
A NON-NEGATIVITY PRESERVING NEWTON METHOD FOR
HIGH-ORDER IMPLICIT TIME STEPPING

MATTHIAS K. GOBBERT∗, MICHAEL MUSCEDERE∗ , THOMAS I. SEIDMAN∗ , AND

RAYMOND J. SPITERI†

Abstract. Large classes of mathematical models approximate the time evolution of quantities
that are inherently non-negative because of what they represent physically, e.g., chemical concentra-
tions or populations. However, even if a mathematical model is guaranteed to have a non-negative
true solution, the non-negativity of its approximate solution is often destroyed by the discretization
of the mathematical model. Furthermore, in the case of implicit time discretizations of ordinary
differential equations (ODEs), even if the discrete non-linear algebraic equations at each time step
are guaranteed to admit non-negative exact solutions, non-negativity of the approximate solutions
is often destroyed by the truncated Newton method used to solve them. We propose a modification
that guarantees the non-negativity of the solution and all intermediate Newton iterates by control-
ling the size of the Newton step. The algorithm is implemented in the context of the numerical
differentiation formulas, a fully implicit family of high-order time-stepping methods, for a general
system of first-order ODEs with a mass matrix. Thus the algorithm can be directly applied to
any initial-value problem for ODEs in standard form as well as to method-of-lines discretizations
of partial differential equations. The effectiveness of the method is demonstrated by comparisons
against other non-negativity preserving methods on the classical Robertson kinetics problem and on
a three-species reaction-diffusion system with transient and moving internal layers.

Key words. Numerical differentiation formulas, Newton method, reaction-diffusion equations,
method of lines, finite difference method.

AMS subject classifications. 35K57, 65L06, 65M06, 65M50, 90C53.

1. Introduction. Large classes of mathematical models approximate the time
evolution of quantities that are inherently non-negative because of what they represent
physically, e.g., chemical concentrations or populations. However, even if a mathe-
matical model can guarantee that its solution is non-negative, the non-negativity of
its approximate solution is often destroyed by the discretization of the mathematical
model, e.g., by the spatial discretization of a partial differential equation (PDE) in
a method-of-lines approach or by the time discretization of an ordinary differential
equation (ODE) with a (stable) time step that exceeds the radius of monotonicity;
see, e.g., [15, 26] for extensive discussions. In particular, if an implicit time-stepping
method is used for the time evolution, so that a system of non-linear algebraic equa-
tions must be solved at each time step, then the truncation of the Newton iteration
after finitely many steps may destroy the non-negativity property of the ODE solution,
even if the ODE discretization has a non-negative exact solution [21, page 592].

In this paper we propose an algorithm that modifies the Newton iteration inside
implicit high-order time-stepping methods so as to guarantee non-negativity of the
resulting approximate solution and of all intermediate iterates. Our algorithm is
designed for the general initial value problem

M
dy

dt
= f(t, y), 0 < t ≤ tfin, y(0) = yini,(1.1)

∗Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000
Hilltop Circle, Baltimore, MD 21250, U.S.A. ({gobbert,mmusce1,seidman}@math.umbc.edu).
†Department of Computer Science, University of Saskatchewan, 110 Science Place, Saskatoon,

SK S7N 5C9, Canada (spiteri@cs.usask.ca). The research of this author was supported in part by
grants from MITACS, Martec, Ltd., and NSERC Canada.

1

2 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

where y(t) is a vector of time-dependent functions. Here, M denotes a mass matrix,
such as would result from the use of the finite element method as spatial discretization
in the method-of-lines approach to discretize a PDE. As appropriate for that case, we
assume at present that M is non-singular and constant. We assume that the given
problem (1.1) is a stiff ODE system, as induced by the method-of-lines discretiza-
tion of a PDE, for instance. For reliability and efficiency of the time-stepping, it is
also vital that the ODE solver include a sophisticated error estimation mechanism
and automatic step size and method order control. Well-known and recommended
codes for this problem include VODE [5], CVODE in SUNDIALS [12], and DASSL
[4], which implement the family of backward differentiation formulas (BDFk), as well
as RADAU5 [11], which is an implicit Runge-Kutta code based on 3-stage Radau
collocation. We use the ode15s function in Matlab [18, 25] as the starting point for
our development because it implements the attractive family of numerical differenti-
ation formulas (NDFk) that is a generalization of the BDFk family and has potential
for significantly more efficient time-stepping [10, 25]. The paper by Shampine and
Reichelt [25] documents the methods in detail, and we follow their notation below as
well as use Matlab’s ode15s as the basis for our test implementation.

In many practically important problems, the solution components represent quan-
tities such as chemical concentrations that should be non-negative for physical reasons.
For large classes of problems such as reaction-diffusion equations, it has been estab-
lished analytically that their mathematical models in the form of ODEs maintain
this non-negativity as well as ODEs resulting from appropriate spatial discretization
in the case of PDEs [15, Chapter 1]. Thus, we consider problems of the form (1.1)
that have a non-negative solution for every vector of initial conditions yini with non-
negative components. However, using a truncated Newton method inside an implicit
ODE solver often destroys the non-negativity of the ODE solution, even if the ODE
discretization admits a non-negative solution; see, e.g., [21, page 592]. This can hap-
pen for both typical choices of initial guesses for the Newton method ([15, page 127]),
namely the numerical solution at the previous time step or a predictor involving the
previous solution and approximations to one or more of its derivatives. These obser-
vations suggest that one should suitably modify the way in which each iteration of
the Newton solver and its initial guess are constructed.

One approach for problems, for which negative values do not cause catastrophic
failure, is to control the amount of non-negativity in the ODE solution by tightening
the error tolerances imposed on the ODE solver, as suggested for example in the
User Documentation for CVODE [14, Subsection 5.5.2]. We used this approach in
[27] to confirm that the results for the interface problem were reliable despite the
small negative values in some solution components. However, to eliminate negativity
entirely with this approach may incur a dramatic increase in computational cost
because the tighter tolerances force smaller time steps.

One of the first ways to deal with preventing negative solution values in the
context of an arbitrary time-stepping method is the so-called clipping method, in
which negative solution components are set to zero whenever they occur. For reaction
systems, this approach has the severe disadvantage that it destroys mass conservation:
mass is effectively added to the system whenever a negative concentration is increased
to zero [21]. It also interferes with a solver’s time stepping and error estimation
algorithms. Another approach, suggested in [21], is to project the solution into its non-
negative domain via a constraint optimization. Drawbacks of this approach include
the complication of its implementation, the computational cost associated with solving

A NON-NEGATIVITY PRESERVING NEWTON METHOD 3

an optimization problem inside of an ODE solver and, again, the possible failure of
mass conservation.

An additional problem with clipping is that unless the Jacobian of f(t, y) in (1.1)
is re-evaluated after the solution is clipped, its slope in the next Newton step will still
point “downwards”, and the next iterate will very likely yield negative values again.
Partially motivated by this observation, a strategy described as constraint-following
is proposed in [26] for the case M = I in (1.1), where the components in f(t, y) that
correspond to zero solution components are “redefined” to be zero in the case of a
negative slope, and thus the numerical solution will “follow” the constraint. The so-
lution only moves off the constraint again if the slope becomes positive. This strategy
has been implemented in several of Matlab’s ODE solvers including ode15s, starting
with Release R14 Service Pack 3. The approach implemented there incorporates part
of the non-negativity preservation into the test for accepting or rejecting an ODE so-
lution, i.e., the final iterate of the non-linear Newton solver. This makes the method
efficient in that it incurs cost only if negative components are encountered. However,
because it works as part of the ODE error control mechanism, it does not apply to
intermediate iterates of the non-linear solver; i.e., these iterates can still have negative
components. These intermediate iterates appear in turn in the evaluation of the ODE
function f(t, y) in each Newton step, which can thus become undefined, if it involves
square root or similar functions of the solution components.

To ensure the non-negativity of all intermediate Newton iterations, our algorithm
limits the length of each Newton step, borrowing an idea from line searches in opti-
mization algorithms and from damping in a Newton method [3, page 111]. If any so-
lution component becomes negative with the default damping factor of 1 in a Newton
iteration, then the step is recomputed with a smaller damping parameter. In order to
ensure progress of the iteration, the damping factor must not vanish. We accomplish
this by limiting the Newton step such that the solution components do not become
more negative than −ε(neg) and then setting the remaining negative components with
magnitude less than ε(neg) to zero. Here, 0 < ε(neg) � 1 is a user-supplied parameter
that explicitly indicates the acceptable amount of mass error and implicitly ensures
that the damping parameter in the Newton step does not become zero. On the one
hand, our approach agrees with a technique described in [12, pages 373–74] for the
non-linear solver KINSOL in SUNDIALS that uses the idea to enforce constraints on
the solution components, but its use inside an ODE solver is apparently new. On the
other hand, the philosophy behind the user-supplied parameter ε(neg) is analogous to
the strategy used by step size control algorithms in many ODE solvers: To accept the
ODE solution at a new time step, the error estimator must be within a user-supplied
tolerance. This can be achieved in principle by making the time step size as small
as necessary. But allowing it to become too small might unacceptably increase the
number of time steps to reach the desired final time. Thus, if the time step required
by the error controller is smaller than a specified minimum step size, the code stops
with an error. It is then left up to the user to find the right balance between desired
error tolerances and minimum acceptable time step size for the particular ODE. In the
same way, the user can vary ε(neg) appropriately for the problem under consideration
and balance it to the ODE tolerance, from which the Newton tolerance is derived.

Theoretical analyses of convergence for Newton, truncated Newton, and inexact
Newton methods are available, e.g., [6, 7, 8, 9, 17]. These generally require that the
initial guess be ‘close enough’ to the solution. In principle, this is also true of our pro-
posed method — since ‘close enough’ to a strictly positive solution will ensure that no

4 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

damping occurs — but is not the most relevant in the present context: The situation
inside an ODE solver is a simpler special case, because the automatic time step size
controller can decrease the time step in response to convergence problems of the New-
ton method. This is effectively the same strategy used by every implementation that
does not stop to verify at each step the explicit quantitative convergence condition
by Kantorovich. We also note that a rationale for considering damping of the step
size rather than any more general inexact Newton method is the preservation of mass
conservation: For instance linear multistep methods conserve mass (and other linear
invariants) [23, 24], and changing the length of the Newton step does not destroy this
property. The convergence of the Newton iteration is thus no more an issue for this
modification than for the usual version, since we are not changing the Newton con-
vergence tests, the error control, or the step-size or method order selection. As in the
original version without damping, the user would balance tolerance and time step as
needed to ensure convergence of the Newton method and the ODE solver, unless the
computational effort resulting from small time steps becomes unacceptable. Practice
has not indicated this occurring any more frequently with the proposed method.

To study the effectiveness and efficiency of our method in practice, we present
extensive test calculations for two examples. The first is the well-known Robertson
problem [20], which is a stiff system of three reaction ODEs. The widely varying scales
of the reaction coefficient are the source of the stiffness and justify the use of implicit
ODE solvers for this problem. Computation of the solution to steady state constitutes
a significant challenge for automatic step size control algorithms; because of this, it
has been used as example in textbooks [11, pages 3 and 157], [1, page 61] and in
the documentation for ODE packages such as EPISODE [13], VODE [5], CVODE
in SUNDIALS [12], and Matlab’s ode15s function [18, see function hb1ode]. This
example is also interesting in the context of non-negativity preservation because it is
known that for final times on the order of 1011, one or more solution components can
become negative, causing the solution to blow up [11, page 157] and leading to failure
of the solver.

The second example is a system of ODEs obtained by spatially discretizing a
system of three reaction-diffusion equations. The problem is characterized by moving
internal layers at the interfaces between regions characterized by the relative size of
the concentrations of two of the reactants, so we refer to it briefly as the interface
problem. In the method-of-lines approach, the resulting problem is a system of stiff
nonlinear ODEs with each component representing the time-dependent approximation
to the solution at each spatial point. This system of ODEs is non-linear due to the
non-linearities in the reaction terms. Similar to the Robertson problem, the solution
has mostly smooth behavior, but it also has localized sharp transients [19, 27], so the
use of a sophisticated error control and an automatic step size selection algorithm is
vital for a reliable and efficient solution of the problem.

The two examples share the feature that their solutions represent chemical con-
centrations and hence should be non-negative for physical reasons. Moreover, for
both problems (including the spatial discretization of the interface problem), it has
been established theoretically that they maintain this non-negativity [15, Chapter 1].
The two examples considered here are chosen so that all available methods for non-
negativity preservation can be used without break-down and can thus be compared
to our proposed approach. To this end, we have deliberately selected problems which
do not have any terms that would become undefined upon encountering negative so-
lution components, so that the ODE solver can proceed to the final time in all cases,

A NON-NEGATIVITY PRESERVING NEWTON METHOD 5

in order to allow the full comparison of all solvers considered. As discussed above,
catastrophic failure in the form of blow-up of the solution can still and does occur for
the Robertson problem. Also, even though our method applies to (1.1) with a mass
matrix, we restrict ourselves to the case of M = I so that Matlab’s non-negativity
preservation technique can also be applied. Besides comparing the three aforemen-
tioned methods for preserving non-negativity, we also analyze the impact of several
other method parameters on the effectiveness and efficiency of the ODE solver.

Both examples are needed to analyze certain features of the methods under con-
sideration: The Robertson problem conserves mass, hence it is useful to study the
effect of the different non-negativity preservation methods on this property. But the
Robertson problem is too small to observe meaningful computation times, hence it is
interesting to consider the interface problem, which as PDE system requires signif-
icantly more computational effort. The test calculations for two examples together
show the key advantages of our approach: (i) The non-negativity of all intermediate
Newton iterates is ensured by construction, so no coefficient function of the ODE
will ever be called with arguments for which it is not valid. (ii) The method avoids
significant degradation of mass conservation. (iii) The method incurs only minor ad-
ditional computational cost when it is active, i.e., when potentially negative solution
components are encountered, and no additional cost when it is not active. (iv) Be-
cause our method is implemented within the framework of the Newton method inside
an implicit time-stepping algorithm, it applies to families of high-order implicit ODE
methods without any change to their automatic time step size and method order con-
trol. (v) The method applies to general initial-value problems (IVPs) involving a mass
matrix, such as arising from method-of-lines discretizations of evolutionary PDEs us-
ing the finite element method; For such problems, high-order implicit time-stepping
methods can be particularly advantageous or even necessary to reach relevant final
simulation times [10].

The remainder of the paper is organized as follows. Section 2 reviews the NDFk
methods implemented in ode15s and explains in detail how our algorithm is imple-
mented in it. The subsequent sections 3 and 4 present the Robertson and interface
problems, respectively, with detailed descriptions and analyses of the results from
the comparisons between the different strategies for non-negativity preservation. To
test the methods, we vary and compare several other choices, such as choices for the
initial guess of the Newton iteration, of component-wise vs. norm-wise error control,
and whether to force a Jacobian update for every linear solve.

2. Time Discretization and Non-Negativity Preservation.

2.1. Numerical Differentiation Formulas. We review the NDFk following
the paper [25] but generalized to the ODE with mass matrix in (1.1). That is, the
following formulas detail the code implemented in the Matlab function ode15s using
a notation that is slightly modified from [25]. Throughout the development, we leave
other parts of the code unchanged, in particular the sophisticated error control and
automatic time step size and method order selection algorithms.

The NDFk generalize the well-known backward differentiation formulas of order
k (BDFk) (see, e.g., [2]). The BDFk methods approximate the derivative in the ODE
(1.1), written in the form My′(tn+1) − f(tn+1, yn+1) = 0, by backward difference
approximations of order k. In pseudo-constant time step notation with time step ∆t,
this approximation reads y′(tn+1) ≈ (1/∆t)

∑k
m=1(1/m)∇myn+1, with the notation

for the backward differences defined by ∇my` := ∇m−1y` −∇m−1y`−1 for m ≥ 1 and
∇0y` := y`. The NDFk are then defined by adding the term −αkγkM(yn+1 − pn) to

6 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

the BDFk to get

M

(
k∑

m=1

1
m
∇myn+1

)
−∆t f(tn+1, yn+1)− αk γkM

(
yn+1 − pn

)
= 0(2.1)

with γk :=
∑k
j=1

1
j . The quantity defined by

pn := yn +
k∑

m=1

∇myn(2.2)

can be interpreted as a predictor for yn+1 at the new time t = tn+1 = tn + ∆t, using
the solution and approximations to its derivatives at t = tn. The truncation error of
the NDFk method is (αkγk + 1

k+1) (∆t)k+1y(k+1)(tn+1) and has the same order (i.e.,
k + 1) as that of BDFk [25]. The parameter αk can now be chosen for each method
order 1 ≤ k ≤ 5 to make the method more efficient, and [25] explains the values that
appear in ode15s. The notation for the predictor (2.2) in [25] is y(0)

n+1 because its
use as initial guess for the Newton method is hard-wired in the code; we introduce
a separate notation for the predictor here so that we can also choose another initial
guess for the Newton method later with a clear notation.

2.2. The Newton Method inside NDFk. The fully implicit time discretiza-
tion (2.1) constitutes a non-linear system of equations for yn+1. Using the identity∑k
m=1

1
m∇

myn+1 = γk
(
yn+1 − pn

)
+
∑k
m=1 γm∇myn, we collect terms independent

of yn+1 and write (2.1) as a root-finding problem for yn+1:

f (newt)(yn+1) := M
(
yn+1 − pn

)
+MΨn −

∆t
(1− αk)γk

f(tn+1, yn+1) = 0,

with Ψn := 1
(1−αk)γk

∑k
m=1 γm∇myn. The Newton method then reads: Start with

initial guess y(0)
n+1, then iterate for i = 0, 1, 2, . . .

Solve
(
J (newt)(y(i)

n+1)
)

∆(i) = −f (newt)(y(i)
n+1) for ∆(i),

Update y(i+1)
n+1 = y

(i)
n+1 + ∆(i),

(2.3)

where the Jacobian J (newt)(yn+1) of f (newt)(yn+1) with respect to unknown vector
yn+1 is given by

J (newt)(yn+1) := ∇yn+1f
(newt)(yn+1) = M − ∆t

(1− αk)γk
J(tn+1, yn+1)(2.4)

involving the Jacobian J(t, y) := ∇yf(t, y) of the right-hand side function in (1.1).
The code must also decide whether or not to accept y

(i+1)
n+1 , and to this end

one needs an ODE error estimator for the term (∆t)k+1y(k+1)(tn+1) ≈ ∇k+1yn+1

in the truncation error. From the definition of pn from (2.2) follows the alternative
expression ∇k+1yn+1 = yn+1 − pn for the approximation to the truncation error
explicitly involving yn+1. By introducing d(i+1) := ∇k+1y

(i+1)
n+1 = y

(i+1)
n+1 − pn =

y
(i)
n+1 + ∆(i) − pn = d(i) + ∆(i) for every Newton iterate y(i+1)

n+1 and d(0) := y
(0)
n+1 − pn,

A NON-NEGATIVITY PRESERVING NEWTON METHOD 7

one derives a method that gives the needed ODE error estimator. In turn, one can
re-write the Newton update in (2.3) to use d(i+1) in its calculation and

d(i+1) = d(i) + ∆(i),

y
(i+1)
n+1 = pn + d(i+1).

(2.5)

These formulas are used in ode15s to simultaneously compute the the Newton update
y

(i+1)
n+1 and its ODE error estimator d(i+1).

As initial guess for the Newton iteration, one choice is the solution at the previous
time step: y(0)

n+1 = yn. In this case, d(0) = y
(0)
n+1 − pn needs to be computed from its

definition. But the predictor (2.2) uses additional information about the derivatives,
and thus the initial guess y(0)

n+1 = pn is expected to lead to better performance of the
non-linear solver. In this case, d(0) = y

(0)
n+1−pn = 0 always. This is how the algorithm

is hard-coded in ode15s and explains why [25] does not introduce a separate notation
for pn. To allow us to study the effect of both initial guesses in our numerical studies,
we write the algorithm in the following form: Start with y

(0)
n+1 either as pn or yn,

compute d(0) = y
(0)
n+1 − pn, then iterate for i = 0, 1, 2, . . .

b(i) = ∆t
(1−αk)γk

f(tn+1, y
(i)
n+1)−M

(
Ψn + d(i)

)
,

Solve
(
M − ∆t

(1−αk)γk
J(tn+1, y

(i)
n+1)

)
∆(i) = b(i) for ∆(i),

d(i+1) = d(i) + ∆(i),

y
(i+1)
n+1 = pn + d(i+1).

(2.6)

This form of the algorithm brings out how the coefficient functions f and J of the ODE
problem (1.1) enter and is useful to explain possible trade-offs between accuracy and
efficiency: The linear solve in the second step of (2.6) is accomplished by computing an
LU decomposition of the iteration matrix M (iter) := M − ∆t

(1−αk)γk
J and then solving

the linear system using the factorized form. The efficiency of this approach lies in pre-
computing the decomposition and re-using it for several Newton iterations and in fact
for several (potentially many) ODE steps. In addition, Matlab’s ode15s code further
minimizes the number of Jacobian evaluations by holding J constant in memory until
the error control algorithm requests a re-evaluation. This means that when the LU
decomposition of M (iter) is re-computed in response to a change in the step size ∆t
or the ODE method order k (which changes αk and γk in M (iter)), the Jacobian
may not be up-to-date at the current time. This approach minimizes the number of
times that J is evaluated and is thus appropriate if this is the costliest step in the
algorithm, in particular compared to the LU decomposition. In our problem, where
the evaluation of the Jacobian is very cheap, the LU decomposition is the costliest
step of the algorithm. Hence, we also test a different compromise in our numerical
studies, in which the Jacobian is always re-evaluated whenever an LU decomposition
of M (iter) is required, that is, whenever the error control mechanism either requests
the re-evaluation of J or when it changes ∆t or k.

2.3. A New Algorithm for Preserving Non-Negativity. The classical New-
ton iteration may produce an iterate y(i+1)

n+1 = y
(i)
n+1 + ∆(i) with negative components,

even if y(i)
n+1 is non-negative, because ∆(i) from the linear solve in (2.6) is not restricted

in size or sign. To prevent the introduction of negative components, we return to the
form of the Newton update in (2.3) and introduce a damping parameter 0 < si ≤ 1 in

8 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

the computation of the update y(i+1)
n+1 = y

(i)
n+1 + si ∆(i) that guarantees that no com-

ponent of the new Newton iterate y(i+1)
n+1 is smaller than −ε(neg), where 0 < ε(neg) � 1

is a user-supplied parameter. The choice of a positive parameter ε(neg) in this step
ensures that the damping parameter si never vanishes, that is, the Newton iteration
is guaranteed not to stall. Reformulating the terms again as for (2.5), our damping
algorithm can be written in a form comparable to (2.6) as follows: Start with y

(0)
n+1

either as pn or yn, compute d(0) = y
(0)
n+1 − pn, then iterate for i = 0, 1, 2, . . .

b(i) = ∆t
(1−αk)γk

f(tn+1, y
(i)
n+1)−M

(
Ψn + d(i)

)
,

Solve
(
M − ∆t

(1−αk)γk
J(tn+1, y

(i)
n+1)

)
∆(i) = b(i) for ∆(i),

si = max{s ∈ (0, 1] : y(i)
n+1 + s∆(i) ≥ −ε(neg)},

d(i+1) = d(i) + si ∆(i),

y
(i+1)
n+1 = pn + d(i+1).

(2.7)

We complement this damping with two ideas from the constraint-following algorithm
in ode15s: First, any remaining negative components are set to zero now, but by con-
struction these components are of size less than ε(neg). Second, we set the derivative
approximations ∇myn+1 to zero for these components to help with the non-negativity
of the predictor of the next step.

To ensure non-negativity of all Newton iterates by the above construction, it is
also necessary to ensure that the initial guess be non-negative. But the predictor pn
from (2.2) can have negative components, and thus also the initial guess y(0)

n+1 = pn of
the Newton iteration. If that is the case, we try again with an initial guess based on
a predictor with ‘shorter’ memory than (2.2) by computing y(0)

n+1 = yn+∇1yn. If this
still yields negative components, then we compute a damped predictor by the same
construction described above with yn in the role of y(i)

n+1 and ∇1yn in the role of ∆(i).
Overall, these steps construct a non-negative Newton iterate without introducing

significant mass error because (contrary to clipping) the components set to zero in
the second step are no larger than ε(neg). This proposed algorithm ensures that
f(t, y) and J(t, y) are never evaluated with y having negative components (contrary to
merely choosing tighter ODE tolerances or constraint-following in ode15s). Although
somewhat more computationally expensive than others, this approach maintains the
philosophy of [26] regarding efficiency in that it does not cost anything if there are
no negative components, and it is reasonably inexpensive if there are. Moreover,
this approach is easily implemented in the framework of the Newton method inside
an implicit ODE solver of any method order k. We contrast this in complexity of
programming as well as computational cost to the approach suggested in [21] based on
projecting solutions with negative components into the positive cone via a constrained
optimization method.

The Newton iterate y(i+1)
n+1 is accepted as converged when the norm of the update

vector ∆(i) (without the damping factor si) is less than its tolerance; this ensures
that the damped Newton iterations compute a solution of the same quality as the
undamped iterations. The control strategy proceeds then as for the original code:
If a converged solution cannot be found within the maximum number of Newton
iterations allowed, the Jacobian is re-evaluated and/or the time step is reduced. The
quantity d(i+1) = d(i) +si ∆(i) computes the ODE error estimator associated with the
new solution y

(i+1)
n+1 following analogous formulas as in the derivation of (2.5).

A NON-NEGATIVITY PRESERVING NEWTON METHOD 9

Provided the ODE problem (1.1) of the type under consideration has a non-
negative solution, it can be shown that the implicit Euler method (i.e., BDF1) admits
a non-negative solution [15]. This is neither true for BDFk methods with k > 1 nor
for NDFk methods with any k, and these methods can admit solutions with negative
components. However, these solutions are unphysical, and tighter tolerances on the
ODE error estimator, i.e., sufficiently small time steps, can be used to control their
magnitude [14, Subsection 5.5.2]. For sufficiently small time steps, a converged ODE
solution will thus eventually be non-negative for the problems under consideration.
Under these conditions, our approach that controls non-negativity by construction
will converge to the same solution, albeit with potentially larger time steps.

3. The Robertson Problem.

3.1. Problem Statement. The Robertson problem [11, 20] describes chemical
reactions among three reactants A, B, and C as

A 0.04−→ B,

2 B 3·107

−→ B + C,

B + C 104

−→ A + C.

Introducing u(t), v(t), w(t) as the chemical concentrations of the species A, B, C,
respectively, the evolution of the concentrations is described by the ODE system

ut = −0.04u + 104 v w, u(0) = 1,
vt = 0.04u − 104 v w − 3 · 107 v2, v(0) = 0,
wt = 3 · 107 v2, w(0) = 0.

(3.1)

The stiffness of the ODE system results from the widely varying rates of the reactions,
as indicated by the reaction rate coefficients ranging from 0.04 to 3 · 107. We choose
to consider the final time tfin = 4 · 1011, which goes beyond the time interval over
which many ODE solvers are stable [11, 18]. To phrase the problem in the standard
form y′ = f(t, y), we collect the concentrations as solution components of the vector
y(t) = [u(t), v(t), w(t)]T .

Figure 3.1 (a) plots the three solution components as functions of time, using a
logarithmic time scale to accommodate the large final time. Notice that the second
solution component is very small and thus is scaled by a factor 104 to make it visible
on the same scale as the other solution components, as done in, e.g., [18, function
hb1ode]. Starting from an initial condition with species A being the only one present
(solid line for u), the concentrations tend to a steady state containing species C only
(dash-dotted line for w), with the intermediate reactant B (dashed line for 104v) being
significant only temporarily.

Figures 3.1 (b)–(d) show plots of some crucial performance indicators of the nu-
merical method. Figure 3.1 (b) indicates that the time steps ∆t selected by the
automatic step size control increase exponentially up to the maximum allowed value
of ∆tmax = tfin/10; notice the vertical scale in the plot. Figure 3.1 (c) shows the
method order k selected by the automatic order control in the NDFk family with
1 ≤ k ≤ 5. Finally, Figure 3.1 (d) shows the number of Newton iterations needed to
solve the non-linear system of equations at each time step. Typically, 1 or 2 Newton
iterations are required.

3.2. Numerical Studies. Figure 3.1 shows results of one particular choice of
method parameters, but the behavior for other (convergent) cases is qualitatively sim-
ilar. To compare the effect of the different cases more precisely, Tables 3.1 through 3.4

10 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

(a) u, (104 v), w vs. t (b) ∆t vs. t

(c) k vs. t (d) #iter vs. t

Fig. 3.1. Results for the Robertson problem. (a) Plots of the solution components u (solid),
104 v (dashed), and w (dash-dotted) vs. t (notice the scaling in v), (b) ODE time step ∆t vs. t,
(c) ODE method order k vs. t, (d) number of Newton iterations vs. t. Notice that the time axis
has logarithmic scale. (The results shown in this figure are computed by the NDFk method with
non-negativity preservation using damping, with the predictor as initial guess, with Jacobian update
forced whenever ∆t or k change, and with norm-wise error control.)

list indicators that quantify the effectiveness and efficiency of the different method and
parameter choices. In all cases, we use the NDFk method with 1 ≤ k ≤ 5, a relative
tolerance of 10−3 and an absolute tolerance of 10−6, following the defaults for ode15s
in Matlab. The initial time step is chosen as ∆tini = 5.48 · 10−4 and the maximum as
∆tmax = tfin/10 = 4 ·1010, consistent with Matlab’s default behavior for this problem.
Furthermore, the non-linear Newton solver uses an analytically supplied Jacobian ma-
trix. The tolerance for accepting a Newton solution is 100 εmach ≈ 2.22·10−14, and the
maximum number of Newton iterations is 4, again following the choices implemented
in ode15s. All cases of our method of damping each Newton iterate use the value
ε(neg) = 10−12; we also tested the values 10−10 and 10−14 and observed comparable
results. The focus of this work is on comparing the effect and cost of different non-
negativity preservation methods in the context of an ODE solver with sophisticated
error control using a set of fixed ODE tolerances for all methods, thus no results
for other tolerances are reported. For the methods with non-negativity preservation,
tighter tolerances lead to higher computational cost (larger numbers of ODE steps,
etc.), as expected. But for the case without non-negativity preservation, tests with
different tolerances for the Robertson problem show in fact that one of the solution
components will always become negative eventually, followed shortly by blow-up of

A NON-NEGATIVITY PRESERVING NEWTON METHOD 11

the solution. This behavior is not eliminated, but only delayed, by the use of tighter
tolerances. Thus, we use the default choices from ode15s in these studies, and choose
a final time suggested by [11, page 157], for which negativity and blow-up occur and
thus the use of a non-negativity preservation algorithm is necessary.

Each table collects results for the NDFk method (i) with “no enforcement” of
the non-negativity of the solution and with non-negativity enforced by the methods
defined previously, namely (ii) by “clipping,” i.e., setting any negative component in
every Newton iterate to zero, (iii) by following the “constraint” as in Matlab using the
NonNegative option for all solution components, and (iv) by “damping” the Newton
iterates as described in section 2.3.

The first four quantities listed for each method quantify the effectiveness of the
method, that is, its ability to compute physically correct results. Specifically, we
track the number of times that any intermediate Newton iterate contains a negative
component as well as the value of the smallest negative component over all times; these
are reported in the first two rows as nnegative and min(y). Notice that it is possible
for Matlab’s non-negativity preserving method to have negative values here, since we
are tracking the negativity of intermediate Newton iterations. Next, we report the
maximum over all components of the vector y(t) over all times; this value should be no
larger than 1. Moreover, the Robertson problem conserves mass, and the total mass
m(t) := u(t)+v(t)+w(t) should satisfy m(t) = 1 at all times; so we list the maximum
of the error in total mass as max |m(t)− 1| over all times. In exact arithmetic, the
NDFk (without any non-negativity preservation) should conserve mass. In finite-
precision arithmetic, one thus expects mass error on the order of a small multiple of
unit round-off. However, in cases where the solution does not converge (e.g., blows
up), the formally reported mass error becomes meaningless and can have any value
due to effects of cancellation of significant digits between the components that are
blowing up. In any case, a solution with blow-up cannot be trusted, and its results are
reported in the tables only for completeness. The remaining results for each method
quantify the efficiency of the method, that is, its computational cost. Specifically, we
report the number of (successful) time steps in nsteps, the number of failed time steps
in nfailed, the number of evaluations of the ODE function f(t, y) in nfevals, the
number of evaluations of the Jacobian J(t, y) = ∇yf(t, y) in npds, the number of LU
decompositions in ndecomps, and the number of linear solves (using a pre-computed
decomposition) in nsolves; these are the same statistics as reported by Matlab’s
ode15s. Additionally, in nclips, we report the number of times that one or more
negative solution components are set to zero in clipping or in constraint-following,
while in damping, nclips counts the number of times that a Newton iteration is
damped. Finally, the entries for mean(k) and mean(iter) report the ODE method
order used and the number of Newton iterations taken, respectively, averaged over
all time steps. For the Robertson problem, we do not report any observed wall clock
times because they are small.

We start in Table 3.1 (a) with the NDFk method using settings that are default in
Matlab for ode15s, namely with component-wise error control (NormControl switched
off) and with the Newton method using the predictor pn as initial guess. This means
that in the cases of no enforcement and of constraint-following our code gives identical
results to ode15s without and with the NonNegative option used, respectively. As
the large magnitudes of min(y) and max(y) show, the solution from ode15s blows
up in the case of no enforcement and default settings of the tolerances. Since the
solution blows up, no other results (e.g., mass error) can be trusted for this case.

12 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

Table 3.1

Solution statistics for the Robertson problem with Jacobian update not forced whenever ∆t or
k change and component-wise error control in the ODE method.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping constraint damping

nnegative 696 0 4 0
min(y) –1.49e+08 0.0 –1.54e+02 0.0
max(y) 1.49e+08 1.0 1.0 1.0
max |m(t)− 1| 6.31e+00 1.40e–05 1.03e–14 8.77e–15
nsteps 462 241 237 238
nfailed 177 20 18 18
nfevals 1155 479 464 463
npds 74 13 13 13
ndecomps 279 71 67 68
nsolves 1154 478 462 462
nclips N/A 44 0 17
mean(k) 2.33 2.81 2.84 2.84
mean(iter) 1.68 1.81 1.79 1.79

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping constraint damping

nnegative 0 0 0 0
min(y) 0.0 0.0 0.0 0.0
max(y) 1.0 1.0 1.0 1.0
max |m(t)− 1| 5.61e–14 5.61e–14 5.61e–14 5.61e–14
nsteps 218 218 218 218
nfailed 17 17 17 17
nfevals 568 568 569 568
npds 14 14 14 14
ndecomps 63 63 63 63
nsolves 567 567 567 567
nclips N/A 0 0 0
mean(k) 2.74 2.74 2.74 2.74
mean(iter) 2.42 2.42 2.42 2.42

In particular, reaching the final time is purely formal here, as the solution has long
before stopped converging. We point out that for a fixed final time, in principle there
exists a sufficiently tight tolerance to avoid negative values and hence blow-up, but
this tolerance gets tighter for larger final times and, moreover, the number of ODE
steps and all other performance statistics deteriorate rapidly for tighter tolerances.
Accordingly, our proposed algorithm aims to improve the physical correctness of the
solution (and avoid blow-up) for any final time without paying a penalty in efficiency.
Next we notice that clipping avoids negative solution values and hence prevents blow-
up. However, a fairly significant amount of mass is gained; the following methods
aim to prevent this kind of unphysical violation of mass conservation. Indeed, the
results for both constraint-following, which uses the NonNegative option in ode15s,
and damping exhibit physically correct behavior, with mass being conserved to within
round-off and essentially the same efficiency as clipping. However, we see here that the
algorithm of constraint-following, which only considers the final Newton solution, can
produce significant negative values in the intermediate Newton iterations. This would
be fatal in cases where the ODE function f(t, y) or its Jacobian become undefined for
negative values.

A NON-NEGATIVITY PRESERVING NEWTON METHOD 13

Table 3.2

Solution statistics for the Robertson problem with Jacobian update not forced whenever ∆t or
k change and norm-wise error control in the ODE method.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping constraint damping

nnegative 530 0 42 0
min(y) –1.92e+08 0.0 –1.39e+03 0.0
max(y) 1.92e+08 1.0148 1.0023 1.0
max |m(t)− 1| 8.39e+00 1.48e–02 2.29e–03 6.67e–09
nsteps 298 147 175 140
nfailed 138 25 49 13
nfevals 752 297 376 278
npds 70 14 26 12
ndecomps 211 61 92 46
nsolves 751 296 374 277
nclips N/A 89 0 18
mean(k) 2.04 1.91 1.98 2.32
mean(iter) 1.57 1.66 1.57 1.79

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping constraint damping

nnegative 2 0 1 0
min(y) –1.87e+00 0.0 –3.67e–03 0.0
max(y) 1.0 1.0 1.0 1.0
max |m(t)− 1| 1.44e–11 1.44e–11 1.44e–11 1.44e–11
nsteps 127 127 127 127
nfailed 10 10 10 10
nfevals 300 300 301 301
npds 11 11 11 11
ndecomps 40 40 40 40
nsolves 299 299 299 300
nclips N/A 1 0 2
mean(k) 2.30 2.30 2.30 2.30
mean(iter) 2.19 2.19 2.19 2.19

Table 3.1 (b) shows the results with the Newton method using yn as initial guess
instead of the predictor pn. We notice that ode15s without non-negativity enforce-
ment no longer blows up. In fact, for the small ODE system of the Robertson problem,
using the initial guess yn for the Newton iterations allows the method to maintain
non-negativity of the solution at all times without any enforcement. However, there is
no theoretical guarantee of such behavior for the NDFk method and certainly not for
the non-linear solver; hence one cannot rely on this behavior. This is demonstrated
in section 4 for a larger system of ODEs, where this choice of initial guess produces
negative solution values. Because there is no non-negativity to enforce, all other meth-
ods give identical performance statistics and only differences to within round-off in
the physical quantities. We also note that the ODE-related efficiency for the cases
with initial guess of yn is slightly better than for the predictor pn. This is somewhat
counter-intuitive because the predictor pn contains more information about the solu-
tion than yn; this fact itself is borne out by the non-linear solver taking more iterations
per ODE step as reported in mean(iter) as a result of less information about the
solution contained in its initial guess. There can however not be any guarantee that
using yn as initial guess for the Newton method improves the efficiency of the ODE

14 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

Table 3.3

Solution statistics for the Robertson problem with Jacobian update forced whenever ∆t or k
change and component-wise error control in the ODE method.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping constraint damping

nnegative 619 0 5 0
min(y) –1.71e+08 0.0 –2.84e–03 0.0
max(y) 1.71e+08 1.0 1.0 1.0
max |m(t)− 1| 7.34e+00 5.24e–08 8.88e–15 8.66e–15
nsteps 465 226 232 226
nfailed 121 2 6 2
nfevals 909 298 311 296
npds 226 51 57 51
ndecomps 226 51 57 51
nsolves 908 297 309 295
nclips N/A 22 0 8
mean(k) 2.22 2.64 2.60 2.64
mean(iter) 1.42 1.30 1.28 1.29

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping constraint damping

nnegative 0 0 0 0
min(y) 0.0 0.0 0.0 0.0
max(y) 1.0 1.0 1.0 1.0
max |m(t)− 1| 5.65e–14 5.65e–14 5.65e–14 5.65e–14
nsteps 222 222 222 222
nfailed 1 1 1 1
nfevals 421 421 422 421
npds 49 49 49 49
ndecomps 49 49 49 49
nsolves 420 420 420 420
nclips N/A 0 0 0
mean(k) 2.68 2.68 2.68 2.68
mean(iter) 1.87 1.87 1.87 1.87

method which will be shown in the next section.
Table 3.2 shows the results of the methods when norm-wise error control is used,

corresponding in Matlab to switching NormControl on. We first notice in Table 3.2 (a)
that the method without non-negativity enforcement still blows up. The other meth-
ods with enforcement of non-negativity of the solution prevent blow-up, but all of
them introduce error in the total mass that is not negligible; in some cases, max(y) is
even above its theoretical maximum of 1. Moreover, the constraint-following method
suffers again from negative intermediate Newton iterates. The efficiency of damping
is seen to be somewhat better than that of the other methods. As before, we notice in
Table 3.2 (b) that using the initial guess of yn for the Newton iterations leads to better
efficiency results. Some smaller, but significant, negative intermediate results still ap-
pear in the cases without non-negativity preservation and with constraint-following.
Overall, comparing Tables 3.1 and 3.2, we notice that norm-wise error control leads
to somewhat less accurate physical results for the Robertson problem, but also to
significantly better efficiency.

The previous Tables 3.1 and 3.2 reported results for cases where the Jacobian
J(t, y) of the ODE function f(t, y) is held constant in memory as long as possible

A NON-NEGATIVITY PRESERVING NEWTON METHOD 15

Table 3.4

Solution statistics for the Robertson problem with Jacobian update forced whenever ∆t or k
change and norm-wise error control in the ODE method.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping constraint damping

nnegative 30 0 19 0
min(y) –1.68e–03 0.0 –6.63e+00 0.0
max(y) 1.0 1.0022 1.0 1.0
max |m(t)− 1| 1.51e–14 2.23e–03 4.88e–15 6.00e–15
nsteps 139 143 155 129
nfailed 8 9 18 4
nfevals 203 212 245 201
npds 45 47 61 35
ndecomps 45 47 61 35
nsolves 202 211 243 200
nclips N/A 52 0 15
mean(k) 1.73 1.74 1.65 2.34
mean(iter) 1.34 1.35 1.33 1.48

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping constraint damping

nnegative 0 0 0 0
min(y) 0.0 0.0 0.0 0.0
max(y) 1.0 1.0 1.0 1.0
max |m(t)− 1| 2.16e–13 2.16e–13 2.16e–13 2.16e–13
nsteps 127 127 127 127
nfailed 0 0 0 0
nfevals 224 224 225 224
npds 30 30 30 30
ndecomps 30 30 30 30
nsolves 223 223 223 223
nclips N/A 0 0 0
mean(k) 2.27 2.27 2.27 2.27
mean(iter) 1.75 1.75 1.75 1.75

and only re-evaluated when deemed necessary by the error control mechanism. This
reflects the common situation that the evaluation of the Jacobian is the most expensive
part of the algorithm. The next most expensive cost is usually the LU decomposition
of the iteration matrix M (iter) that is necessary whenever either the Jacobian J is
updated or when the time step ∆t or the ODE method order k are changed by
the error control algorithm. This means that, in situations where ∆t or k change
and an LU decomposition of M (iter) is necessary, this decomposition may not take
the latest Jacobian into account. This means that the error control algorithm is
optimized to minimize the number of Jacobian evaluations at the potential cost of
more decompositions.

However, for this problem and with an analytically supplied Jacobian, the eval-
uation of J incurs negligible cost, and we modify ode15s to force an update of the
Jacobian whenever ∆t or k change so that the iteration matrix M (iter) is the most
up-to-date whenever its LU decomposition is computed. This reflects the fact that
the cost incurred by the LU decomposition of the iteration matrix is the most ex-
pensive part of the method here and, to minimize the number of decompositions,
we effectively supply more up-to-date physical information by updating the Jacobian

16 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

more often.
Tables 3.3 and 3.4 report the results for the modified algorithm with the update of

the Jacobian also forced whenever ∆t or k change, while all other method parameters
are the same as for Tables 3.1 and 3.2, respectively. We see that in all cases, the values
reported for the number of Jacobian evaluations in npds and of the decompositions in
ndecomps agree in Tables 3.3 and 3.4. These numbers lie in between those reported for
npds and ndecomps in the corresponding previous tables, meaning that the cost has
been shifted from LU decompositions to Jacobian evaluations, as intended. We note
that the significance of this difference in cost will become clearer in the next section,
where computation times are large enough to bring out the overall advantage. We also
notice that the number of ODE steps remains practically the same as before, but that
the number of linear solves in nsolves decreases in all cases against the corresponding
cases in the previous tables, presumably as a result of the better physical information
provided in the system matrix M (iter). This immediately implies a decrease, com-
pared to the corresponding cases in the previous tables, of the number of function
evaluations in nfevals, an observation that is also confirmed by lower averages of
Newton iterations reported in mean(iter). Using the better physical information in
the Jacobian also improves the effectiveness of the methods. First of all, the method
without non-negativity enforcement no longer blows up in Table 3.4 (a), although it
still does in Table 3.3 (a); this is counter-intuitive, because one would have expected
more accuracy with component-wise error control compared to norm-wise error con-
trol. For the cases that converged and that had a mass error larger than round-off, the
accuracy of the mass conservation is now improved in all cases in Tables 3.3 and 3.4
compared to Tables 3.1 and 3.2, respectively. Specifically, non-negativity preservation
by constraint-following as well as by damping both gives errors of the total mass that
are acceptably small in Tables 3.3 and 3.4, whereas clipping can still incur much more
significant errors in the mass. However, although the behavior is better than in the
earlier tables, significant negative numbers still appear in some intermediate Newton
iterates for the constraint-following method. Notice that Table 3.4 (a) with a con-
verged solution without enforcement finally allows a comparison of its efficiency with
those of the methods with non-negativity enforcement. It turns out that clipping
and constraint-following exhibit roughly comparable efficiency, whereas damping is
slightly more efficient, apparently at the cost of a slightly larger mass error. In fact,
damping in Table 3.4 (a) is in fact the most efficient of all cases with the predictor
pn as initial guess for the Newton method in Tables 3.3 (a) and 3.4 (a) and nearly as
efficient as the corresponding case in Table 3.2 (a) but with much better mass error.
Therefore, this is the preferred case among all cases considered in this section, and
its results were used for the plots in Figure 3.1. In Tables 3.3 and 3.4, it turns out for
the Robertson problem that using the initial guess yn for the Newton method does
not lead to negative solution components even without non-negativity enforcement.
However, there is no guarantee of this behavior in general, as is demonstrated in the
next section. These cases also exhibit better ODE efficiency again, whereas the non-
linear solver uses again more iterations, because yn contains less information about
the solution than the predictor pn.

4. The Interface Problem.

4.1. The Problem. The example in this section considers the diffusive flow of
chemical species inside a membrane that separates two tanks with unlimited supplies
of the reactants A and B participating in the chemical reaction 2 A+B→ (∗). Classical
modeling for this process results in a system of reaction-diffusion equations coupled

A NON-NEGATIVITY PRESERVING NEWTON METHOD 17

through the non-linear reaction terms. Despite its classical nature, the resulting
model becomes mathematically intriguing as well as numerically challenging if one
considers a particular reaction pathway comprising two reactions with widely varying
rate coefficients [27]: molecules of A and B combine in a first, ‘fast’ reaction to
produce an intermediate C, while a second, ‘slow’ reaction combines A and C to form
the product (∗), which is not explicitly tracked in the model. This reaction pathway
is expressed by

A + B λ→ C,
A + C

µ→ (∗),

in which the reaction coefficients λ and µ are scaled so that λ� µ = 1.
Because the membrane is assumed to be thin compared to the directions normal

to it, it is reasonable to use a one-dimensional spatial domain with variable x, scaled
so that x ∈ Ω := (0, 1). In time, we compute from the initial time 0 to the final time
tfin, which is chosen such that the solution has reached its steady state. If we denote
the concentrations of the chemical species A, B, C by functions u(x, t), v(x, t), w(x, t),
respectively, the reaction-diffusion system reads

ut = uxx − λuv − uw,
vt = vxx − λuv,
wt = wxx + λuv − uw,

 for x ∈ (0, 1) and 0 < t ≤ tfin.(4.1)

We assume that no molecules flow through any part of the boundary, except that
the species A is supplied with a fixed concentration α > 0 at x = 0 and species B
with β > 0 at x = 1. This results in the mixed Dirichlet and Neumann boundary
conditions

u = α, vx = 0, wx = 0 at x = 0,
ux = 0, v = β, wx = 0 at x = 1.(4.2)

The problem statement of this initial-boundary value problem is completed by speci-
fying the non-negative initial concentrations

u(x, 0) = uini(x), v(x, 0) = vini(x), w(x, 0) = wini(x) for x ∈ (0, 1) at t = 0.
(4.3)

We assume that the boundary and initial data are posed consistently; i.e., uini(0) = α,
and vini(1) = β.

Because the first chemical reaction is much faster than the second one, rapid
consumption of A and B to form C is expected at all spatial points x where A and B
co-exist, leaving only one of them present with a positive concentration after an initial
transient. Inside the regions dominated either by A or by B, the reaction rate of the
fast reaction q := λuv will then become 0. However at the interfaces between the
regions, where positive concentrations of A and B make contact due to diffusion, q
will be non-zero; in fact, q will be large due to the large coefficient λ � 1. For
the corresponding stationary problem, given by (4.1)–(4.2) without time derivatives,
analytical results in [16, 22] prove that the reaction rate of the fast reaction q has
one internal layer at a point 0 < x∗ < 1 of width O(ε) and height O(1/ε) with the
scaling ε = λ−1/3. Because initial conditions to the transient problem can have the
internal layer at a different position than x∗ or can have multiple internal layers, it is
interesting to investigate the evolution of the internal layers and their coalescence to

18 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

the single layer present at steady state. See [27] for studies of several representative
initial conditions for this problem and [19] for studies on the asymptotic behavior of
the transient problem.

To select a transient problem for testing that has the stationary solution just
described and an interesting transient behavior, we select an initial condition with
three interfaces specified by the initial condition functions for (4.3) chosen as

uini(x) =

4(0.25− x)α, 0.00 ≤ x ≤ 0.25,
0, 0.25 < x < 0.50,
64(0.50− x)(x− 0.75) γ, 0.50 ≤ x ≤ 0.75,
0, 0.75 < x ≤ 1.00,

vini(x) =

0, 0.00 ≤ x < 0.25,
64(0.25− x)(x− 0.50) δ, 0.25 ≤ x ≤ 0.50,
0, 0.50 < x < 0.75,
4(x− 0.75)β, 0.75 ≤ x ≤ 1.00,

wini(x) ≡ 0.

(4.4)

The parameters α and β come from the boundary conditions (4.2), and their use in
(4.4) guarantees that the initial conditions are consistent with the boundary condi-
tions; therefore there are no boundary layers in the solutions, and we can focus our
attention on the internal layers. The design in (4.4) produces linear functions in u
and v at their respective Dirichlet boundary conditions and one parabolic hump for
u and v each in the interior of the spatial domain, such that u and v are not non-
zero simultaneously. For the parameters that affect the steady-state solution, we pick
α = 1.6, and β = 0.8. For the values γ and δ that control the height of the humps
of u and v in (4.4), we choose γ = δ = 0.25. For the final time, we select tfin = 20;
experiments show that this time is sufficient to reach the steady state solution using
the criterion that the location x∗ of the internal layer at steady state is approximated
up to the resolution achievable by the spatial discretization.

In the method-of-lines approach, spatial approximations uj(t) ≈ u(xj , t), vj(t) ≈
v(xj , t), and wj(t) ≈ w(xj , t) at mesh points xj , j = 1, . . . , N , are introduced. These
approximations are used to discretize the spatial derivatives in the system of PDEs in
(4.1). Specifically, if the finite difference method is used for these approximations, an
ODE system of the form y′ = f(t, y) is obtained by arranging the unknown functions
in vector form such as y(t) = [u1, u2 . . . , uN , v1, v2 . . . , vN , w1, w2, . . . , wN]T , and col-
lecting all other terms than y′ on the right-hand side. We note that for computational
efficiency, the components of y(t) should be re-ordered in interleaved ordering, that is,
y(t) = [u1, v1, w1, u2, v2, w2, . . . , uN , vN , wN]T , which we accomplish by a remapping
whenever needed.

Alternative approaches for the spatial discretization include the finite element
method, whose formulation naturally leads to a mass matrix M in the ODE system
My′ = f(t, y) with M not being the identity matrix; see, e.g., [10] for a reaction-
diffusion system in three dimensions using a slightly different version of our non-
negativity preserving algorithm. We use a finite difference method in this paper for
the spatial approximation in order to arrive automatically at an ODE system with
M = I to allow for a direct comparison with the non-negativity preserving method
implemented in Matlab’s ode15s function which requires this condition.

We recall that the analytical results in [16, 22] prove that the width of the internal
layer at steady state is of order ε = λ−1/3. For our choice of λ = 106, this is ε = 0.01.
Hence, to ensure a sufficient spatial resolution, we use N = 513 mesh points in

A NON-NEGATIVITY PRESERVING NEWTON METHOD 19

(a) u vs. (x, t) (b) v vs. (x, t)

(c) w vs. (x, t) (d) q = λuv vs. (x, t)

(e) interface vs. (x, t) (f) ∆t vs. t

(g) k vs. t (h) #iter vs. t

Fig. 4.1. Results for the interface problem. (a), (b), (c) Plots of the solution components u,
v, w vs. (x, t), respectively, (d) Plot of the reaction rate q = λuv vs. (x, t), (e) Plot of the interface
movement in the (x, t)-plane with zoom on the times 0 ≤ t ≤ 0.1, (f) ODE time step ∆t vs. t,
(g) ODE method order k vs. t, (h) number of Newton iterations vs. t. (The results shown in this
figure are computed by the NDFk method with non-negativity preservation using damping, with the
predictor as initial guess, with Jacobian update forced whenever ∆t or k change, and with norm-wise
error control.)

20 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

Ω = (0, 1); this results in a mesh spacing of ∆x = 1/512 and guarantees at least
5 mesh points within the length ε, which is the order of the width of the interface
region; we have checked the calculations with both coarser and finer spatial meshes and
have found the calculations to be reliable. The ODE tolerances used include a relative
tolerance of 10−6 and absolute tolerance of 10−8, which are chosen fairly tightly so as
to ensure a good initial guess for the Newton solver at every time step. The remaining
method parameters for the Newton solver are chosen as for the Robertson problem
in the previous section, in particular ε(neg) = 10−12 for our method of non-negativity
preservation by damping.

Figures 4.1 (a), (b), and (c) show waterfall plots of the solution components
u(x, t), v(x, t), and w(x, t) vs. (x, t). At the initial time, u and v have a linear shape
at their respective Dirichlet boundary conditions of u = α = 1.6 at the left and
v = β = 0.8 at the right end of the interval Ω, and both components are also non-
zero in complementary regions in the interior of Ω. Figure 4.1 (d) shows the reaction
rate q = λuv of the fast reaction vs. (x, t). At the initial time, it is zero in most
of the interval Ω, where either u or v is zero, but it is large at the interfaces of the
regions where u and v are non-zero. This reaction produces the intermediate reactant
represented by w, which we see increasing over time in Figure 4.1 (c), consuming the
concentrations of u and v in the interior of Ω. After the initial transient, we see in
Figures 4.1 (a) and (b) that both u and v are non-zero only in one region each, where
each is fed by its Dirichlet boundary condition. This can also be seen in Figure 4.1 (d),
where for larger times only one spike exists in q instead of the three at the initial time.
To analyze the evolution of the interface between the regions dominated by u or v, we
track the locations of transitions of u < v to u > v and vice versa. Starting from the
three locations at x = 0.25, 0.50, 0.75 at the initial time, these interfaces are tracked
in Figure 4.1 (e) up to time t = 0.1. We see that by this time, the three interfaces
have coalesced to one. Beyond t = 0.1 (not shown), the interface moves slowly and
smoothly to its steady state location at x∗ ≈ 0.6.

Figures 4.1 (f), (g), and (h) display several performance indicators of the ODE
and non-linear solvers. We see that the time step ∆t increases over time, reflecting
the fact that the solution gets smoother over time and easier to approximate outside
of the initial transient. It turns out that the ODE method order used is fairly high
with order 3 or 4 used at many time steps. We see that also the non-linear solver
behaves well with only 1 or 2 iterations needed at most time steps.

4.2. Numerical Studies. The Robertson problem in section 3 is an excellent
test case for the important property of mass conservation and also shows well the
importance of maintaining non-negativity because the solution may otherwise be un-
stable. We note here that the interface problem is not as badly behaved as this,
in that small negative components do not lead to blow-up and can be controlled by
tightening the ODE tolerance. This was done in [27] to establish our confidence in the
solution obtained. However, the Robertson problem is a small ODE system of only
three equations; thus the computational cost to maintain non-negativity is not signif-
icant. The interface problem described in this section consists of N = 513 equations
for each of the 3 species, leading to a system of 1,539 ODEs. Hence all algorithmic
costs take on an greatly increased importance, and we thus also report the wall clock
time used to compute the solution in Tables 4.1 through 4.4. The other entries in the
tables have the same meaning as those in the tables of the previous section. Because
the product of the chemical reactions is not tracked by the model for the interface
problem, mass is not conserved by this three-species model and we cannot readily

A NON-NEGATIVITY PRESERVING NEWTON METHOD 21

Table 4.1

Solution statistics for the interface problem with Jacobian update not forced whenever ∆t or k
change and component-wise error control in the ODE method.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping constraint damping

nnegative 1095 0 860 0
min(y) –1.06e–08 0.0 –5.93e–09 0.0
max(y) 5.4211 5.4211 5.4211 5.4211
nsteps 770 775 775 784
nfailed 44 42 46 57
nfevals 1586 1592 1599 1669
npds 28 30 30 38
ndecomps 143 142 145 156
nsolves 1585 1591 1597 1668
nclips N/A 1140 358 23
mean(k) 4.69 4.66 4.65 4.63
mean(iter) 1.94 1.94 1.94 1.96
time (seconds) 35 35 36 37

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping constraint damping

nnegative 1099 0 957 0
min(y) –5.56e–07 0.0 –5.56e–07 0.0
max(y) 5.4211 5.4211 5.4211 5.4211
nsteps 896 882 896 880
nfailed 304 299 304 303
nfevals 3635 3598 3636 3588
npds 287 284 287 287
ndecomps 427 424 427 429
nsolves 3634 3597 3634 3587
nclips N/A 1203 198 7
mean(k) 4.21 4.25 4.21 4.21
mean(iter) 3.32 3.35 3.32 3.33
time (seconds) 80 80 83 80

compute a mass error.
We begin by noting that all simulations in Tables 4.1 through 4.4 converged

without blow-up. However, in all tables and for both choices of the initial guess
for the Newton method, the method without non-negativity enforcement as well as
the constraint-following method suffer from negative intermediate Newton iterates,
whereas clipping and damping do not. This demonstrates that using yn as initial
guess of the Newton method does not guarantee non-negativity, as it happened to do
in the Robertson problem.

As the comparison of all efficiency data in Tables 4.1 through 4.4 shows, the four
methods studied exhibit approximately the same numerical efficiency. That is, none
of the non-negativity preserving methods costs much additional effort. Comparing
now part (a) and part (b) of each of the four tables indicates that, for this large ODE
system resulting from the semi-discretization of a PDE, it is generally more efficient
to use the predictor pn as initial guess for the Newton method than to use the old
solution yn. This is brought out by the number of ODE steps and the wall clock
times as overall measures of efficiency, but also particularly by the Newton solver
taking fewer steps to converge and the ODE method order being higher on average

22 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

Table 4.2

Solution statistics for the interface problem with Jacobian update not forced whenever ∆t or k
change and norm-wise error control in the ODE method.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping constraint damping

nnegative 598 0 450 0
min(y) –7.71e–06 0.0 –3.93e–06 0.0
max(y) 5.4211 5.4211 5.4211 5.4211
nsteps 344 338 368 471
nfailed 33 32 39 92
nfevals 755 742 805 1081
npds 30 29 30 61
ndecomps 90 89 99 177
nsolves 754 741 803 1080
nclips N/A 577 175 343
mean(k) 3.59 3.60 3.62 3.13
mean(iter) 1.94 1.94 1.92 1.85
time (seconds) 18 17 19 26

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping constraint damping

nnegative 1008 0 792 0
min(y) –3.90e–04 0.0 –4.01e–04 0.0
max(y) 5.4211 5.4211 5.4211 5.4211
nsteps 583 910 583 398
nfailed 167 182 167 147
nfevals 1732 2428 1734 1210
npds 69 68 69 129
ndecomps 271 324 271 211
nsolves 1731 2427 1732 1209
nclips N/A 1665 135 183
mean(k) 2.80 2.43 2.80 3.19
mean(iter) 2.24 2.18 2.24 2.26
time (seconds) 39 54 40 30

for the predictor as initial guess in practically all cases.
To analyze the effect of the choice of component-wise vs. norm-wise error control,

compare Table 4.1 against Table 4.2, and Table 4.3 against Table 4.4. Even though the
ODE method order is lower on average for norm-wise error control, it is clear from the
overall measures of efficiency that the use of norm-wise error control is more efficient.
This is consistent with the expectation that component-wise error control is more
stringent because it controls the error in each component and hence is more costly.
The physical results for this PDE system, such as min(y) and max(y) do not bear out
any advantage of this stringency, though. This justifies the use of norm-wise error
control in the time stepping if the ODE components represent spatial approximations
to PDE components.

To analyze the effect of the choice of whether to update the Jacobian only when
the error control requires its re-evaluation or also when ∆t or k change, compare
Table 4.1 against Table 4.3, and Table 4.2 against Table 4.4. In most cases, the ODE
method turns out to be roughly equally efficient as evidenced by similar numbers of
ODE steps and average ODE orders. However, the wall clock time clearly indicates a
distinct advantage of using the better physical information. This results from fewer

A NON-NEGATIVITY PRESERVING NEWTON METHOD 23

Table 4.3

Solution statistics for the interface problem with Jacobian update forced whenever ∆t or k
change and component-wise error control in the ODE method.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping constraint damping

nnegative 745 0 560 0
min(y) –3.46e–09 0.0 –4.17e–09 0.0
max(y) 5.4211 5.4211 5.4211 5.4211
nsteps 764 765 764 772
nfailed 16 17 17 30
nfevals 1133 1147 1160 1263
npds 114 116 113 129
ndecomps 114 116 113 129
nsolves 1132 1146 1158 1262
nclips N/A 736 340 21
mean(k) 4.75 4.72 4.75 4.69
mean(iter) 1.44 1.45 1.47 1.55
time (seconds) 29 29 30 32

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping constraint damping

nnegative 997 0 865 0
min(y) –8.54e–11 0.0 –8.54e–11 0.0
max(y) 5.4211 5.4211 5.4211 5.4211
nsteps 867 867 867 877
nfailed 235 235 235 235
nfevals 3207 3207 3208 3230
npds 352 352 352 355
ndecomps 352 352 352 355
nsolves 3206 3206 3206 3229
nclips N/A 1101 198 13
mean(k) 4.20 4.20 4.20 4.23
mean(iter) 3.12 3.12 3.12 3.11
time (seconds) 73 73 75 73

failed steps and from the shift of the number of (relatively more expensive) LU de-
compositions to the number of (relatively cheaper) Jacobian evaluations, along with
fewer Newton iterates being necessary and thus fewer function evaluations and linear
solves.

In summary, the interface problem exhibits a somewhat different behavior than
the Robertson problem. The ODE method shows a much higher average method or-
der for the interface problem, pointing to its smoothness if the time step is sufficiently
small. The interface problem confirms the efficacy of supplying better physical infor-
mation by re-evaluating the Jacobian more often and by using the predictor as initial
guess for the Newton method, thus the methods of Tables 4.3 (a) and 4.4 (a) should be
preferred. We believe this can be generally expected, especially for large ODE systems.
Between these two tables, the norm-wise error control turns out to be significantly
more efficient; thus Table 4.4 (a) lists the preferred methods for the interface problem.
Only the non-negativity preservation methods of clipping and damping are effective
for all intermediate Newton iterates. Based on the results for the interface problem
alone, we could not recommend one method over the other; in fact, in several tables,
notably Table 4.4 (a), clipping turns out to be slightly more efficient, though this is

24 M. K. GOBBERT, M. MUSCEDERE, T. I. SEIDMAN, AND R. J. SPITERI

Table 4.4

Solution statistics for the interface problem with Jacobian update forced whenever ∆t or k
change and norm-wise error control in the ODE method.

(a) Initial guess for Newton iteration: predictor pn
no enforcement clipping constraint damping

nnegative 482 0 336 0
min(y) –2.88e–06 0.0 –2.88e–06 0.0
max(y) 5.4211 5.4211 5.4211 5.4211
nsteps 345 344 365 408
nfailed 13 12 19 57
nfevals 617 605 650 800
npds 69 69 78 124
ndecomps 69 69 78 124
nsolves 616 604 648 799
nclips N/A 471 156 242
mean(k) 3.67 3.51 3.66 3.26
mean(iter) 1.69 1.68 1.66 1.66
time (seconds) 16 15 17 21

(b) Initial guess for Newton iteration: old solution yn
no enforcement clipping constraint damping

nnegative 666 0 485 0
min(y) –6.51e–05 0.0 –6.51e–05 0.0
max(y) 5.4211 5.4211 5.4211 5.4211
nsteps 470 470 470 424
nfailed 82 83 82 113
nfevals 1260 1264 1261 1155
npds 151 152 151 177
ndecomps 151 152 151 177
nsolves 1259 1263 1259 1154
nclips N/A 660 91 122
mean(k) 3.14 3.14 3.14 3.14
mean(iter) 2.16 2.16 2.16 2.16
time (seconds) 30 30 31 29

not the case in some other tables. This is why the Robertson problem is insightful: it
demonstrates the better mass conservation ability of non-negativity preservation by
the damping method. As the efficiency comparisons here show, this better physical
behavior may cost a modest amount of additional computational effort.

REFERENCES

[1] U. M. Ascher, Numerical Methods for Evolutionary Differential Equations, SIAM, 2008.
[2] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations

and Differential-Algebraic Equations, SIAM, 1998.
[3] K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley & Sons, second ed., 1989.
[4] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations, vol. 14 of Classics in Applied Mathematics,
SIAM, 1996.

[5] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE: A variable-coefficient ODE
solver, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1038–1051.

[6] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 450–481.

[7] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.

A NON-NEGATIVITY PRESERVING NEWTON METHOD 25

Anal., 19 (1982), pp. 400–408.
[8] J. E. Dennis, J. J. E. Dennis, and R. B. Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, SIAM, 1996.
[9] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,

SIAM J. Sci. Comput., 17 (1996), pp. 16–32.
[10] M. K. Gobbert, Long-time simulations on high resolution meshes to model calcium waves in

a heart cell. SIAM J. Sci. Comput., in press (2008).
[11] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-

Algebraic Problems, vol. 14 of Springer Series in Computational Mathematics, Springer-
Verlag, 1991.

[12] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,

and C. S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers, ACM Trans. Math. Software, 31 (2005), pp. 363–396.

[13] A. C. Hindmarsh and G. D. Byrne, Applications of EPISODE: An experimental package
for the integration of systems of ordinary differential equations, in Numerical Methods
for Differential Systems, L. Lapidus and W. E. Schiesser, eds., Academic Press, Inc., New
York, 1976, pp. 147–166.

[14] A. C. Hindmarsh and R. Serban, User documentation for CVODE v2.5.0, tech. rep.,
Lawrence Livermore National Laboratory, 2006. URL www.llnl.gov/casc/sundials.

[15] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations, vol. 33 of Springer Series in Computational Mathematics,
Springer-Verlag, 2003.

[16] L. V. Kalachev and T. I. Seidman, Singular perturbation analysis of a stationary diffu-
sion/reaction system whose solution exhibits a corner-type behavior in the interior of the
domain, J. Math. Anal. Appl., 288 (2003), pp. 722–743.

[17] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, vol. 16 of Frontiers in
Applied Mathematics, SIAM, 1995.

[18] MATLAB Release R2006b (August 03, 2006). The MathWorks, Inc., www.mathworks.com.
[19] M. Muscedere and M. K. Gobbert, Parameter study of a reaction-diffusion system near the

reactant coefficient asymptotic limit. Dynamics of Continuous, Discrete and Impulsive
Systems (Series A), accepted (2008).

[20] H. H. Robertson, The solution of a set of reaction rate equations, in Numerical Analysis: An
Introduction, J. Walsh, ed., Academic Press, 1966, pp. 178–182.

[21] A. Sandu, Positive numerical integration methods for chemical kinetic systems, J. Comput.
Phys., 170 (2001), pp. 589–602.

[22] T. I. Seidman and L. V. Kalachev, A one-dimensional reaction/diffusion system with a fast
reaction, J. Math. Anal. Appl., 209 (1997), pp. 392–414.

[23] L. F. Shampine, Conservation laws and the numerical solution of ODEs, Comput. Math. Appl.
Part B, 12 (1986), pp. 1287–1296.

[24] , Linear conservation laws for ODEs, Comput. Math. Appl., 35 (1998), pp. 45–53.
[25] L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18

(1997), pp. 1–22.
[26] L. F. Shampine, S. Thompson, J. A. Kierzenka, and G. D. Byrne, Non-negative solutions

of ODEs, Appl. Math. Comput., 170 (2005), pp. 556–569.
[27] A. M. Soane, M. K. Gobbert, and T. I. Seidman, Numerical exploration of a system of

reaction-diffusion equations with internal and transient layers, Nonlinear Anal.: Real
World Appl., 6 (2005), pp. 914–934.

