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Numerical methods are needed to obtain maximum-likelihood estimates (MLEs) in many problems. Com-
putation time can be an issue for some likelihoods even with modern computing power. We consider one
such problem where the assumed model is a random-clumped multinomial distribution. We compute MLEs
for this model in parallel using the Toolkit for Advanced Optimization software library. The computations
are performed on a distributed-memory cluster with low latency interconnect. We demonstrate that for
larger problems, scaling the number of processes improves wall clock time significantly. An illustrative
example shows how parallel MLE computation can be useful in a large data analysis. Our experience with
a direct numerical approach indicates that more substantial gains may be obtained by making use of the
specific structure of the random-clumped model.

Keywords: parallel computing; maximum-likelihood estimation; mixture distribution; multinomial

AMS Subject Classification: 65C60, 65Y05

1. Introduction

Consider a random sample of n observations X = (X1, . . . , Xn) drawn from a probability distribu-
tion f (x | θ). The vector of parameters θ = (θ1, . . . , θq) will be considered unknown and belongs
to the space � ⊆ R

q. For a given data set x = (x1, . . . , xn), the likelihood is given by

L(θ | x) =
n∏

i=1

f (xi | θ),

and the maximum-likelihood estimate (MLE) is obtained by

θ̂MLE = arg max
θ∈�

L(θ | x)
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2 A. M. Raim et al.

or equivalently by maximizing the log-likelihood log L(θ | x). In some circumstances, maxima can
be calculated analytically, but numerical methods are often needed to carry out the optimization.
Commonly used numerical methods include Newton–Raphson, Fisher Scoring, and expectation–
maximization (EM) (see [1] for a general overview).

We investigate the computation of MLEs for the random-clumped multinomial (RCM) distri-
bution, introduced by Morel and Nagaraj [2], using a parallel architecture. In particular, we make
use of a publicly available software library Toolkit for Advanced Optimization (TAO) [3], which
implements a number of commonly used numerical optimization methods. TAO is a special opti-
mization library designed for use in parallel computing environments. The objective of this work
is to study the effectiveness, in terms of computing time, of applying parallel optimization to the
MLE problem. We make use of limited-memory, variable-metric (LMVM) unconstrained opti-
mization method in TAO. Malouf [4] has demonstrated the effectiveness of the LMVM method
in the setting of natural language processing. Using TAO to conduct maximum entropy estima-
tion, he shows that the LMVM method outperforms several other methods such as conjugate
gradient.

In a 2003 report describing the now-popular R package SNOW (Simple Network of Work-
stations), Rossini et al. [5] noted that parallel computing had not yet been widely adopted by
statisticians. Since then, packages such as SNOW and its successors have helped make paral-
lel computing more accessible to R programmers. Many of these packages are geared towards
‘embarrassingly parallel’ problems – those which can be easily decomposed into smaller prob-
lems that have little dependence on each other. For example, SNOW provides a function called
parApply, which evaluates a given function on each row (or column, or element) of a given
matrix. Each row can be operated on independently, and the package determines how to allocate
the work among available parallel processes. This is adequate for many problems in statistical
computing which involve repeating the same calculation many times using randomly gener-
ated inputs. Resampling methods such as the bootstrap and Monte Carlo simulation fall into
this class of applications. The methods presented in this paper look deeper into the structure
of the computations and seek to improve performance within the algorithm itself. Therefore,
they are best evaluated on a single complex problem rather than on problems involving repeated
computations.

Our objective is to apply parallel computing to the MLE optimization problem which does
not fit the mould of embarrassingly parallel. The required numerical optimization is an iterative
process where each step must occur sequentially. We distribute the work across many parallel
processes so that the computing time can be reduced. To effectively use many processes, we split
the workload at each iteration, then distribute the results back to all processes to prepare for the
next iteration. Therefore, efficient communication is important for good performance, and high
performance computing (HPC) is especially suitable for this application. An HPC cluster provides
an array of fast processors connected by a low latency, high throughput interconnect and opti-
mized communication software such as the Message Passing Interface (MPI). This environment
will ensure that processes can communicate efficiently and that we can benefit from scaling the
procedure to run on a large number of processes.

In Section 2, the random-clumped model is described, including an algorithm for drawing
samples from the distribution. Section 3 discusses the approach for computing MLEs in parallel.
Section 4 presents simulation studies which show how run times and solution quality are affected
as problem dimensions are varied, and which verify the consistency property of the resulting
MLEs. We found that parallel computing is effective for large problems where ‘large’ will be
quantified. In Section 5, we present a large simulated scenario from the RCM model where
inference is computationally expensive. The parallel MLE approach is applied to significantly
reduce the computation time of a likelihood ratio test (LRT). Finally, in Section 6, concluding
remarks are given.
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Journal of Statistical Computation and Simulation 3

2. The RCM model

First, let us consider the standard multinomial distribution, which arises in a natural way when a
group of m people are asked a survey question with k possible responses. The sample space is the
discrete set

T =
⎧⎨
⎩t = (t1, . . . , tk) : tj ∈ {0, 1, . . . , m},

k∑
j=1

tj = m

⎫⎬
⎭ ,

where ti denotes the number of people who gave the ith response. Let T = (T1, . . . , Tk) denote
a random vector of counts from T . If we assume that the participants respond to the question
independently of each other, with probabilities π = (π1, . . . , πk) corresponding to the possi-
ble responses, T will be distributed according to the multinomial distribution, whose density
function is

f (t | π, m) = m!
t1!t2! · · · tk!π

t1
1 π

t2
2 · · · π tk

k , t ∈ T . (1)

The parameter space is then

� =
⎧⎨
⎩π ∈ R

k : 0 < πj < 1,
k∑

j=1

πj = 1

⎫⎬
⎭ ,

with only k − 1 distinct parameters since πk = 1 − ∑k−1
j=1 πj. If a random vector T follows this

distribution, we write T ∼ Mult(π, m) and denote the observed data as t = (t1, . . . , tk). If we repeat
this survey n times, each time with a group of m people, we obtain a sample X = (T1, . . . , Tn),
which can be thought of as a k × n matrix.

A mixture of ν multinomials constructed with mixing proportions w = (w1, . . . , wν) is given by

f (t | w, π, m) =
ν∑

j=1

wj f (t | πj, m), (2)

where
∑ν

j=1 wj = 1, 0 < wj < 1 for j = 1, . . . , ν, and πj = (πj1, . . . , πjk) is the vector of prob-
abilities corresponding to the jth component of the mixture. One motivation for considering a
mixture distribution may be drawn from the point of view of classification. Suppose the partici-
pants in our multinomial response survey are drawn from one of ν different populations, and we
are unable to record the population label for each subject. Of course, if the population label were
available, we will end up with ν independently distributed multinomial count vectors. Since the
labels are not available, the likelihood will be based on the mixture density given in Equation (2).
This distribution has been widely used in a number of applications including text mining, linguis-
tics, and clustering (see [6] for a detailed review). These mixture likelihoods generally cannot be
maximized in closed form, as opposed to the standard multinomial likelihood, hence numerical
methods are needed for the MLE problem. Mixtures in general may not be identifiable without
additional assumptions.

We consider a special multinomial mixture proposed by Morel and Nagaraj [2] as the test
problem for our exploration. Following Banerjee and Paul [7], we refer to this model as the RCM.
The model is also described in detail in [8]. It has more recently been referred to as the
Neerchal–Morel distribution by Zhou and Lange [9], who use it to help demonstrate the
minorization–maximization principle. The motivation for the RCM model can be seen in the
survey scenario mentioned earlier. If the m participants interact among themselves before pro-
viding their responses, then the key ‘independence’ assumption is violated, and the multinomial
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4 A. M. Raim et al.

distribution does not adequately model the responses. In fact, it can be shown that such data,
due to lack of independence, exhibits larger variability than the multinomial distribution. This
phenomenon is commonly referred to as overdispersion. Morel and Nagaraj [2] provide a model
for a specific type of dependence, which turns out to be a special case of the multinomial mix-
ture distribution in Equation (2). In subsequent work [8,10], they show that this model has many
desirable theoretical and practical properties.

The RCM model can be obtained by correlating responses within a group by a simple logic.
Imagine that the group of m respondents consists of a leader who would make his/her response
public. Then, the remaining members may either follow the leader or make up their own mind
independently of each other and of the leader. Thus, the distribution of the count vector T would
conform to the representation T = YN + (X | N), where

N ∼ Binomial(ρ, m), Y ∼ Mult(π, 1), (X | N) ∼ Mult(π, m − N),

such that N and Y are independent, 0 < ρ < 1, and π = (π1, . . . , πk) is a vector of category
probabilities as described for the standard multinomial distribution. It can be shown that the
density for T is

f (t | π, ρ, m) =
k∑

j=1

πjg(t|ηj, m),

where g(t|ηj, m) is the density of a standard multinomial distribution,

ηj =
{

(1 − ρ)π + ρej, if j = 1, 2, . . . , k − 1,

(1 − ρ)π, if j = k,

and ej is the jth column of the identity matrix Ik . We use the notation T ∼ RCM(π, ρ, m) to
describe the distribution of T. We have noted that the RCM model is a special case of the mixture
distribution of Equation (2). In this mixture, however, there are only k distinct parameters θ =
(π1, . . . , πk−1, ρ). Our objective will be to compute the MLE for θ under this model. Although
we will not make use of them in this paper, theoretical results are available in [6,10] which help
to simplify MLE computations using a Fisher scoring approach.

Neerchal and Morel [10] describe a method for generating random samples from the RCM dis-
tribution. We include this information as a convenience to the reader. We first consider generation
of samples from the standard multinomial distribution. Begin with a vector t = (t1, . . . , tk) of k
zeroes and known parameters (π1, . . . , πk). Generate m observations from the uniform distribution

U1, . . . , Um
i.i.d.∼ U(0, 1). For observation Uj, determine the category c such that

π1 + · · · + πc−1 < Uj ≤ π1 + · · · + πc

and add 1 to the count tc. Repeat this process for j = 1, . . . , m to obtain t.
To generate samples from the RCM distribution, begin with known parameters (π1, . . . , πk , ρ).

Generate m + 1 observations from the standard multinomial distribution S, S0
1, . . . , S0

m
i.i.d.∼

Mult(π1, . . . , πk , 1), and m observations from the uniform distribution U1, . . . , Um
i.i.d.∼ U(0, 1).

The entries of the new RCM observation are given by

tj = SI(Uj ≤ ρ) + S0
j I(Uj > ρ), j = 1, . . . , m,

where I(·) represents the indicator function.
Availability of this simple and intuitive algorithm of generating data is one of the many rea-

sons for the choice of the RCM model as our test problem. It is identifiable for all values of
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Journal of Statistical Computation and Simulation 5

(π1, . . . , πk , ρ) without requiring any additional assumptions. Furthermore, the dimension of the
parameter space is proportional to the number of categories k. In a more general mixture of multi-
nomial densities, there are q = ν(k − 1) + (ν − 1) distinct parameters, including k − 1 category
probabilities for each of the ν components, and ν − 1 mixing proportions. Therefore, the dimen-
sion of the parameter space will blow up quickly as the number of categories or components is
increased. Thus, the RCM model encompasses many numerical issues one may face in comput-
ing the MLE of a mixture model (e.g. multiple local maxima), without having to take on the full
mixture. A further desirable property of the RCM model is that direct numerical optimization is
effective for computing its MLEs. This is not the case for all mixture models, where a specialized
approach like EM may be needed. In the next section, this property will be put to use as we discuss
conducting the optimization in parallel.

3. Parallel MLE computation

The High Performance Computing Facility (HPCF, http://www.umbc.edu/hpcf) at the University
of Maryland, Baltimore County (UMBC) is an interdisciplinary, shared campus resource for
scientific computing and research on parallel algorithms. The distributed-memory cluster tara
has 86 nodes, each with two quad-core Intel Nehalem processors (2.66 GHz, 8 MB cache) and
24 GB memory; therefore, up to eight parallel processes can run simultaneously on each node. The
nodes are connected by a high performance InfiniBand network and run 64-bit Red Hat Enterprise
Linux 5 as their operating system. We make use of the GNU C/C++ compiler and the Open MPI
1.3.3 implementation of the MPI standard.

TAO (http://www.mcs.anl.gov/research/projects/tao) is an optimization library for both single-
processor and massively parallel architectures. It is built on top of the Portable, Extensible Toolkit
for Scientific Computation (PETSc, http://www.mcs.anl.gov/petsc), a suite of data structures and
routines for the scalable (parallel) solution of scientific applications modelled by partial differential
equations. Both libraries are open source and were developed at Argonne National Laboratory.
Both use MPI for handling interprocess communications. We make use of TAO 1.10 and PETSc
3.0.0 on the tara cluster, with programming carried out in the C++ language. TAO and PETSc
help to remove the burden of writing distributed code from the programmer. Management of
distributed data structures can be left up to the libraries, allowing the programmer to focus on
solving the problem at hand. This convenience also implies a loss of control, which may mean
relinquishing the best possible performance.

TAO provides a suite of optimization algorithms and a framework to use them; these are
described in detail in the user manual [3]. The programmer provides several key ingredients
such as the objective function h(θ) to be optimized, the code to evaluate the gradient vector
∇h(θ) = ∂h(θ)/∂θ, and the code to evaluate the Hessian matrix H(θ) = ∂2h(θ)/∂θ∂θT. These
three ingredients are used by the TAO algorithms to conduct a search for the optimal solution.
Several algorithm choices are available for unconstrained optimization. The Nelder–Mead method
is typically the worst performer, but requires only the objective function. The nonlinear conjugate
gradient method and the LMVM method require both an objective and gradient function to
be implemented. The Newton line search method uses the objective, the gradient, and also the
Hessian. For this work, we have considered only the LMVM method because it performed well,
yet does not require explicit formation of the Hessian.

We now give a brief description of the LMVM method. Given a current solution θ(i) ∈ R
q, the

LMVM method consists of two main steps to find the next solution θ(i+1). First the direction d of
the next step is found by solving the linear system

H(i)d = −∇h(θ(i)),
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6 A. M. Raim et al.

where H(i) is an approximation to the Hessian, which is computed within the method. Computation
of the approximation utilizes a limited amount of information coming from previous steps. After
the direction is obtained, a line search is performed to compute the size of the next step τ , so that

h(θ(i) + τd)

is minimized. The next iterate is then given by θ(i+1) = θ(i) + τd. There are several tuning param-
eters available for TAO’s LMVM method, but we leave them at their default settings, except that
the iteration limit was set to a very large number to ensure convergence.

The objective function for the RCM MLE problem is the negative of the log-likelihood

h(θ) := − log L(θ | X) = −
n∑

i=1

log

⎧⎨
⎩

k∑
j=1

πj

[
m!

ti1! · · · tik!η
ti1
j1 · · · ηtik

jk

]⎫⎬
⎭ , (3)

based on the distribution discussed in Section 2. Recall that ηj
’s are functions of π and ρ. The
log-likelihood is generally preferred over the likelihood in computations, because it involves a
summation of many moderately sized negative numbers rather than a product of many numbers
of very small magnitude. TAO methods are set up to solve minimization problems; taking the
objective to be the negative log-likelihood accomplishes maximization.

To use an unconstrained optimization method in this problem, we must address the natu-
ral constraints in the parameter space. That is, θ = (π1, . . . , πk , ρ) are all probabilities which
must lie between 0 and 1, and πi’s must sum to 1. To allow the optimization to work in
R

k+1, two transformations are applied to any point θ∗ ∈ R
k+1 proposed by the optimizer. The

logistic cumulative distribution function ex/(1 + ex) is first applied to each coordinate of θ∗

to enforce the (0, 1) range constraint. The summation constraint is then enforced by scaling
the first k coordinates by their sum. Note that because of the scaling step, we do not use the
fact that πk = 1 − ∑k−1

i=1 πi to infer πk . Therefore, q = k + 1 total parameters are under con-
sideration. To compute the gradient vector needed for the LMVM method, a finite difference
approximation

∂h(θ)

∂θj
≈ h(θ + δej) − h(θ)

δ
, j = 1, . . . , q,

is used with δ = 10−8. Note that two objective function evaluations are needed to compute each
component of the gradient.

There are several possible ways to achieve parallelization within the framework we have dis-
cussed. Observe that the log-likelihood in Equation (3) can be quite expensive to evaluate, because
it requires iterating over every component of the mixture for each observation in the sample. Each
step of the LMVM iteration requires evaluation of the gradient, and each evaluation of the gradient
requires 2q evaluations of the objective function. Additional evaluations of the log-likelihood may
be required by the LMVM iteration as well, to carry out the line search, for example. Note that
the log-likelihood is a sum over n terms. One idea is to evaluate this sum over multiple parallel
processes, and for large sample sizes, we would expect good performance. We have chosen a
different approach, however, which is to compute the q components ∂h(θ)/∂θj of the gradient in
parallel. Note that these components can be computed independently. This approach limits the
number of parallel processes to the dimension of the problem, but has the advantage that it gener-
alizes to any objective function. In this scheme, all sample data must be available on all processes
in order to evaluate the log-likelihood. This could also be seen as a drawback if the sample data
are very large, and perhaps may not fit in the memory of a single process. For the MLE problem
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Journal of Statistical Computation and Simulation 7

described in this paper, memory requirements are on the order of kn to store a sample and k to
store the parameters. Memory will not be an issue here, but may be an important consideration
in other problems.

We are now prepared to write down the parallel MLE algorithm.

(1) Split the indices {1, . . . , q} as evenly as possible among the p available processes. Denote
Ind(s) as the set of indices assigned to process s.

(2) Start with an initial guess θ(0) = (θ
(0)
1 , . . . , θ(0)

q ).
(3) Run an LMVM iteration, which will require evaluation of the gradient vector.
(4) To evaluate the gradient, each process s = 1, . . . , p computes

∂h(θ(0))

∂θj
∀j ∈ Ind(s).

At this point processes 1, . . . , p work in parallel. (Now each process has a fragment of the
gradient vector in its local memory. To continue with the algorithm, we must make the entire
vector available on all processes.)

(5) Make the entire vector ∇h(θ(0)) available on all processes. This is accomplished in MPI with
a single command MPI_Allgather.

(6) The LMVM iteration continues simultaneously on all processes, and a new guess θ(1) is
obtained.

(7) This process repeats, giving θ(0), θ(1), . . . , θ(g), until stopping criteria are met. Finally, θ(g) is
returned as the MLE.

For all simulations presented below, we select the total number of parameters q to be evenly
divisible by p. This selection is taken for convenience and to demonstrate the ideal case of parallel
performance with equal load balancing, but is not a limitation of the method itself. Some of the
internals of the LMVM method potentially work in parallel as well (e.g. linear solves) which
would further improve performance, but it is not immediately apparent if they are implemented
this way. Stopping criteria are left to the TAO defaults, except that we have raised the limit on the
number of iterations, as mentioned earlier.

To summarize, the RCM MLE problem has been formulated as a TAO optimization problem.
TAO was not strictly necessary to implement the idea, but is convenient because it features a
variety of optimization routines and other utilities, and it has been designed to work in parallel.
Our method of choice is LMVM; although this is an iterative method, we have identified pieces
(components of the gradient vector) which can be computed in parallel within an iteration. We
elected to use a finite difference approximation to the gradient, but a closed-form expression
could be used if available. As mentioned earlier, standard numerical optimization works well for
the RCM model, hence more specialized algorithms did not need to be considered. The chosen
approach does not take into consideration very large data sets, instead it focuses on reduced
computing time as the main goal.

It is worth making an important distinction between the task of computing the MLE for a
single sample, and the task of approximating, say, its sampling variance using a bootstrap with
1000 repetitions. As mentioned earlier, the bootstrap is an embarrassingly parallel procedure, and
each repetition can run independently so that results are combined only at the very end. Splitting
the 1000 repetitions among the p available processes would eliminate almost all communication
overhead, and would therefore be the preferred parallelization method for this case. Our approach
is intended for problems where estimation for a single sample may be prohibitively expensive. As
always, it is important to evaluate the overall computing task before deciding how parallelization
should be handled.

D
ow

nl
oa

de
d 

by
 [

A
nd

re
w

 R
ai

m
] 

at
 1

0:
51

 0
8 

M
ay

 2
01

2 



8 A. M. Raim et al.

4. Simulations

A series of simulations was carried out, first to verify that the estimation is working correctly
(‘consistency check’) and then to study parallel performance as problem sizes are varied (‘perfor-
mance experiments’). The problem size is determined by the following dimensions: sample size
n, cluster size m, number of multinomial categories k (total parameters: q = k + 1), number of
repetitions r, and number of MPI processes p.

To select the true parameters in a simulation, a symmetric vector v = (1, 2, 3, . . . , 3, 2, 1) is
generated which contains k ∈ {1, 2, 3, . . .} elements. Let π = v/

∑
i vi and ρ = 1/4 so that the

true parameters are θ = (π, ρ). This construction provides a quick but deterministic construction
of θ for any valid choice of k. Given θ, a random sample of n observations X = (t1, . . . , tn) is
drawn from RCM(π, ρ, m) using the procedure described in Section 2. The objective function
h(θ) given in Equation (3) is constructed with this sample data. The TAO framework is then
invoked with an initial guess θ(0) = (π(0), ρ(0)), where π(0) = (1/k, . . . , 1/k) and ρ(0) = 1/2. The
selected optimization routine (LMVM) runs until stopping criteria are reached. If the optimization
is successful, an MLE θ̂MLE is obtained. Repeating a simulation r times given a fixed θ yields

i.i.d. RCM samples X1, . . . , Xr and resulting estimates θ̂
(1)

MLE, . . . , θ̂
(r)

MLE.

4.1. Consistency check for MLE

The consistency property can be used to provide some assurance that our parallel MLE program
is computing estimates correctly. Morel and Nagaraj [2] verify that the MLE is consistent and
asymptotically normal for the RCM model. For any ε > 0,

P(‖θ̂MLE − θ‖ ≥ ε) → 0 as n → ∞,

where we take ‖ · ‖ to be the Euclidean norm. By Chebyshev’s inequality,

P(‖θ̂MLE − θ‖ ≥ ε) ≤ E‖θ̂MLE − θ‖
ε

,

and therefore, it is sufficient to show that E‖θ̂MLE − θ‖ → 0 to verify consistency. We let

Qrn = Qrn(X1, . . . , Xr) := 1

r

r∑
j=1

‖θ̂(j)

MLE − θ‖, (4)

which is a Monte Carlo estimate for the expectation E‖θ̂MLE − θ‖. When r is fixed sufficiently
large, a decrease in Qrn for increasing n will be an indication that consistency is holding. Demon-
strating consistency does not guarantee that the estimates are global maxima of the likelihood
function, but it at least provides some evidence that the program yields a consistent solution to
the MLE problem.

Sample data were generated and stored for each distinct setting of (n, k, m), for the maximum
number of repetitions needed at that setting. This ensures that any two runs using the same
dimensions (n, k, m, r) use exactly the same data, and thus, their results are directly comparable.
All runs are distributed in the same way across the HPCF cluster. For p ≤ 8, a single compute
node is used (each process will then run on its own dedicated core). For p > 8, we only consider
p as a multiple of 8 and choose the number of nodes as p/8 so that all eight cores are utilized
on each machine. Raim and Gobbert [11] demonstrate that the use of multiple cores per node
is an effective strategy for distributing workloads on the HPCF cluster. All nodes used in each
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Table 1. Results for consistency check with m = 32, k = 7, p = 1 using r = 512 repetitions.

n Average wall clock time (per repetition) Qrn Average iterations (per repetition)

32 0.0953 3.9723 × 10−2 22.3027
64 0.1925 2.6488 × 10−2 22.3418
128 0.3930 1.9318 × 10−2 22.5469
256 0.7722 1.3410 × 10−2 22.8633
512 1.5759 9.7332 × 10−3 23.5664
1024 3.2304 6.6835 × 10−3 23.8613
2048 6.5058 4.7491 × 10−3 24.5527
4096 13.8054 3.4338 × 10−3 25.7402

Table 2. Solution quality varying m, k, p.

(a) Vary m, using n = 128, k = 31, p = 1

m Average wall clock time Qrn Average iterations

1 7.0399 3.8119 × 10−1 11.3281
2 5.6237 2.5764 × 10−1 8.6621
4 5.1445 2.5436 × 10−1 7.8223
8 5.5690 2.5262 × 10−1 8.0977
16 6.3344 2.5009 × 10−1 8.7402
32 8.6227 1.4740 × 10−1 10.9590
64 10.8879 1.3485 × 10−2 12.1816
128 12.4226 9.5934 × 10−3 12.5469
256 16.8323 6.7424 × 10−3 16.2383
512 16.6591 4.8318 × 10−3 15.7773

(b) Vary k, using n = 64, m = 256, p = 1

k Average wall clock time Qrn Average iterations

3 0.0102 9.4829 × 10−3 7.9297
7 0.0904 9.3881 × 10−3 10.2695
15 0.8962 9.6047 × 10−3 13.3301
31 8.2345 9.5747 × 10−3 15.9141
63 59.6599 9.5986 × 10−3 15.4277

(c) Vary p, using n = 256, m = 256, k = 31

p Average wall clock time Qrn Average iterations

1 34.4564 4.7939 × 10−3 16.5430
2 17.5231 4.7939 × 10−3 16.5371
4 9.2531 4.7939 × 10−3 16.5391
8 4.9527 4.7940 × 10−3 16.5352
16 2.7603 4.7939 × 10−3 16.5391
32 1.6717 4.7940 × 10−3 16.5391

Note: For each row, r = 512 repetitions of the simulation were run.

simulation are reserved exclusively for us by the scheduler, ensuring that the results are free of
interference from other cluster users’ jobs.

Table 1 is intended to demonstrate consistency of the computed estimates, with k, m, p fixed
and n varying from a moderate to large sample size. For each row of the table, r = 512 repetitions
of the simulation were carried out. The value of Qrn is displayed, along with the average number
of LMVM iterations and the average wall clock time (in seconds) per iteration. Table 2 shows
similar results, but with n held fixed and m, k, and p changing individually. The quality of the
solutions (but not necessarily their consistency) can be seen from this table as dimensions of the
simulation are varied. Increasing r leads to the expected increase in the wall clock time and an
improvement of Qrn in approximating E‖θ̂MLE − θ‖; these results are not shown.
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10 A. M. Raim et al.

In Table 1, it can be seen that Qrn decreases as the sample size n increases. The quantity
√

nQrn

appears to stabilize around the value of 2.2 as n is increased, corresponding to the well-known
property of the MLE being root-n convergent. Therefore, the computed estimates appear to be
consistent. Furthermore, the average wall clock time per repetition roughly doubles as the sample
size is doubled, while the average number of LMVM iterations increases slowly. Table 2(a) shows
that Qrn is also decreased as the cluster size m is increased. The average wall clock time and the
number of iterations increase for large m, and also when the cluster size is very small (m = 1 or 2).
Note that m enters the computations through factorials in the log-likelihood. These calculations
were implemented with the optimized lgamma_r function in C rather than the naive recursive
formula. Table 2(b) shows a dramatic increase in computational time as the number of categories
k is doubled. This seems intuitive since the dimension of the optimization problem is proportional
to k. The average number of LMVM iterations per repetition also increases, although not as
dramatically, while Qrn does not appear to be affected in a systematic way. Comparing entries in
Table 2(c), we see that changing the number of processes p does not have a significant effect on
solutions – individual estimates across settings of p indeed agree to four to five decimal places –
but increasing p decreases the required runtime as expected.

4.2. Performance experiments

We consider the parallel performance of the RCM estimation problem when varying the sample
size n, the cluster size m, and the number of categories k. These dimensions are altered along with
the number of processes p. Now that we have made sure the estimates are consistent solutions
to the MLE problem, the number of repetitions r will be fixed at 1. We examine the wall clock
time as well as the metrics ‘speedup’ and ‘efficiency’, which are conventionally given in parallel
performance studies. Let c ∈ {n, m, k} be an experiment variable under observation. Define Tp(c)
as the wall clock time in seconds to compute a problem of size c using p processes. The speedup
is defined as Sp(c) = T1(c)/Tp(c), where Sp(c) close to p suggests ideal parallel performance.
The efficiency is defined as Ep(c) = Sp(c)/p, where Ep(c) close to 1 suggests ideal parallel
performance. Whenever c is held constant and the number of processes p varies, the same sample
data has been used. This helps to simplify comparisons between different settings of p. Parallel
runs were compared to corresponding serial runs to ensure that results matched.

Table 3 and Figure 1 show the results of simulations varying n. We can see that for each fixed
n, doubling the number of processes p shows a strong halving effect of the wall clock time, which
weakens at about p = 64. The pattern is similar for all settings of n, except that larger n have
slightly better scaling. This can readily be seen from the speedup and efficiency plots. Table 4
and Figure 2 show the results of simulations where m is varied. Again, we see the definite halving
effect in the wall clock time as p is doubled, which starts to weaken around p = 64. In the speedup
and efficiency plots, we can see that all settings of m show almost exactly the same scaling pattern.

Table 5 and Figure 3 show the results of simulations where k is varied. Recall in our paralleliza-
tion scheme that the p processes divide the work of computing the k + 1 entries of the gradient
vector. When p ≥ k, some processes will be left with no useful work; therefore, these results
have been omitted. Note that for small k, the run time is too quick to justify parallelization. As
k increases, the run time drastically increases. For a fixed large k such as k = 127, doubling the
number of processes p shows a strong halving effect of the wall clock time, which weakens as
p approaches k + 1. This effect is also reflected in the speedup and efficiency plots. The most
notable observation is the decrease in run time for k = 127 from about 12.7 min serially, to about
10 s when using all 128 processes. Similar results are obtained in Tables 3 and 4 where k is fixed
at 127. Thus, for large enough problem sizes, adding parallel processes drastically reduces the
wall clock time needed to compute MLEs.
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Table 3. Wall clock time, speedup, and efficiency varying n, for k = 127, m = 64, r = 1.

p

n 1 2 4 8 16 32 64 128

(a) Wall clock time (s)
16 150.20 81.16 40.22 20.13 10.53 5.69 3.24 2.13
32 217.70 109.42 55.86 29.36 15.17 8.06 4.62 3.03
64 323.73 165.90 82.59 43.30 22.43 12.05 6.78 4.29
128 646.91 325.20 164.33 86.37 44.64 23.73 13.46 8.23

(b) Observed speedup, Sp

16 1.00 1.85 3.73 7.46 14.26 26.41 46.36 70.43
32 1.00 1.99 3.90 7.42 14.35 27.00 47.14 71.86
64 1.00 1.95 3.92 7.48 14.43 26.87 47.74 75.48
128 1.00 1.99 3.94 7.49 14.49 27.26 48.07 78.65

(c) Observed efficiency, Ep

16 1.00 0.93 0.93 0.93 0.89 0.83 0.72 0.55
32 1.00 0.99 0.97 0.93 0.90 0.84 0.74 0.56
64 1.00 0.98 0.98 0.93 0.90 0.84 0.75 0.59
128 1.00 0.99 0.98 0.94 0.91 0.85 0.75 0.61

Note: Tests were performed with eight processes per node, except for p = 1 which uses one process per
node, p = 2 which uses two processes per node, and p = 4 which uses four processes per node.
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Figure 1. Scalability (speedup and efficiency) as n varies. (a) Observed speedup, Sp, and (b) observed efficiency, Ep.

5. An LRT application

Our performance studies have demonstrated the effectiveness of parallel computing for the RCM
MLE problem when many parameters need to be estimated. But where might we encounter such
problems in a data analysis? To answer this question, we next consider hypothesis testing in a fixed
effects model embedded into an RCM distribution. Even a fairly simple problem in this framework
can be computationally expensive if there are a large number of multinomial categories and/or
covariates. To create an effective demonstration, we consider a scenario which is ideally suited to
the RCM model. It features both a large number of categories and a simple fixed effects model.
We generate data for this scenario and show that computation of the LRT is one instance where
practical use can be made of our parallel MLE idea.
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12 A. M. Raim et al.

Table 4. Wall clock time, speedup, and efficiency varying m, for n = 128, k = 127, r = 1.

p

m 1 2 4 8 16 32 64 128

(a) Wall clock time (s)
16 539.51 263.01 132.24 68.90 36.31 19.00 10.61 6.61
32 697.73 366.01 185.50 93.34 48.04 25.77 14.51 8.80
64 646.84 331.35 164.44 86.34 44.56 23.61 13.46 8.32

128 616.36 310.00 158.39 82.35 42.56 22.70 12.69 7.83
256 777.63 384.21 194.77 102.01 52.62 28.15 15.67 9.69
512 1056.65 531.78 285.14 141.10 72.81 38.69 21.68 13.44

(b) Observed speedup, Sp

16 1.00 2.05 4.08 7.83 14.86 28.40 50.85 81.56
32 1.00 1.91 3.76 7.48 14.52 27.07 48.07 79.25
64 1.00 1.95 3.93 7.49 14.52 27.40 48.07 77.72

128 1.00 1.99 3.89 7.48 14.48 27.16 48.58 78.73
256 1.00 2.02 3.99 7.62 14.78 27.62 49.63 80.28
512 1.00 1.99 3.71 7.49 14.51 27.31 48.75 78.63

(c) Observed efficiency, Ep

16 1.00 1.03 1.02 0.98 0.93 0.89 0.79 0.64
32 1.00 0.95 0.94 0.93 0.91 0.85 0.75 0.62
64 1.00 0.98 0.98 0.94 0.91 0.86 0.75 0.61

128 1.00 0.99 0.97 0.93 0.91 0.85 0.76 0.62
256 1.00 1.01 1.00 0.95 0.92 0.86 0.78 0.63
512 1.00 0.99 0.93 0.94 0.91 0.85 0.76 0.61

Note: Tests were performed with eight processes per node, except for p = 1 which uses one process per
node, p = 2 which uses two processes per node, and p = 4 which uses four processes per node.
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Suppose there are n guidance counsellors who advise high school students in selecting a college
from k possibilities. For simplicity, suppose m students are assigned to each counsellor, and no
student is assigned to more than one counsellor. Students visit their counsellor zero or more
times for advice until they have chosen a college and may or may not be influenced by their
counsellor. Let x = (x1, . . . , xn), where xi is the total number of visits to the ith counsellor by
his/her students. Intuitively, we might expect that a more heavily utilized counsellor will have
a greater influence on his/her students. One can imagine each student choosing between the
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Table 5. Wall clock time, speedup, and efficiency varying k, for n = 128, m = 256, r = 1.

p

k 1 2 4 8 16 32 64 128

(a) Wall clock time (s)
1 0.001 0.003 – – – – – –
3 0.025 0.025 0.012 – – – – –
7 0.175 0.121 0.063 0.034 – – – –

15 1.873 1.006 0.543 0.297 0.238 – – –
31 16.714 8.538 4.556 2.397 1.389 0.870 – –
63 131.692 67.555 33.924 18.076 9.660 5.452 3.324 –

127 763.255 384.019 197.899 102.115 52.572 27.962 15.777 9.706

(b) Observed speedup, Sp

1 1.00 0.50 – – – – – –
3 1.00 1.03 2.08 – – – – –
7 1.00 1.44 2.77 5.16 – – – –

15 1.00 1.86 3.45 6.30 7.87 – – –
31 1.00 1.96 3.67 6.97 12.03 19.22 – –
64 1.00 1.95 3.88 7.29 13.63 24.15 39.62 –

127 1.00 1.99 3.86 7.47 14.52 27.30 48.38 78.64

(c) Observed efficiency, Ep

1 1.00 0.25 – – – – – –
3 1.00 0.51 0.52 – – – – –
7 1.00 0.72 0.69 0.64 – – – –

15 1.00 0.93 0.86 0.79 0.49 – – –
31 1.00 0.98 0.92 0.87 0.75 0.60 – –
64 1.00 0.97 0.97 0.91 0.85 0.75 0.62 –

127 1.00 0.99 0.96 0.93 0.91 0.85 0.76 0.61

Note: Tests were performed with eight processes per node, except for p = 1 which uses one process per node, p = 2
which uses two processes per node, and p = 4 which uses four processes per node.
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counsellor’s recommendation and his/her own personal choice, as in the generation of the RCM
model described in Section 2. This scenario is ideally modelled by the RCM model with parameter
ρ capturing the degree of influence of the counsellor.

Let T i = (Ti1, . . . , Tik) denote the vector of counts for counsellor i, for each of the k possible
colleges. We can also suppose that the first k − 1 categories represent specific college choices,
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14 A. M. Raim et al.

and the kth category represents a catch-all for all other possibilities, such as attending an unlisted
college or not attending any college at all. We suppose that T1, . . . , Tn are independent, and

T i ∼ RCM(π, ρi, m), log

(
ρi

1 − ρi

)
= α + βxi. (5)

Recall that ρi is the probability of ‘following the leader’ from Section 2. In this scenario,
following the leader means choosing the preferred college of the counsellor. In Equation (5), we
have expressed the log-odds of ρi by a linear function, where α is the common baseline effect of
a counsellor’s influence on students, and β is a common slope which incorporates how heavily
students have utilized their counsellor. Here, π is constant across all counsellors. Therefore, aside
from counsellor influence, the probability distribution of choosing among the k colleges is the
same for all students. For this problem, the unknown parameter θ is contained in the space

� =
⎧⎨
⎩(π1, . . . , πk , α, β) ∈ R

q : 0 < πj < 1,
k∑

j=1

πj = 1

⎫⎬
⎭ , q = k + 2.

We consider a testing problem for the significance of the slope,

H0 : β = 0 versus H1 : β �= 0.

Two MLE computations are needed for the LRT: the unrestricted MLE θ̂ and the MLE θ̂0 under
the restriction H0. The LRT statistic can then be computed as

−2 log � = −2 log
L(θ̂0)

L(θ̂)
= −2{log L(θ̂0) − log L(θ̂)}, (6)

where the likelihood is given by

L(θ) =
n∏

i=1

f (ti | π, ρi(α, β), m) (7)

and f is the density of RCM.
As before, solving the likelihood equation in closed form is not practical, and we turn to numer-

ical computation of the MLE. This can be accomplished in parallel by applying the method from
Section 3 and embedding the new likelihood (7) into an objective function. For this application, we
use the initial guess θ(0) = (π(0), α(0), β(0)), where π(0) = (1/k, . . . , 1/k), α(0) = 0, and β(0) = 0.

To generate data from this scenario, we select a number of categories k and sample size n, and let
m = 100 students per counsellor. The category probabilities are generated by drawing a random
sample U1, . . . , Uk from U(0, 1) and then letting πj = Uj/

∑
i Ui. To generate the covariate x, we

suppose xi1, . . . , xim
i.i.d.∼ Geometric(φ), where xij represents the number of visits of the jth student

of counsellor i until a college decision is made. We choose φ = 0.9 so that the expected number of
visits per student E(xij) = (1 − φ)/φ = 1/9 is small. The total number of visits xi to counsellor
i are then drawn independently from NegBin(m, φ). We let α = −5 and β = 0.3, so that

log

(
ρi

1 − ρi

)
= −5 + 0.3xi ⇐⇒ ρi

1 − ρi
= e−5(e0.3)xi ,

and thus, the odds of ‘following the leader’ will be multiplied by e0.3 ≈ 1.35 for each visit to
the counsellor. In this scenario, utilization of the counsellor has a fairly strong influence over
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Table 6. Results for LRT computations of generated application problems.

Case #params Run log-likelihood Wall clock time #iters

(a) Results for k = 50, n = 500
Under H0 51 Serial R −40, 791.06 02:53:43 57

Serial TAO −40, 791.06 00:03:14 14
Parallel TAO −40, 791.06 00:00:16 14

Full space 52 Serial R −37, 284.64 03:21:25 60
Serial TAO −37, 284.63 00:05:53 25

Parallel TAO −37, 284.63 00:00:35 25

(b) Results for k = 98, n = 1000
Under H0 99 Serial R −111, 241.20 48:54:17 100

Serial TAO −111, 241.23 01:12:15 24
Parallel TAO −111, 241.23 00:07:43 24

Full space 100 Serial R −104, 468.55 49:10:42 100
Serial TAO −104, 467.38 02:02:48 40

Parallel TAO −104, 467.38 00:07:20 40

Note: For problem size (a), the parallel full space run used 13 processes across 2 nodes, and the parallel
restricted run used 17 processes across 2 nodes. For problem size (b), the parallel full space run used 20
processes across 3 nodes, and the parallel restricted run used 11 processes across 2 nodes.

college choice, but students do not tend to make much use of their counsellor. Now that all of
the parameters and covariates have realized values, RCM responses are generated according to
Equation (5) using the algorithm given in Section 2.

Table 6 shows the results of our computations on two problems: (k = 50, n = 500) and (k =
98, n = 1000). For each problem, two cases are shown which correspond to the two likelihood
maximizations that need to be computed. In each case, results from three runs are shown: one for
the TAO code in serial, one for the TAO code in parallel, and one for a simple implementation
in R using the optim function with the built-in BFGS optimization method. The maximized
log-likelihood, wall clock time in hours:minutes:seconds format, and number of iterations are
shown for each run. The number of iterations for serial R was limited to 100, which is the default
setting. For each parallel TAO run, we choose a moderately sized p which evenly divides the
number of parameters and used the smallest number of compute nodes possible to run each
job. All parallel TAO jobs shown in Table 6 were run on either two or three nodes, and 11–20
processes overall. As in Section 4, the number of parameters for both problems here were chosen
deliberately for convenience so that the work could be split evenly across a moderate number of
processes.

Note first that for each case, the values of the log-likelihoods attained across all three runs are
nearly the same. This gives a cross-check between the TAO and R codes that correct solutions
to the MLE problem are computed. The iteration counts match between serial and parallel TAO
runs, but R required significantly more iterations. In fact, in the larger problem, the iteration limit
of 100 has been reached, hence further improvement may have been possible. Also, note that in
the restricted case of the larger problem, R has managed to find a slightly better solution than
TAO. These issues are not necessarily cause for alarm, since there may be differences between
the two optimization methods and their implementations.

We see that the R code is dramatically slower than the serial TAO code. For instance, the larger
problem required over 2 days in R to solve either case, whereas the serial TAO code required only
about 1–2 h. This observation should be viewed in light of the fact that neither the R nor TAO
codes were carefully tuned for performance. Moving from serial TAO to parallel TAO, we see that
either case of the larger problem can now be solved in about 7–8 min using at most 20 processes
on 3 nodes. Therefore, computing the entire LRT for the larger problem has taken about 4 days
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16 A. M. Raim et al.

in serial R compared with about 3:15 h in serial TAO and about 15 min in parallel TAO. From
Section 4, we would expect performance to scale well with additional parallel processes.

Finally, we may compute the LRT for the two problems using the results in Table 6. For the
(k = 50, n = 500) problem, we have −2 log � = 7012.87. For the (k = 98, n = 1000) problem,
the test statistic evaluates to −2 log � = 13547.70. Under the −2 log � � χ2

1 approximation, we
may correctly reject H0 in both cases and conclude that the number of visits xi to a counsellor has
a significant effect on the log-odds of ‘following the leader’.

In this problem, we considered a simple model with a single covariate but a large number of
categories in the response. Note that a model with many covariates and perhaps a smaller number
of categories also leads to a many-parameter situation, where parallel computing would be useful
for obtaining MLEs. Note that covariates can easily be added at the counsellor level or perhaps
at a less granular level such as the high school which employs the counsellor or its geographical
region. Covariates at the student level are more granular, however, and would complicate the
model significantly. Adding covariates at the student level would require the T i’s to be split into
smaller observations sharing common counsellors, and hence, the observations would no longer
be independent.

6. Conclusions

We have demonstrated the effectiveness of computing MLEs in parallel using the random-clumped
model as a test problem. TAO provided an environment to conduct numerical optimizations in
parallel, requiring only an objective function, gradient vector, and Hessian matrix. The MLE
procedure is just one example of an application that can benefit from this kind of parallel
optimization.

The effects of adjusting sample size, cluster size, and number of categories were studied by sim-
ulation. Increasing the sample size verified that the computed estimates were consistent. Increasing
the number of categories quickly caused run time to increase. Increasing the cluster size increased
run time to a lesser extent, and it also improved the quality of estimates. The parallel perfor-
mance was also studied, varying the number of processes along with the sample size, number
of multinomial categories, and cluster size. We observed excellent parallel performance when
varying the sample size and the cluster size. The best parallel performance is possible when the
number of categories is large. However, increasing the number of categories causes run time
to increase faster than linearly. Therefore, RCM likelihoods with a very large number of cate-
gories will be infeasible to maximize, even on a large cluster, using the basic approach presented
here. Smaller problems involving many repetitions do not require an HPC cluster, since repeti-
tions are computationally independent and require little communication. This kind of parallelism
can be accomplished with less elaborate programming using tools such as the SNOW package
for R.

Finally, we saw how the parallel MLE approach could be used in a more realistic RCM analysis.
We used this method to compute the numerator and denominator of the LRT, and we conducted a
test for the slope in a linked model. This yielded a significant improvement in performance using
only a few compute nodes.

The approach used here can be applied to statistical computations in general; particularly, we
have exploited it to compute MLEs for the random-clumped model. For this model, useful theo-
retical results are available to vastly improve the performance of MLE computation. For example,
Neerchal and Morel [8] suggest a block diagonal approximation for the Fisher information matrix,
which can be used to effectively carry out Fisher scoring iterations. Further improvements are
proposed in [6], in the context of EM. Incorporating these results could yield vastly improved
performance and perhaps new opportunities for applications of the RCM model.
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