory as long as possible and only re-evaluated
when deemed necessary by the error control mechanism. This is the default imple-
mentation in ode15s and reflects the common situation that the evaluation of J(t, y)
is the most expensive part of the algorithm. The next most expensive cost is usually
the LU decomposition of the iteration matrix M (iter) that is necessary whenever ei-
ther J(t, y) is updated or when ∆t or the method order k are changed by the error
controller. This means that, in situations where ∆t or k change and an LU decompo-

14 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

Table 3.4

Solution statistics for the Robertson problem with Jacobian update forced and norm-wise error
control.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping dassl constraint damping

nnegative 30 0 0 19 0
min(y) –1.68e–03 0.0 0.0 –6.63e+00 0.0
max(y) 1.0 1.0022 1.0005 1.0 1.0
max |m(t)− 1| 8.88e–15 2.23e–03 4.79e–04 5.99e–15 4.44e–15
nsteps 139 143 151 155 129
nfailed 8 9 16 18 4
nfevals 203 212 237 245 201
npds 45 47 57 61 35
ndecomps 45 47 57 61 35
nsolves 202 211 236 243 200
nclips N/A 52 52 0 15
mean(k) 1.73 1.74 1.63 1.65 2.34
mean(iter) 1.34 1.35 1.38 1.33 1.48

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping dassl constraint damping

nnegative 0 0 0 0 0
min(y) 0.0 0.0 0.0 0.0 0.0
max(y) 1.0 1.0 1.0 1.0 1.0
max |m(t)− 1| 4.01e–13 4.01e–13 4.01e–13 4.01e–13 4.01e–13
nsteps 127 127 127 127 127
nfailed 0 0 0 0 0
nfevals 224 224 224 225 224
npds 30 30 30 30 30
ndecomps 30 30 30 30 30
nsolves 223 223 223 223 223
nclips N/A 0 0 0 0
mean(k) 2.27 2.27 2.27 2.27 2.27
mean(iter) 1.75 1.75 1.75 1.75 1.75

sition of M (iter) is necessary, this decomposition may not use the latest Jacobian. This
means that the error controller tries to minimize the number of Jacobian evaluations
at the cost of more decompositions.

However, for this problem and an analytically supplied Jacobian, the evaluation
of J(t, y) incurs negligible cost. We modify ode15s to force an update of the Jacobian
whenever ∆t or k change so that M (iter) is the most up-to-date whenever its LU
decomposition is computed. This reflects the fact that the cost incurred by the LU
decomposition of M (iter) is the most expensive part of the method here and, to min-
imize the number of decompositions, we effectively supply more up-to-date physical
information by updating the Jacobian more often.

Tables 3.3 and 3.4 report the results for the modified algorithm with the update
of the Jacobian also forced whenever ∆t or k change, while all other method parame-
ters are the same as for Tables 3.1 and 3.2, respectively. We see that in all cases, the
values reported for npds and ndecomps agree in Tables 3.3 and 3.4. These numbers
lie in between those reported for npds and ndecomps in the corresponding previous
tables, meaning that the cost has been shifted from LU decompositions to Jacobian
evaluations, as intended. We note that the significance of this difference in cost be-

A NON-NEGATIVITY PRESERVING NEWTON METHOD 15

comes clearer in the next section, where computation times are large enough to bring
out the overall advantage. We also notice that the number of ODE steps remains
practically the same as before, but nsolves decreases in all cases against the corre-
sponding previous cases, presumably as a result of the better physical information
provided in M (iter). This immediately implies a decrease in nfevals, an observation
that is also confirmed by lower values of mean(it). Using better physical information
in J(t, y) also improves the effectiveness of the methods. First, the method with no
non-negativity enforcement no longer blows up in Table 3.4(a), although it still does
in Table 3.3(a); this is counter-intuitive because one would have expected more accu-
racy with component-wise error control versus norm-wise error control. For the cases
that converged and had a mass error larger than round-off, the accuracy of the mass
conservation is improved in all cases in Tables 3.3 and 3.4 compared to Tables 3.1
and 3.2, respectively. Specifically, non-negativity preservation by constraint-following
as well as by damping both give errors of the total mass that are small, whereas clip-
ping can still incur much more significant errors in the mass. Although the behavior
is improved, negative numbers still appear in some intermediate Newton iterates for
the constraint-following method. The converged solution Table 3.4(a) with no non-
negativity enforcement finally allows a comparison of its efficiency with those that
have. We see that clipping, DASSL clipping, and constraint-following exhibit roughly
comparable efficiency, whereas damping is slightly more efficient, apparently at the
cost of a slightly larger mass error. In fact, damping in Table 3.4(a) is the most effi-
cient method with y(0)

n+1 = pn in Tables 3.3(a) and 3.4(a) and nearly as efficient as the
corresponding case in Table 3.2(a) but with much better mass error. Therefore, this
is the preferred method among all methods considered here, and its results were used
for the plots in Figure 3.1. In Tables 3.3 and 3.4, we see that using y(0)

n+1 = yn does not
lead to negative solution components even with no non-negativity enforcement. How-
ever, there is no guarantee of this behavior in general, as is demonstrated in the next
section. These cases again exhibit better ODE efficiency, but the non-linear solver
uses again more iterations because yn contains less information about the solution
than pn.

4. The Interface Problem. This example considers the diffusive flow of chem-
ical species inside a membrane that separates two tanks with unlimited supplies of
the reactants A and B participating in the chemical reaction 2 A + B→ (∗). Classical
modeling for this process results in a system of reaction-diffusion equations coupled
through non-linear reaction terms. Despite its classical nature, the resulting model is
mathematically intriguing as well as numerically challenging if one considers a partic-
ular reaction pathway comprising two reactions with widely varying rate coefficients
[25]: molecules of A and B combine in a “fast” reaction to produce an intermedi-
ate C, and a “slow” reaction combines A and C to form the product (∗), which is not
explicitly tracked in the model. This reaction pathway is expressed by

A + B λ→ C, A + C
µ→ (∗),

in which the reaction coefficients λ and µ are scaled so that λ� µ = 1.
Because the membrane is assumed to be thin compared to the directions normal

to it, it is reasonable to use a one-dimensional spatial domain with variable x, scaled
so that x ∈ Ω := (0, 1). In time, we compute from the initial time 0 to the final time
tfin, which is chosen such that the solution has reached its steady state. If we denote
the concentrations of the chemical species A, B, C by functions u(x, t), v(x, t), w(x, t),

16 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

respectively, the reaction-diffusion system reads

ut = uxx − λuv − uw,
vt = vxx − λuv,
wt = wxx + λuv − uw,

 for x ∈ (0, 1) and 0 < t ≤ tfin.(4.1)

We assume that no molecules flow through the boundary, but the species A is supplied
with a fixed concentration α > 0 at x = 0 and species B with β > 0 at x = 1. This
results in the mixed Dirichlet and Neumann boundary conditions

u = α, vx = 0, wx = 0, at x = 0,
ux = 0, v = β, wx = 0, at x = 1.(4.2)

The problem statement of this initial-boundary value problem is completed by speci-
fying the non-negative initial concentrations

u(x, 0) = uini(x), v(x, 0) = vini(x), w(x, 0) = wini(x) for x ∈ (0, 1) at t = 0,(4.3)

with consistent boundary and initial data; i.e., uini(0) = α and vini(1) = β.
Because the first chemical reaction is much faster than the second one, rapid

consumption of A and B to form C is expected at all spatial points x where A and B
co-exist, leaving only one of them present with a positive concentration after an initial
transient. Inside the regions dominated either by A or by B, the reaction rate of the
fast reaction q := λuv will then become 0. However at the interfaces between the
regions, where positive concentrations of A and B make contact due to diffusion,
q will be non-zero; in fact, q will be large because λ � 1. For the corresponding
stationary problem, analytical results in [14, 20] prove that there is one internal layer
at a point 0 < x∗ < 1 of width O(ε) and height O(1/ε), where ε = λ−1/3. Because
initial conditions to the transient problem can have the internal layer at a different
position than x∗ or can have multiple internal layers, it is interesting to investigate
the evolution of the internal layers and their coalescence to the single layer present
at steady state. See [25] for studies of several representative initial conditions for this
problem and [17] for studies on the asymptotic behavior of the transient problem.

To select an interesting transient behavior, we specify the initial condition

uini(x) =


4(0.25− x)α, 0.00 ≤ x ≤ 0.25,
0, 0.25 < x < 0.50,
64(0.50− x)(x− 0.75) γ, 0.50 ≤ x ≤ 0.75,
0, 0.75 < x ≤ 1.00,

vini(x) =


0, 0.00 ≤ x < 0.25,
64(0.25− x)(x− 0.50) δ, 0.25 ≤ x ≤ 0.50,
0, 0.50 < x < 0.75,
4(x− 0.75)β, 0.75 ≤ x ≤ 1.00,

wini(x) ≡ 0.

(4.4)

The parameters α and β come from the boundary conditions (4.2), and their use in
(4.4) guarantees that the initial conditions are consistent with the boundary condi-
tions; therefore there are no boundary layers in the solutions, and we can focus our
attention on the internal layers. The design in (4.4) produces linear functions in u
and v near their respective Dirichlet boundary conditions and one quadratic hump
for u and v each in the interior of the spatial domain, such that u and v are not

A NON-NEGATIVITY PRESERVING NEWTON METHOD 17

non-zero simultaneously. For the parameters that affect the steady-state solution, we
pick α = 1.6, and β = 0.8. For the values γ and δ that control the height of the humps
of u and v in (4.4), we choose γ = δ = 0.25. For the final time, we select tfin = 20;
experiments show that this time is sufficient to reach the steady state solution using
the criterion that the location x∗ of the internal layer at steady state is approximated
up to the resolution achievable by the spatial discretization. The reference value for
x∗ is taken from high-resolution simulations of the associated steady-state problem.

We introduce uj(t) ≈ u(xj , t), vj(t) ≈ v(xj , t), and wj(t) ≈ w(xj , t) at mesh
points xj , j = 1, . . . , N . Spatial discretization by finite differences leads to an
ODE system of the form y′ = f(t, y), where for computational efficiency, it is cru-
cial to use interleaved ordering of the component functions as defined by y(t) :=
[u1, v1, w1, u2, v2, w2, . . . , uN , vN , wN]T . An alternative approach for the spatial dis-
cretization is the finite element method, leading to M 6= I in (1.1). We use finite
differences here for the spatial discretization to allow for a direct comparison with
the non-negativity preserving method implemented in Matlab’s ode15s function that
requires M = I.

We recall that the width of the internal layer at steady state is O(ε) = O(λ−1/3).
For λ = 106, ε = 0.01. Hence, to ensure a sufficient spatial resolution, we use
N = 513 mesh points in Ω = (0, 1); this results in a mesh spacing of ∆x = 1/512 and
guarantees at least 5 mesh points within the length ε, which is the order of the width
of the interface region. Calculations with both coarser and finer spatial meshes have
shown the calculations to be reliable. The ODE tolerances used include a relative
tolerance of 10−6 and absolute tolerance of 10−8, which are tight enough to ensure a
good initial guess for the Newton solver at every time step. The remaining method
parameters for the Newton solver are chosen as for the Robertson problem in the
previous section; in particular ε(neg) = 10−12.

Figures 4.1(a), (b), and (c) show waterfall plots of the solution components u(x, t),
v(x, t), and w(x, t) vs. (x, t). Figure 4.1(d) shows the fast reaction rate q vs. (x, t).
At t = 0, q is zero in most of Ω, where either u or v is zero, but it is large at
the interfaces of the regions where u and v are non-zero. This reaction produces
the intermediate reactant represented by w, which we see increasing over time in
Figure 4.1(c), consuming the concentrations of u and v in the interior of Ω. After the
initial transient, we see in Figures 4.1(a) and (b) that both u and v are non-zero only
in one region each. This can also be seen in Figure 4.1(d), where for larger times only
one spike exists in q instead of the three at t = 0. To analyze the interface evolution
between the regions dominated by u or v, we track the locations of transitions of
u < v to u > v and vice versa. Starting from the locations x = 0.25, 0.50, 0.75 at
t = 0, these interfaces are tracked in Figure 4.1(e) up to time t = 0.1. We see that
by this time, the three interfaces have coalesced to one. Beyond t = 0.1 (not shown),
the interface moves slowly and smoothly to its steady state location at x∗ ≈ 0.6.

Figures 4.1(f)–(h) display several performance indicators of the ODE and non-
linear solvers. We see that the time step ∆t increases over time, reflecting the fact
that the solution gets smoother over time and easier to approximate. We see the ODE
method order k is fairly high, often 3 or 4. We see that also the non-linear solver
behaves well with only 1 or 2 iterations needed at most time steps.

The interface problem is not as badly behaved as the Robertson problem in that
small negative components do not lead to blow-up and can be controlled by tight-
ening the ODE tolerance. This was done in [25] to establish our confidence in the
solution obtained. However, the Robertson problem is a small ODE system; thus the

18 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

(a) u vs. (x, t) (b) v vs. (x, t)

(c) w vs. (x, t) (d) q = λuv vs. (x, t)

(e) interface vs. (x, t) (f) ∆t vs. t

(g) k vs. t (h) #iter vs. t

Fig. 4.1. Results for the interface problem. (a), (b), (c) Plots of the solution components u,
v, w vs. (x, t), respectively, (d) Plot of the reaction rate q = λuv vs. (x, t), (e) Plot of the interface
movement in the (x, t)-plane with zoom on the times 0 ≤ t ≤ 0.1, (f) ODE time step ∆t vs. t,
(g) ODE method order k vs. t, (h) number of Newton iterations vs. t. (The results shown in this
figure are computed by the NDFk method with non-negativity preservation using damping, with the
predictor as initial guess, with Jacobian update forced whenever ∆t or k change, and with norm-wise
error control.)

A NON-NEGATIVITY PRESERVING NEWTON METHOD 19

Table 4.1

Solution statistics for the interface problem with Jacobian update not forced and component-
wise error control.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping dassl constraint damping

nnegative 1095 0 0 856 0
min(y) –1.06e–08 0.0 0.0 –5.93e–09 0.0
max(y) 5.4211 5.4211 5.4211 5.4211 5.4211
nsteps 770 775 775 775 795
nfailed 44 42 42 46 54
nfevals 1586 1592 1592 1599 1728
npds 28 30 30 30 36
ndecomps 143 142 142 145 156
nsolves 1585 1591 1591 1597 1727
nclips N/A 1140 1140 358 27
mean(k) 4.69 4.66 4.66 4.65 4.55
mean(iter) 1.94 1.94 1.94 1.94 2.02
time (seconds) 11.61 10.718 10.75 11.13 11.66

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping dassl constraint damping

nnegative 1099 0 0 957 0
min(y) –5.56e–07 0.0 0.0 –5.56e–07 0.0
max(y) 5.4211 5.4211 5.4211 5.4211 5.4211
nsteps 896 882 883 896 880
nfailed 304 299 299 304 303
nfevals 3635 3598 3598 3636 3588
npds 287 284 284 287 287
ndecomps 427 424 424 427 429
nsolves 3634 3597 3597 3634 3587
nclips N/A 1203 1204 198 7
mean(k) 4.21 4.25 4.25 4.21 4.21
mean(iter) 3.32 3.35 3.35 3.32 3.33
time (seconds) 23.76 23.48 24.69 25.48 24.43

computational cost to maintain non-negativity is not significant. The interface prob-
lem described in this section consists of N = 513 equations for each of the 3 species,
leading to a system of 1,539 ODEs. Hence all algorithmic costs take on an increased
importance, and we thus also report the wall clock time used to compute the solution
in Tables 4.1–4.4. The other entries in the tables have the same meaning as before.
Because the product of the chemical reactions is not tracked, mass is not conserved
by this model, and we cannot readily compute a mass error.

We begin by noting that no simulations in Tables 4.1–4.4 blew up. However, in all
tables and for both choices of y(0)

n+1, the method without non-negativity enforcement
as well as the constraint-following method suffer from negative intermediate Newton
iterates, whereas clipping, DASSL clipping, and damping do not. This demonstrates
that using y

(0)
n+1 = yn does not guarantee non-negativity, as it happened to do for

many cases in the Robertson problem.
As shown in Tables 4.1–4.4, the four methods studied exhibit approximately the

same numerical efficiency. That is, none of the non-negativity preserving methods
costs much additional effort. Comparing parts (a) and parts (b) in each of the four
tables, we see that for this large ODE system, it is generally more efficient to use

20 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

Table 4.2

Solution statistics for the interface problem with Jacobian update not forced and norm-wise
error control.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping dassl constraint damping

nnegative 598 0 0 450 0
min(y) –7.71e–06 0.0 0.0 –3.93e–06 0.0
max(y) 5.4211 5.4211 5.4211 5.4211 5.4211
nsteps 344 338 338 368 460
nfailed 33 32 32 39 84
nfevals 755 742 742 805 1046
npds 30 29 29 30 61
ndecomps 90 89 89 99 166
nsolves 754 741 741 803 1045
nclips N/A 577 577 175 340
mean(k) 3.59 3.60 3.60 3.62 3.09
mean(iter) 1.94 1.94 1.94 1.92 1.86
time (seconds) 5.25 5.18 5.20 5.77 7.58

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping dassl constraint damping

nnegative 1008 0 0 792 0
min(y) –3.93e–04 0.0 0.0 –4.01e–04 0.0
max(y) 5.4211 5.4211 5.4211 5.4211 5.4211
nsteps 583 910 910 583 424
nfailed 167 182 182 167 158
nfevals 1732 2428 2425 1734 1286
npds 69 68 68 69 125
ndecomps 271 324 324 271 223
nsolves 1731 2427 2424 1732 1285
nclips N/A 1665 1162 135 171
mean(k) 2.80 2.43 2.43 2.80 3.16
mean(iter) 2.24 2.18 2.18 2.24 2.24
time (seconds) 11.80 16.93 16.87 12.53 9.66

y
(0)
n+1 = pn. This is brought out by the number of ODE steps and the wall clock times

as overall measures of efficiency, but also by the Newton solver taking fewer iterations
to converge and the ODE method order being higher on average in almost all cases.

To analyze the effect of component-wise vs. norm-wise error control, we compare
Table 4.1 against Table 4.2 and Table 4.3 against Table 4.4. Although the ODE
method order is lower on average for norm-wise error control, it is clear from the
overall measures of efficiency that the use of norm-wise error control is more efficient.
This is consistent with the expectation that component-wise error control is more
stringent because it controls the error in each component. However, the results for
this system, such as min(y) and max(y), do not show any advantage of this added
stringency. This suggests the use of norm-wise error control in the time stepping if
the ODE components represent spatial approximations to PDE components.

To analyze the effect of whether to update the Jacobian only when required by
the error control or also when ∆t or k change, we compare Table 4.1 against Table 4.3
and Table 4.2 against Table 4.4. In most cases, the ODE method turns out to be
roughly equally efficient with similar numbers of ODE steps and average ODE orders.
However, the wall clock time indicates a distinct advantage of using better physical

A NON-NEGATIVITY PRESERVING NEWTON METHOD 21

Table 4.3

Solution statistics for the interface problem with Jacobian update forced and component-wise
error control.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping dassl constraint damping

nnegative 745 0 0 566 0
min(y) –3.46e–09 0.0 0.0 –4.17e–09 0.0
max(y) 5.4211 5.4211 5.4211 5.4211 5.4211
nsteps 764 765 765 769 802
nfailed 16 17 17 16 36
nfevals 1133 1147 1147 1156 1295
npds 114 116 116 114 140
ndecomps 114 116 116 114 140
nsolves 1132 1146 1146 1154 1294
nclips N/A 736 736 346 21
mean(k) 4.75 4.72 4.72 4.75 4.57
mean(iter) 1.44 1.45 1.45 1.47 1.51
time (seconds) 9.01 9.05 8.805 9.03 9.90

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping dassl constraint damping

nnegative 997 0 0 865 0
min(y) –8.54e–11 0.0 0.0 –8.54e–11 0.0
max(y) 5.4211 5.4211 5.4211 5.4211 5.4211
nsteps 867 867 867 867 871
nfailed 235 235 235 235 233
nfevals 3207 3207 3207 3208 3202
npds 352 352 352 352 352
ndecomps 352 352 352 352 352
nsolves 3206 3206 3206 3206 3201
nclips N/A 1101 1101 198 9
mean(k) 4.20 4.20 4.20 4.20 4.22
mean(iter) 3.12 3.12 3.12 3.12 3.10
time (seconds) 21.98 21.80 22.33 22.53 22.13

information. This results from fewer failed steps and the shift of (relatively more
expensive) LU decompositions to (relatively cheaper) Jacobian evaluations, along
with fewer Newton iterates and thus fewer function evaluations and linear solves.

5. Conclusions. The numerical tests in the previous sections, particularly for
the interface problem, confirm the efficacy of supplying better physical information
by re-evaluating the Jacobian more often and by using the predictor as initial guess
for the Newton method by choosing y(0)

n+1 = pn. Also, norm-wise error control turns
out to be significantly more efficient, at the price of some accuracy only for the
Robertson problem. We believe that these observations carry over to other large
ODE systems, particularly those obtained by a method of line discretization of PDEs.
These observations hold independent of any non-negativity preserving strategies.

The tests demonstrate that all non-negativity preserving strategies considered do
not significantly degrade ODE method order, ODE step size changing history, or other
efficiency measures, compared to the original method without non-negativity preser-
vation. Only the non-negativity preservation methods of clipping, DASSL clipping,
and damping are effective for all intermediate Newton iterates, as seen for both test
problems and for all choices of initial guess for the Newton method, type of error

22 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

Table 4.4

Solution statistics for the interface problem with Jacobian update forced and norm-wise error
control.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping dassl constraint damping

nnegative 482 0 0 336 0
min(y) –2.88e–06 0.0 0.0 –2.88e–06 0.0
max(y) 5.4211 5.4211 5.4211 5.4211 5.4211
nsteps 345 344 344 365 397
nfailed 13 12 12 19 50
nfevals 617 605 605 650 780
npds 69 69 69 78 119
ndecomps 69 69 69 78 119
nsolves 616 604 604 648 779
nclips N/A 471 471 156 236
mean(k) 3.67 3.51 3.51 3.66 3.23
mean(iter) 1.69 1.68 1.67 1.66 1.68
time (seconds) 4.77 4.74 4.78 5.24 6.52

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping dassl constraint damping

nnegative 666 0 0 485 0
min(y) –6.51e–05 0.0 0.0 –6.51e–05 0.0
max(y) 5.4211 5.4211 5.4211 5.4211 5.4211
nsteps 470 470 470 470 424
nfailed 82 83 83 82 113
nfevals 1260 1264 1261 1261 1155
npds 151 152 152 151 177
ndecomps 151 152 152 151 177
nsolves 1259 1263 1260 1259 1154
nclips N/A 660 657 91 123
mean(k) 3.14 3.14 3.12 3.14 3.14
mean(iter) 2.16 2.16 2.16 2.16 2.16
time (seconds) 9.23 9.21 9.20 9.45 9.29

control, or Jacobian evaluation strategy. Based on the results for the interface prob-
lem alone, we could not recommend one of these methods over the others; in fact, in
some cases, clipping and DASSL clipping turn out to be slightly more efficient than the
dampening method. This is why the Robertson problem is insightful: it demonstrates
that non-negativity preservation by damping the Newton method has the potential
for better mass conservation ability of the ODE method, which is an important issue
in the solution of many problems such as problems involving reactions.

The two numerical examples together thus illustrate the key advantages of our
proposed approach: (i) The non-negativity of all intermediate Newton iterates is
ensured by construction, so no coefficient function of the ODE can be called with
arguments for which it is not valid. (ii) The method avoids significant degradation of
mass conservation. (iii) The method incurs only minor additional computational cost
when it is active, i.e., when potentially negative solution components are encountered,
and no additional cost when it is not active. (iv) Because our method is implemented
within the framework of the Newton method inside an implicit time-stepping algo-
rithm, it applies to families of high-order implicit time-stepping methods without any
change to their automatic time step size and method order control. (v) The method

A NON-NEGATIVITY PRESERVING NEWTON METHOD 23

applies to general IVPs (1.1) with mass matrix, such as resulting from method of lines
discretizations using the finite element method.

REFERENCES

[1] U. M. Ascher, Numerical Methods for Evolutionary Differential Equations, SIAM, 2008.
[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations, vol. 14 of Classics in Applied Mathematics,
SIAM, 1996.

[3] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE: A variable-coefficient ODE
solver, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1038–1051.

[4] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 450–481.

[5] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400–408.

[6] J. E. Dennis, J. J. E. Dennis, and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, SIAM, 1996.

[7] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput., 17 (1996), pp. 16–32.

[8] M. K. Gobbert, Long-time simulations on high resolution meshes to model calcium waves in
a heart cell, SIAM J. Sci. Comput., 30 (2008), pp. 2922–2947.

[9] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, vol. 14 of Springer Series in Computational Mathematics, Springer-
Verlag, 1991.

[10] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,

and C. S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers, ACM Trans. Math. Software, 31 (2005), pp. 363–396.

[11] A. C. Hindmarsh and G. D. Byrne, Applications of EPISODE: An experimental package
for the integration of systems of ordinary differential equations, in Numerical Methods
for Differential Systems, L. Lapidus and W. E. Schiesser, eds., Academic Press, Inc., New
York, 1976, pp. 147–166.

[12] A. C. Hindmarsh and R. Serban, User documentation for CVODE v2.5.0, tech. rep.,
Lawrence Livermore National Laboratory, 2006. URL www.llnl.gov/casc/sundials.

[13] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations, vol. 33 of Springer Series in Computational Mathematics,
Springer-Verlag, 2003.

[14] L. V. Kalachev and T. I. Seidman, Singular perturbation analysis of a stationary diffu-
sion/reaction system whose solution exhibits a corner-type behavior in the interior of the
domain, J. Math. Anal. Appl., 288 (2003), pp. 722–743.

[15] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, vol. 16 of Frontiers in
Applied Mathematics, SIAM, 1995.

[16] MATLAB Release R2006b (August 03, 2006). The MathWorks, Inc., www.mathworks.com.
[17] M. Muscedere and M. K. Gobbert, Parameter study of a reaction-diffusion system near

the reactant coefficient asymptotic limit, Dynamics of Continuous, Discrete and Impulsive
Systems Series A Supplement, (2009), pp. 29–36.

[18] H. H. Robertson, The solution of a set of reaction rate equations, in Numerical Analysis: An
Introduction, J. Walsh, ed., Academic Press, 1966, pp. 178–182.

[19] A. Sandu, Positive numerical integration methods for chemical kinetic systems, J. Comput.
Phys., 170 (2001), pp. 589–602.

[20] T. I. Seidman and L. V. Kalachev, A one-dimensional reaction/diffusion system with a fast
reaction, J. Math. Anal. Appl., 209 (1997), pp. 392–414.

[21] L. F. Shampine, Conservation laws and the numerical solution of ODEs, Comput. Math. Appl.
Part B, 12 (1986), pp. 1287–1296.

[22] , Linear conservation laws for ODEs, Comput. Math. Appl., 35 (1998), pp. 45–53.
[23] L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18

(1997), pp. 1–22.
[24] L. F. Shampine, S. Thompson, J. A. Kierzenka, and G. D. Byrne, Non-negative solutions

of ODEs, Appl. Math. Comput., 170 (2005), pp. 556–569.
[25] A. M. Soane, M. K. Gobbert, and T. I. Seidman, Numerical exploration of a system of

reaction-diffusion equations with internal and transient layers, Nonlinear Anal.: Real
World Appl., 6 (2005), pp. 914–934.

