

APPROVAL SHEET

Title of Thesis: Parallel Performance Studies for a
Linear Parabolic Test Problem Using the
Intel Xeon Phi

Name of Candidate: Ryan D. Day
Master of Science, 2016

Thesis and Abstract Approved:
Dr. Matthias K. Gobbert
Professor
Department of Mathematics and Statistics

Date Approved:

CURRICULUM VITAE

Name: Ryan David Day.
Degree and Date to be Conferred: Master of Science, 2016.

Collegiate Institutions Attended:

• Gettysburg College, 2010–2014, B.A. Mathematics and Religious Studies May

2014.

• University of Maryland, Baltimore County, 2014–2016, M.S. Applied

Mathematics May 2016.

Teaching Experience:

• Teaching Assistant, Department of Mathematics and Statistics, UMBC, Fall

2014 – Spring 2015

Presentations:

• On the maximum size of an h-fold span of an m-element subset of an abelian

group. Given at 23rd annual St. Joseph’s University Research Symposium,

St. Joseph’s University, Philadelphia, PA, Spring 2012.

• On the size of ν±(Zn,m, [0, s]) for all n,m, and s. Given at Gettysburg College

Mathematics Research Symposium, Gettysburg College, Spring 2012.

• On the maximum size of a restricted [0, s]-fold sumset. Given at Gettysburg

College Mathematics Research Symposium, Gettysburg College, Spring 2013.

ABSTRACT

Title of Thesis: Parallel Performance Studies for a
Linear Parabolic Test Problem Using the
Intel Xeon Phi

Ryan D. Day, Master of Science, 2016

Thesis directed by: Dr. Matthias K. Gobbert, Professor
Department of Mathematics and Statistics
University of Maryland, Baltimore County

The performance of parallel computer code depends on several factors including

the system hardware, the numerical algorithm chosen, and how the algorithm is imple-

mented. We consider parallel performance of a parabolic test problem on the CPUs of

one and multiple nodes and using the Intel Xeon Phi in native and symmetric mode,

with MPI only and with hybrid MPI+OpenMP programming models.

We report the performance of a classical parabolic test problem whose structure

is representative of kernels of real-world application codes. This test problem is the

linear heat equation with homogeneous Dirichlet boundary conditions in two spatial

dimensions on the unit square, which can be approximated using backward Euler for

the time derivative and centered finite difference approximation for the spatial deriva-

tives in the diffusion term. The implementation of the conjugate gradient method for

the iterative solution of this system at each time step has the potential to perform

well up to many parallel processes. This test problem lies in complexity between

linear stationary elliptic and non-linear transient parabolic problems. Analyzing its

performance based on excellent results for the former problems will give guidance on

the potential for good performance on the latter ones.

We report parallel performance studies for the 2013 portion of the maya cluster

in the UMBC High Performance Computing Facility and the Stampede cluster in the

Texas Advanced Computing Center. We conduct parallel performance studies with

MPI and OpenMP on the CPUs only as well as using CPUs in combination with

Intel Xeon Phi. The results show good performance using MPI on CPUs for up to 32

compute nodes. The results show code with a high degree of parallelism is required to

take advantage of the many cores of the Phi and to achieve better performance than

on CPUs and that for code with a sufficiently high degree of parallelism using both

CPUs and Phis jointly on a hybrid node results in the best performance. The results

show that code with smaller mesh resolutions is compute-bound and code with larger

mesh resolutions is memory-bound.

PARALLEL PERFORMANCE STUDIES FOR A

LINEAR PARABOLIC TEST PROBLEM USING THE

INTEL XEON PHI

by

Ryan D. Day

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Science

2016

c© Copyright Ryan D. Day 2016

To my parents, David and Susan Day

ii

ACKNOWLEDGMENTS

Many thanks to my advisor, Dr. Matthias K. Gobbert, for his encouragement,

advice, patience, and trust. I would also like to thank Jonathan Graf and Samuel

Khuvis for their advice and assistance throughout my research.

The hardware used in the computational studies is part of the UMBC High Per-

formance Computing Facility (HPCF). The facility is supported by the U.S. National

Science Foundation through the MRI program (grant nos. CNS–0821258 and CNS–

1228778) and the SCREMS program (grant no. DMS–0821311), with additional sub-

stantial support from the University of Maryland, Baltimore County (UMBC). See

hpcf.umbc.edu for more information on HPCF and the projects using its resources.

This work used the Extreme Science and Engineering Discovery Environment

(XSEDE), which is supported by National Science Foundation grant number ACI–

1053575. I acknowledge the Texas Advanced Computing Center (TACC) at the Uni-

versity of Texas at Austin for providing HPC resources that have contributed to the

research results reported within this paper. See www.tacc.utexas.edu for informa-

tion on TACC and its resources.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Overview of Intel Xeon Phi Computing 4

1.3 Computational Environment . 5

1.4 Software Environments . 6

1.5 Summary and Outline . 7

2 MODEL PROBLEM . 9

2.1 Properties of the Heat Equation . 9

2.2 True Solution of the Model Problem 10

3 NUMERICAL METHOD AND ITS IMPLEMENTATION 13

3.1 Finite Difference Discretization of the Poisson Equation 13

3.2 Full Discretization of the Heat Equation 15

3.3 Convergence Studies for the Numerical Method in Matlab 17

3.4 Implementation of the Numerical Method Using C 22

3.5 Convergence Study for the Test Problem using C 25

4 PARALLEL PERFORMANCE STUDIES 29

4.1 Parallel Performance Studies on CPUs Using MPI Only Code . . . 31

iv

4.1.1 Summary of Performance on CPUs Only Using Multiple Nodes

on maya . 32

4.1.2 Summary of Performance on CPUs only using 1 Hybrid Node

on maya and Stampede . 40

4.2 Parallel Performance Studies on CPUs using Hybrid MPI+OpenMP

Code . 42

4.3 Parallel Performance Studies for the Intel Phi in Native Mode Using

MPI Only Code . 45

4.4 Parallel Performance Studies for the Intel Phi in Native Mode Using

Hybrid MPI+OpenMP Code . 49

4.5 Parallel Performance Studies for the Test Problem on CPUs and

Intel Phis in Symmetric Mode . 53

4.6 Summary of Performance on One Hybrid Node 55

5 CONCLUSIONS . 57

BIBLIOGRAPHY . 61

v

LIST OF TABLES

TABLE Page

1.5.1 Summary of parabolic test problem results for N = 2048 on 1 hybrid

node from Table 4.6.1. 8

3.3.1 Convergence study in Matlab for the test problem using Gaussian elim-

ination with ∆t = 10−2, 10−3, and 10−4. 19

3.3.2 Convergence study in Matlab for the test problem using the conjugate

gradient method with ∆t = 10−4 and τ
(lin)
relres = 10−6, 10−8, and 10−10. . . 21

3.5.1 Convergence study in serial C code for the test problem using the con-

jugate gradient method with ∆t = 10−4 and τ
(lin)
relres = 10−10. 25

3.5.2 Convergence study in parallel C code for the test problem using the

conjugate gradient method with ∆t = 10−4 and τ
(lin)
relres = 10−10. 26

3.5.3 Convergence study in parallel C code for the test problem using the

conjugate gradient method with ∆t = 10−5 and τ
(lin)
relres = 10−10. 28

4.1.1 Wall clock time in HH:MM:SS on the 2013 portion of the maya cluster

using CPUs only with MPI only code for the parabolic test problem

arranged by nodes and processes per node. 35

4.1.2 Wall clock time arranged by total number of parallel processes and

speedup and efficiency on CPUs only using MPI only code for the

parabolic test problem on the maya 2013 cluster. 38

4.1.3 Wall clock times in HH:MM:SS on 1 node using CPUs only with MPI

only code for the parabolic test problem on the clusters maya and

Stampede. 41

4.2.1 Wall clock times using CPUs only with hybrid MPI+OpenMP code for

the parabolic test problem on maya on 1, 2, and 4 nodes. 44

vi

4.3.1 Wall clock times in HH:MM:SS and speedup and efficiency for 1 Phi

in native mode with MPI only code for the parabolic test problem on

maya. ET denotes excessive time requirement. 46

4.3.2 Best observed wall clock times in HH:MM:SS for 1 Phi in native mode

with MPI only code for the parabolic test problem on maya and Stam-

pede. 47

4.4.1 Wall Clock Time in HH:MM:SS on 1 Phi in native mode using hybrid

MPI+OpenMP code on for the parabolic test problem for N = 128, 256

and 512 on the maya cluster. 50

4.4.2 Parallel performance studies for the Intel Phi in native mode on maya

and Stampede using hybrid MPI+OpenMP code. 51

4.5.1 Symmetric mode for the parabolic test problem on 1 node on Stampede. 54

4.6.1 Summary of parabolic test problem results for N = 2048 on 1 hybrid

node. 56

vii

LIST OF FIGURES

FIGURE Page

1.2.1 Schematic of Intel Phi 5110P. Figure credit HPCF. 3

2.2.1 Mesh plots of the true solution (1.1.3) at times t = 1, 2, . . . , 6 using

mesh resolution N = 32. 12

3.3.1 Mesh plots of the numerical solution for the test problem using the

conjugate gradient method at times t = 1, 2, . . . , 6 for mesh resolution

N = 32 and ∆t = 10−4. 23

3.3.2 Mesh plots of the numerical error for the test problem using the con-

jugate gradient method at times t = 1, 2, . . . , 6 for mesh resolution

N = 32 and ∆t = 10−4. Notice the scales on the vertical axes. 24

4.1.1 Speedup and efficiency plots for CPUs. 39

4.3.1 Speedup and efficiency plots for the Intel Phi in native mode using MPI

only code on maya. 47

viii

CHAPTER 1

INTRODUCTION

1.1 Motivation

From the beginning of the twenty-first century there has been a shift in focus

in modern CPUs from developing faster single cores to packaging more cores into a

single CPU. As a result of this, parallel computing techniques must be developed to

take full advantage of modern CPUs. Modern CPUs are typically packaged with 2 to

8 cores. Each of the compute nodes on the 2013 portion of the maya cluster in the

UMBC High Performance Computing Facility (HPCF) and the Stampede cluster in

the Texas Advanced Computing Center (TACC) contain 2 CPUs with 8 cores on each

CPU. Programming techniques such as MPI and OpenMP allow for the utilization of

all 16 computational cores in one node simultaneously. One concern for many-core

CPUs is power consumption and heat dissipation. For large clusters of CPUs, these

issues must be taken into consideration.

One solution to this issue is the use of coprocessors in a hybrid node to supplement

the work of a CPU. Coprocessors generally have many more cores and threads than

a multi-core CPU and use power more efficiently, although they usually have less

memory than a modern CPU. A typical arrangement for a hybrid node is to have 2

CPUs each connected to a coprocessor. The most commonly used coprocessor used

is the massively-parallel general-purpose Graphics Processing Unit (GPGPU).

Intel developed the many-core Intel Xeon Phi as an alternative to the GPGPU.

The Intel Xeon Phi contains approximately 60 cores, with each core capable of 4

threads. There are far fewer threads on the Phi compared to the GPU, but each core

of the Phi is x86 compatible and capable of running its own instruction stream, while

1

2

the GPU is not x86 compatible and operates in SIMD blocks [4]. This allows the

user to run code on the Phi using MPI and OpenMP. The first Intel Xeon Phi was

released to the public in 2013. Thus, it is still a relatively new technology that is not

yet well understood for real-world applications.

The performance of the Intel Phi in real-world applications was studied by Khuvis

[8]. In particular, his work shows that excellent performance can be obtained using

the Intel Phi for a linear stationary elliptic test problem. The linear stationary elliptic

test problem has been studied extensively on both the Phi and CPUs. Performance

for an elliptic test problem has been studied extensively on the maya cluster. In

addition to studies done for the Phi by Khuvis, studies on CPUs have been done in

mutliple technical reports [10] [9]. These show excellent performance for the elliptic

test problem on both the CPUs and the Phis. We extend these results to a linear

parabolic test problem.

We consider the heat equation in two spatial dimensions on the unit square domain

Ω = (0, 1)× (0, 1) ⊂ R2,

ut −∆u = f in Ω for t > 0,

u = 0 on ∂Ω for t > 0,

u = 0 in Ω at t = 0,

(1.1.1)

with

f(x, y, t) =
2t

4
e−t

2/4 sin2(πx) sin2(πy)

− 2π2(1− e−t
2/4)[cos(2πx) sin2(πy) + sin2(πx) cos(2πy)].

(1.1.2)

This problem admits the known true solution

u(x, y, t) = (1− e−t2/4) sin2(πx) sin2(πy). (1.1.3)

This test problem lies in complexity between the linear stationary elliptic test

problem and the non-linear transient parabolic problem of modeling calcium induced

3

Figure 1.2.1 Schematic of Intel Phi 5110P. Figure credit HPCF.

calcium release (CICR) in a heart cell studied by Khuvis [8]. Analyzing its perfor-

mance based on excellent results for the elliptic test problem will give guidance on

the potential for good performance on the more complex CICR problem and help to

determine where the problem for good performance of the complex codes lies. On

the one hand, the linear stationary elliptic test problem consists of the Poisson equa-

tion, which is a scalar (i.e., single-species) linear partial differential equation. For

this problem, results indicated excellent performance. On the other hand, the CICR

problem is a multi-species problem, modeled mathematically by a system of transient

non-linear partial differential equations. Its parallelization is a lot more difficult, and

the work done by Khuvis did not show good performance, yet [8]. Thus, studying the

performance of the scalar linear transient test problem (1.1.1) will help understand

where performance bottlenecks are in the CICR problem.

4

1.2 Overview of Intel Xeon Phi Computing

The Intel Xeon Phi is a coprocessor developed by Intel which uses the Intel Many

Integrated Core, or MIC, architecture. The Phi became available to the public in

2013. Figure 1.2.1 is a schematic of the Phi 5110P coprocessor available on maya

connected to a CPU. Each Phi 5110P on maya has 60 cores core with dedicated L2

cache. These cores are connected to each other and 8 GB of main memory through a

bidirectional ring bus. The Phi is then connected to its CPU by the PCIe interface.

Each core is capable of four threads for a total of 240 threads, or logical cores,

on each Phi 5110P. Each core is x86 compatible and is capable of running its own

instruction stream. Code developed for use with the Phi can use MPI and OpenMP

frameworks due to the x86 compatibility.

There are three modes of running programs on the Intel Phi. These are offloading,

native, and symmetric mode. In offload mode, the program is run on the CPU and

segments of the code are offloaded to the Phi. The benefit of this mode is that

multiple CPUs and Phis may be used in parallel. The downside to this mode is that

communication between a CPU and its Phi is very expensive and that Phis can only

communicate via the CPUs. In native mode, the program runs exclusively on the

Phi. This is done by adding the -mmic flag to the compiler to create an executable

that can be run directly on the Phi. One of the benefits of this mode is that it can

be run using existing MPI or OpenMP CPU code, although this code may still need

to be modified to obtain the best parallel performance. This mode limits the user

to the use of Phis and no CPUs. Lastly, in symmetric mode the program is run on

the CPU and on the Phi concurrently. This difference between this mode and native

mode is that it allows for the use of all resources on a hybrid node. Unlike offload

mode, this mode does not require modification of existing MPI code. The key to good

performance in symmetric mode is proper load balancing between the CPUs and the

5

Phis which is accomplished by the choice of MPI processes and OpenMP threads in

hybrid MPI+OpenMP code [8].

1.3 Computational Environment

The work in this thesis was completed using the UMBC High Performance Com-

puting Facility and the Texas Advanced Computing Center.

The UMBC High Performance Computing Facility (HPCF) is the community-

based, interdisciplinary core facility for scientific computing and research on parallel

algorithms at UMBC. Started in 2008 by more than 20 researchers from ten academic

departments and research centers from all three colleges, it is supported by faculty

contributions, federal grants, and the UMBC administration. The facility is open

to UMBC researchers at no charge. Researchers can contribute funding for long-

term priority access. System administration is provided by the UMBC Division of

Information Technology, and users have access to consulting support provided by

dedicated full-time graduate assistants. See hpcf.umbc.edu for more information on

HPCF and the projects using its resources.

The current machine in HPCF is the distributed-memory cluster maya with over

300 nodes. The newest components of the cluster are the 72 nodes with two eight-core

2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB memory that include 19 hybrid

nodes with two high-end NVIDIA K20 GPUs (graphics processing units) designed for

scientific computing and 19 hybrid nodes with two cutting-edge 60-core Intel Xeon

Phi 5110P accelerators. These new nodes are connected along with the 84 nodes with

two quad-core 2.6 GHz Intel Nehalem X5550 CPUs and 24 GB memory by a high-

speed quad-data rate (QDR) InfiniBand network for research on parallel algorithms.

The remaining 168 nodes with two quad-core 2.8 GHz Intel Nehalem X5560 CPUs

and 24 GB memory are designed for fastest number crunching and connected by a

6

dual-data rate (DDR) InfiniBand network. All nodes are connected via InfiniBand to

a central storage of more than 750 TB.

The Texas Advanced Computing Center (TACC) at the University of Texas at

Austin is one of the leading centers in computational excellence in the United States.

TACC designs and operates some of the world’s most powerful computing resources.

The center’s mission is to enable discoveries that advance science and society through

the application of advanced computing technologies. TACC’s resources are being

used in over 200 research projects from over 100 institutions exploring over 50 fields

of science at any time. See www.tacc.utexas.edu for more information on TACC and

the projects using its resources. Access to TACC was obtained through the Extreme

Science and Engineering Discovery Environment (XSEDE) [12].

Some work in this thesis was completed on TACC’s Stampede system. Stampede

is a 10 PFLOP/s (Peta FLoating Point OPerations per second) distributed memory

cluster with over 6400 nodes. The majority of these 6400 nodes are compute nodes

with two eight-core 2.7 GHz Intel E5-2680 Sandy Bridge CPUs and 32 GB memory.

Most of these nodes are configured with one 61-core Intel Phi SE10P accelerator but

a small number of nodes are configured with two Intel Phi SE10P accelerators. There

are an additional 16 large-memory nodes with 32 cores per node and 1 TB of memory

for data-intense applications. There are also 128 visualization nodes available with

one NVIDIA K20 GPU on each node with 5 GB of GDDR5 memory. Each compute

node contains a local 250 GB disk. Nodes are connected by a fourteen-data rate

(FDR) InfiniBand network from Mellanox in a 2-level fat-tree topology.

1.4 Software Environments

The Intel C compiler version 15.0 is used on both Stampede and maya with com-

piler options -c99 -Wall -O3 for MPI only code and additionally -openmp for the

7

MPI+OpenMP code. Intel MPI version 5.0.2 is used on Stampede and Intel MPI

version 5.0.3 is used on maya. We use the Intel compiler and MPI because support

for other versions is limited on the Intel Phi. The compiler flag -mmic is used to

create executables for the Intel Phi. SLURM version 14.11 was used on both systems

for resource management.

1.5 Summary and Outline

Chapter 2 is devoted to properties of the heat equation as well as the true solution

of the heat equation (1.1.1) with the right hand side function (1.1.2).

Chapter 3 introduces the numerical methods for both the elliptic test problem

and the linear parabolic test problem (1.1.1). Both methods are introduced, because

the method for the time-dependent parabolic test problem is a generalization of the

method for the elliptic test problem. We also explain the parallel implementation of

these methods. This chapter also contains a sequence of careful convergence studies

to ensure the numerical correctness and reliability of the parameter choices used in

the performance studies.

In Chapter 4, the results of our parallel performance studies will be discussed. The

performance of MPI only code and hybrid MPI+OpenMP code on the CPUs and the

Intel Phis will be presented. We study performance on CPUs only, the Intel Phi in

native mode, and the CPUs and Intel Phis in symmetric mode. One fundamental

conclusion we make is that code with a high degree of parallelism is required to take

advantage of the many cores of the Phi and to achieve better performance than on

CPUs. Table 1.5.1 here provides a summary of the most important performance

results of Chapter 4 for the case of a large mesh resolution using a 2048× 2048 mesh,

denoted by N = 2048. For a sufficiently large problem size such as for the mesh

resolution in Table 1.5.1, the Intel Phi in native mode outperforms both CPUs in

8

one node, and using both CPUs and Intel Phis in symmetric mode further reduces

the runtime. One observation we make is that on Stampede hybrid MPI+OpenMP

code is key to good performance on the Intel Phi in native mode, while on maya

and on the CPUs there is no difference in performance between MPI only code and

MPI+OpenMP code.

Table 1.5.1 Summary of parabolic test problem results for N = 2048 on 1 hybrid

node from Table 4.6.1.

Stampede

CPUs Phis Mode CPU prog. model Phi prog. model Runtime

2 0 CPU only MPI only NA 37:58:11

0 1 Native NA MPI+OpenMP 29:14:16

0 2 Native NA MPI+OpenMP 17:16:39

2 2 Symmetric MPI only MPI only 16:31:15

maya

CPUs Phis Mode CPU prog. model Phi prog. model Runtime

2 0 CPU only MPI only NA 36:19:55

0 1 Native NA MPI+OpenMP 31:28:06

Chapter 5 summarizes our conclusions on the performance of CPUs and the Intel

Xeon Phi.

CHAPTER 2

MODEL PROBLEM

This chapter explains the background of the heat equation with Dirichlet boundary

conditions in two spatial dimensions. Section 2.1 discusses properties of the heat

equation and several properties of our test problem, (1.1.1). Section 2.2 discusses the

true solution of our test problem and examines a plot of the true solution at time

t = 1, 2, . . . , 6.

2.1 Properties of the Heat Equation

The heat equation, also known as the diffusion equation, is typically used to

describe the evolution in time of the density u of some quantity such as heat or

chemical concentration. If our domain Ω is a smooth region in R2, then the rate of

change of the total quantity within Ω equals the negative of the net flux through the

boundary, ∂Ω. For the homogeneous version of the heat equation, this is equivalent to

the statement ut = − divF , where F is the flux density. The boundary conditions in

(1.1.1) are u = 0 on ∂Ω for t ≥ 0. This is known as homogeneous Dirichlet boundary

conditions. This can be physically interpreted as saying that there is a constant

temperature of 0 on our boundary for all times t.

There are several important properties of the heat equation that can be used

in the discussion of its solution. The first of these properties is the uniqueness of

classical solutions to the heat equation on bounded domains. Since the boundary and

initial conditions are smooth, the solution exists and is unique [3]. In fact, our test

problem is known to admit the true solution u(x, y, t) in 1.1.3 that is infinitely often

differentiable.

To test the numerical method and its implementation, we consider the parabolic

9

10

test problem (1.1.1) with right-hand side function (1.1.2) over the unit square Ω =

(0, 1)× (0, 1). The solution u(x, y, t) in (1.1.3) to this test problem has several prop-

erties worth mentioning. The first is that we have

min
(x,y)∈Ω

u(x, y, t) = 0. (2.1.1)

The next is that

max
(x,y)∈Ω

u(x, y, t) = 1− e−t2/4. (2.1.2)

The solution tends to the steady-state quickly with

uSS(x, y) = sin2(πx) sin2(πy) as t→∞, (2.1.3)

since 1 − e−t2/4 → 1 rapidly as t → ∞. So the solution to our test problem is non-

negative at all times t for all points (x, y) ∈ Ω. The solution is 0 at points (x, y) ∈ Ω

at t = 0, and is 0 on ∂Ω for t > 0. For t > 0, the solution for all (x, y) ∈ Ω is positive.

The solution changes very rapidly in space for times 1 ≤ t ≤ 4, since 1 − e−t
2/4

changes rapidly, but does not change much for larger values of t. The solutions tends

to steady-state, (2.1.3), very quickly in time, with the solution barely changing for

values of t larger than 6. For fixed times t, the maximum (2.1.2) occurs at the center

of the spatial domain, (x, y) = (1/2, 1/2).

2.2 True Solution of the Model Problem

In this section we discuss the solution of the test problem, and examine plots of

the true solution at times t = 1, 2, . . . , 6. Figure 2.2.1 plots the true solution at times

t = 1, 2, . . . , 6. Examining the plots of the true solution, we notice that u converges

to this steady state quickly in time, as the solution for fixed (x, y) barely changes for

t ≥ 5. This confirms our observation in Section 2.1 that the solution of (1.1.1) tends

to steady-state quickly. If we were to plot the solution for times larger than 6, the

11

solution would appear nearly identical to the solution at t = 6. However, if we examine

the plots of the solution for 1 ≤ t ≤ 4, we see that the solution changes rapidly in

time. This confirms another observation we made in the previous section that the

solution changes very rapidly when 1 ≤ t ≤ 4. We can also see from Figure 2.2.1 that

the solution is positive for all (x, y) ∈ Ω, and the solution is 0 on ∂Ω, and that for

fixed t, the maximum of u occurs at the center of the domain, (x, y) = (1/2, 1/2).

Each of the properties of the true solution that we discussed make this an excellent

test problem for our numerical method. The true solution to this problem is known,

which allows us to verify the convergence of our numerical method. Further, as we

have discussed, the solution to this problem changes fairly rapidly with respect to

time when 1 ≤ t ≤ 4, but changes more and more slowly as t increases past this

point.

12

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6

Figure 2.2.1 Mesh plots of the true solution (1.1.3) at times t = 1, 2, . . . , 6 using

mesh resolution N = 32.

CHAPTER 3

NUMERICAL METHOD AND ITS IMPLEMENTATION

This chapter explains the numerical method used to obtain a solution to the heat

equation for our test problem. We first discuss a numerical method for obtaining a

solution to the Poisson equation in Section 3.1, because this method is closely related

to the numerical method we use to solve the heat equation. In Section 3.2, we build

upon the numerical method implemented in Section 3.1 by developing a numerical

solution for our test problem. In Section 3.3, we discuss convergence theory for

the numerical methods used to solve the Poisson equation in Section 3.1 and the

heat equation in Section 3.2, and we conduct convergence studies using Matlab. In

Section 3.4, we discuss how the numerical methods are implemented in C code, and

in Section 3.5 we report the results of a convergence study for our test problem for

the linear heat equation using the serial and parallel C code.

3.1 Finite Difference Discretization of the Poisson Equation

We first present a numerical solution of the Poisson equation with homogeneous

Dirichlet boundary conditions,

−∆u = f in Ω,

u = 0 on ∂Ω,

(3.1.1)

on the unit square domain Ω = (0, 1)× (0, 1) ⊂ R2. The Laplacian ∆u is defined as

∆u = ∂2u
∂x2 + ∂2u

∂y2 . Using the finite difference method to approximate ∆u produces a

system of linear equations that can be solved using the conjugate gradient method, an

iterative method for solving a system of linear equations. As we will see, our system

matrix is symmetric positive definite, and therefore the conjugate gradient method is

guaranteed to converge for this problem.

13

14

In order to utilize the finite difference method, we need to discretize the closure of

the domain Ω = [0, 1]× [0, 1]. This can be done by constructing a mesh using N + 2

uniformly spaced mesh points in each dimension, where N is our mesh resolution.

Then we have uniform mesh spacing h = 1/(N + 1), with each mesh point evenly

spaced over Ω. In order to solve the Poisson problem using finite differences, each of

the derivatives in the Laplacian operator ∆u is replaced by a numerical differentiation

approximation. This approximation is applied to all interior mesh points (xi, yj) on

Ω, with xi = hi, i = 0, 1, . . . , N,N + 1 and yj = hj, j = 0, 1, . . . , N,N + 1. We denote

this set of discrete mesh points by Ωh. Then denote the approximation to the solution

at each of the mesh points (xi, yj) ∈ Ωh by ui,j ≈ u(xi, yj). We can approximate the

Laplacian at each interior mesh point using a centered finite difference approximation,

∂2u(xi, yj)

∂x2
+
∂2u(xi, yj)

∂y2
≈ ui−1,j − 2ui,j + ui+1,j

h2
+
ui,j−1 − 2ui,j + ui,j+1

h2
. (3.1.2)

Using this approximation along with the boundary conditions in (3.1.1), we get a

system of N2 linear equations that give us a finite difference approximation for u at

each of the interior mesh points.

We can collect the unknown approximation (3.1.2) at each interior mesh point into

a vector u ∈ RN2
with components uk = uij with k = i+N(j− 1) for i, j = 1, . . . , N .

and state the problem as Ku = b, where K ∈ RN2×N2
is a system matrix and b ∈ RN2

is the vector of values of the right-hand side function f in (3.1.1) at the interior mesh

points in Ωh, giving us bk = f(xi, yj), with k = i + N(j − 1) for i, j = 1, . . . , N .

The system matrix K can be constructed using the coefficients in (3.1.2). Using this

15

approximation, we have

K =
1

h2



S T

T S T

.

T S T

T S


(3.1.3)

where S ∈ RN×N is a tri-diagonal matrix, S = tridiag(−1, 4,−1), and T = −I ∈

RN×N . As previously mentioned, K is known to be symmetric positive definite, and

therefore the conjugate gradient method is guaranteed to converge for this problem

[13]. For more discussion of this problem, including parallel performance studies,

see [10].

3.2 Full Discretization of the Heat Equation

In this section we present a numerical method for the classical parabolic test

problem of the linear heat equation with homogeneous Dirichlet boundary conditions

in two spatial dimensions, (1.1.1), over the unit square Ω = (0, 1)× (0, 1) ∈ R2, with

right-hand side function (1.1.2). Our numerical method for solving this problem is

closely related to the method discussed in Section 3.1. We use a full finite difference

discretization. With this method, both space and time are discretized simultaneously.

We discretize the closure of the domain Ω = [0, 1] × [0, 1] just as we did for the

Poisson problem, using uniform mesh spacing h = 1/(N+1) for (xi, yj), with xi = hi,

i = 0, 1, . . . , N,N + 1 and yj = hj, j = 0, 1, . . . , N,N + 1. We denote this set of

discrete mesh points by Ωh. We discretize the time domain using a fixed time step

∆t by defining tn = n ∆t for n = 0, 1, . . . , Nt, such that Nt ∆t = tfin, where tfin is the

final time we are solving the heat equation up to. We denote the approximation of

the solution at an interior mesh point (xi, yj) ∈ Ωh at time tn by unij ≈ u(xi, yj, tn).

16

We use backwards Euler to approximate the derivative with respect to time and a

centered finite difference approximation for the spatial derivatives. Entering these

approximations into the PDE in (1.1.1) at time tn+1 results in a finite difference

approximation for un+1
ij ,

un+1
ij − unij

∆t
+
−un+1

i,j−1 − un+1
i−1,j + 4un+1

ij − un+1
i+1,j − un+1

i,j+1

h2
= fn+1

ij , (3.2.1)

where we use short-hand notation fn+1
ij = f(xi, yj, tn+1). Multiplying both sides by

∆t and moving unij to the right-hand side, we get

un+1
ij + ∆t

−un+1
i,j−1 − un+1

i−1,j + 4un+1
ij − un+1

i+1,j − un+1
i,j+1

h2
= unij + ∆t fn+1

ij (3.2.2)

at all interior mesh points. We can collect the N2 unknown approximations un+1
ij

into a vector un+1 ∈ RN2
with components un+1

k = un+1
ij with k = i + N(j − 1) for

i, j = 1, . . . , N . We can add the components of the solution unij from the previous time

step tn to ∆t fn+1
ij and collect these values into a vector bn ∈ RN2

with components

bnk = unij + ∆t fn+1
ij with k = i + N(j − 1) for i, j = 1, . . . , N . Organizing these

equations into matrix-vector form, we obtain

un+1 + ∆tKun+1 = bn for n = 0, 1, . . . , Nt − 1, (3.2.3)

where K is identical to (3.1.3), the system matrix for the Poisson problem in Sec-

tion 3.1 Then at each time step we can arrange these terms into a system of linear

equations of the form Aun+1 = bn, where A = I+ ∆tK. We finally write the method

for un+1 at each time step by solving the system of linear equations,

Aun+1 = bn for n = 0, 1, . . . , Nt − 1. (3.2.4)

Along with K, also A = I + ∆tK is symmetric positive definite, and therefore the

conjugate gradient method is guaranteed to converge and is appropriate to solve

the linear system at each time step. Given that an implementation for the Poisson

17

problem in Section 3.1 is available, this approach is very simple to implement by

extending the available implementation to the heat equation. The convergence of the

iterative conjugate gradient method is also expected to be excellent, since the solution

un at the previous time step is available as excellent initial guess for the conjugate

gradient method to compute un+1.

3.3 Convergence Studies for the Numerical Method in Matlab

The finite difference method for the Poisson equation with Dirichlet boundary

conditions, (3.1.1), is second-order convergent [2, Chapter I], as summarized in the

following theorem.

Theorem 3.3.1 Consider the Poisson equation with Dirichlet boundary conditions

−∆u = f . For u ∈ C4(Ω), the finite difference approximation uh given by (3.1.2)

converges to the solution u of −∆u = f and satisfies

‖u(·, ·, t)− uh(·, ·, t)‖
L∞(Ω)

≤ C h2 as h→ 0,

where h denotes the grid size.

This convergence behavior can be seen in the convergence studies in [10].

For our test problem, since we use a centered finite difference approximation for

the spatial derivatives in the linear heat equation, we can expect the spatial errors to

be on the order of h2. Similar to Theorem 3.3.1, we have

‖u(·, ·, t)− uh(·, ·, t)‖
L∞(Ω)

≤ C h2 as h→ 0

for all times t. We use backwards Euler to approximate the derivative with respect to

time. The time discretization by implicit Euler has error on the order of ∆t [1,7]. In

order to obtain proper convergence for our test problem, we need balance the errors

from time and space. Combining the spatial and time discretization errors, we expect

the total error for our method to be on the order of ∆t+ h2.

18

The goal of this work is to conduct parallel performance studies in different pro-

gramming environments and hardwares. We wish to conduct these using a compu-

tationally challenging test problem, solved by a convergent numerical method. We

mean by this a test problem, whose numerical parameters are chosen such that the

problem is a significant challenge to solve in reasonable amount of time in serial and

whose numerical solution is confirmed to converge to the true solution in accordance

with the numerical theory. In order to obtain proper convergence for our test prob-

lem it is necessary to test several time step sizes ∆t. In order to determine a proper

time step, we first solve the system of linear equations (3.2.4) at each discrete time

step using Gaussian elimination. Once a sufficiently small time step is determined,

we can then test convergence using the conjugate gradient method to solve (3.2.4)

at each time step with several different tolerances. This will allow us to determine

a sufficiently tight tolerance for the conjugate gradient method to maintain proper

spatial convergence.

To obtain convergence for this method, a sufficiently small time step must be

selected so the error incurred using a discrete time step does not dominate the spa-

tial error. To test the convergence of the finite difference method and to determine

an appropriate time step for the method, we first implement this method in Mat-

lab, using Gaussian elimination to solve Aun+1 = bn at each discrete time step.

We were able to test this method using Gaussian elimination for mesh resolutions

N = 7, 15, 31, . . . , 255, with discrete time steps ∆t = 10−2, 10−3, 10−4. Finer mesh

resolutions and smaller time steps are not able to be solved by Matlab, as it takes

too long to compute Gaussian elimination at each time step. We use this choice of

mesh resolutions because h = 1/(N + 1). So with these choices of N , each time we

increase N , h is halved. Since we used a centered finite difference approximation for

the spatial derivatives, we expect our method to be second-order convergent in space.

19

Table 3.3.1 Convergence study in Matlab for the test problem using Gaussian elim-

ination with ∆t = 10−2, 10−3, and 10−4.

(a) Time step ∆t = 10−2

N t = 1 (Ratio) t = 2 (Ratio) t = 3 (Ratio) t = 4 (Ratio) t = 5 (Ratio) t = 6 (Ratio)

7 1.097e-02 3.268e-02 4.704e-02 5.196e-02 5.291e-02 5.302e-02

15 2.714e-03 (4.04) 7.959e-03 (4.11) 1.146e-02 (4.10) 1.268e-02 (4.10) 1.292e-02 (4.10) 1.295e-02 (4.10)

31 7.073e-04 (3.84) 1.952e-03 (4.08) 2.821e-03 (4.06) 3.141e-03 (4.03) 3.210e-03 (4.03) 3.218e-03 (4.02)

63 2.090e-04 (3.38) 4.619e-04 (4.23) 6.761e-04 (4.17) 7.740e-04 (4.06) 7.994e-04 (4.02) 8.032e-04 (4.01)

127 8.465e-05 (2.47) 8.980e-05 (5.14) 1.408e-04 (4.80) 1.832e-04 (4.22) 1.980e-04 (4.04) 2.006e-04 (4.02)

255 5.356e-05 (1.58) 7.343e-06 (12.23) 7.091e-06 (19.86) 3.560e-05 (5.15) 4.765e-05 (4.15) 4.996e-05 (4.07)

(b) Time step ∆t = 10−3

N t = 1 (Ratio) t = 2 (Ratio) t = 3 (Ratio) t = 4 (Ratio) t = 5 (Ratio) t = 6 (Ratio)

7 1.092e-02 3.271e-02 4.707e-02 5.197e-02 5.291e-02 5.302e-02

15 2.674e-03 (4.08) 7.990e-03 (4.09) 1.149e-02 (4.10) 1.269e-02 (4.09) 1.292e-02 (4.09) 1.294e-02 (4.09)

31 6.682e-04 (4.00) 1.983e-03 (4.03) 2.854e-03 (4.03) 3.153e-03 (4.02) 3.211e-03 (4.02) 3.218e-03 (4.02)

63 1.700e-04 (3.93) 4.926e-04 (4.03) 7.098e-04 (4.02) 7.862e-04 (4.01) 8.016e-04 (4.01) 8.034e-04 (4.01)

127 4.571e-05 (3.72) 1.205e-04 (4.09) 1.745e-04 (4.07) 1.954e-04 (4.02) 2.001e-04 (4.01) 2.007e-04 (4.00)

255 1.464e-05 (3.12) 2.755e-05 (4.37) 4.083e-05 (4.28) 4.784e-05 (4.09) 4.985e-05 (4.02) 5.017e-05 (4.00)

(c) Time step ∆t = 10−4

N t = 1 (Ratio) t = 2 (Ratio) t = 3 (Ratio) t = 4 (Ratio) t = 5 (Ratio) t = 6 (Ratio)

7 1.092e-02 3.271e-02 4.708e-02 5.197e-02 5.292e-02 5.302e-02

15 2.670e-03 (4.09) 7.993e-03 (4.09) 1.150e-02 (4.09) 1.269e-02 (4.09) 1.292e-02 (4.09) 1.295e-02 (4.09)

31 6.643e-04 (4.02) 1.987e-03 (4.02) 2.858e-03 (4.02) 3.155e-03 (4.02) 3.212e-03 (4.02) 3.219e-03 (4.02)

63 1.661e-04 (4.00) 4.957e-04 (4.01) 7.132e-04 (4.01) 7.875e-04 (4.01) 8.018e-04 (4.01) 8.035e-04 (4.01)

127 4.185e-05 (3.97) 1.236e-04 (4.01) 1.779e-04 (4.01) 1.965e-04 (4.00) 2.004e-04 (4.00) 2.008e-04 (4.00)

255 1.078e-05 (3.88) 3.065e-05 (4.03) 4.420e-05 (4.03) 4.907e-05 (4.01) 5.007e-05 (4.00) 5.019e-05 (4.00)

Thus, each time we halve h we expect to see the errors decrease by a factor of about 4,

if we choose sufficiently small ∆t. We present the findings in Table 3.3.1. In each

of the subtables, the first column lists the mesh resolutions N and each of the other

columns lists the L∞-norm of the error between the true solution u and the numerical

solution uh, ‖u(·, ·, t)− uh(·, ·, t)‖
L∞(Ω)

at the corresponding mesh resolution N . At

time t, the ratio of consecutive errors with respect to N is listed in parentheses next

to each of these errors.

As mentioned earlier in this section, we expect the total error for this method to

be on the order of ∆t + h2. We can observe from Table 3.3.1 that this is indeed the

case. For the mesh resolutions N = 63, 127 and 255, h2 ≈ 2.520× 10−4, 6.20× 10−5,

and 1.538×10−5, respectively. Observing the errors for ∆t = 10−2, 10−3, and 10−4 we

see that the errors at every time in Table 3.3.1 compares well to order of magnitude

of the theoretically predicted error.

20

As we can see from these Table 3.3.1, ∆t = 10−4 is a sufficiently small time step to

obtain the theoretically predicted convergence rate of the finite difference method. As

we can see from Table 3.3.1 (c), the norms of the finite difference errors decrease by a

factor of about 4 each time h is refined by a factor of 2. This confirms that the finite

difference method is second-order convergent, as predicted by the numerical theory,

and that ∆t = 10−4 is a sufficiently small time step to obtain spatial convergence for

our choice of mesh resolutions in Table 3.3.1.

Next, we implement this method in Matlab using the conjugate gradient method

to solve Aun+1 = bn at each time step. This method is implemented using the conju-

gate gradient method as the linear solver with several different choices of tolerances

to ensure that the tolerance is tight enough to maintain second-order convergence

of our method. The system matrix A is symmetric positive definite, so the con-

jugate gradient method is guaranteed to converge for this method if we choose an

appropriate time step ∆t and a sufficiently tight tolerance. This implementation

uses Matlab’s pcg.m function to implement the conjugate gradient method with tol-

erances 10−4, 10−5, . . . , 10−10. For each tolerance choice, we use mesh resolutions

N = 7, 15, 31, . . . , 255 and ∆t = 10−4, as we confirmed that this is an appropriately

small time step using Gaussian elimination. The results for tolerances 10−6, 10−8,

and 10−10 are in Table 3.3.2. In each of the subtables of Table 3.3.2, the first column

lists the mesh resolutions N , and each of the other columns lists the L∞-norm of the

error between the true solution u and the numerical solution uh, ‖u− uh‖L∞(Ω)
at the

corresponding mesh resolution N . The ratio of consecutive errors with respect to N is

listed in parentheses next to each of these errors. As we can see from the results, the

tolerance must be tightened to 10−8 in order to obtain the same quality of convergence

that we saw for Gaussian elimination in Table 3.3.1 (c). While further decreasing the

tolerance to 10−10 does not improve our results for these mesh resolutions and results

21

Table 3.3.2 Convergence study in Matlab for the test problem using the conjugate

gradient method with ∆t = 10−4 and τ
(lin)
relres = 10−6, 10−8, and 10−10.

(a) L∞-norm of the Errors, ‖u− uh‖L∞(Ω)
for tolerance τ

(lin)
relres

= 10−6

N t = 1 (Ratio) t = 2 (Ratio) t = 3 (Ratio) t = 4 (Ratio) t = 5 (Ratio) t = 6 (Ratio)

7 1.093e-02 3.272e-02 4.708e-02 5.197e-02 5.292e-02 5.300e-02

15 2.674e-03 (4.09) 7.992e-03 (4.09) 1.150e-02 (4.10) 1.269e-02 (4.10) 1.292e-02 (4.10) 1.290e-02 (4.11)

31 6.653e-04 (4.02) 1.986e-03 (4.02) 2.855e-03 (4.03) 3.153e-03 (4.03) 3.199e-03 (4.04) 3.113e-03 (4.14)

63 1.662e-04 (4.00) 4.933e-04 (4.03) 7.115e-04 (4.01) 7.850e-04 (4.02) 7.424e-04 (4.31) 5.670e-04 (5.49)

127 4.088e-05 (4.07) 1.222e-04 (4.04) 1.755e-04 (4.05) 1.857e-04 (4.23) 4.361e-05 (17.03) 1.938e-04 (2.93)

255 9.941e-06 (4.11) 2.883e-05 (4.24) 3.709e-05 (4.73) 7.921e-06 (23.44) 7.104e-04 (0.06) 8.692e-04 (0.22)

(b) L∞-norm of the Errors, ‖u− uh‖L∞(Ω)
for tolerance τ

(lin)
relres

= 10−8

N t = 1 (Ratio) t = 2 (Ratio) t = 3 (Ratio) t = 4 (Ratio) t = 5 (Ratio) t = 6 (Ratio)

7 1.092e-02 3.272e-02 4.708e-02 5.197e-02 5.292e-02 5.302e-02

15 2.671e-03 (4.09) 7.993e-03 (4.09) 1.150e-02 (4.09) 1.269e-02 (4.10) 1.292e-02 (4.10) 1.295e-02 (4.10)

31 6.643e-04 (4.02) 1.987e-03 (4.02) 2.858e-03 (4.02) 3.155e-03 (4.02) 3.212e-03 (4.02) 3.219e-03 (4.02)

63 1.662e-04 (4.00) 4.957e-04 (4.01) 7.132e-04 (4.01) 7.874e-04 (4.01) 8.018e-04 (4.01) 8.034e-04 (4.01)

127 4.185e-05 (3.97) 1.236e-04 (4.01) 1.780e-04 (4.01) 1.967e-04 (4.00) 2.003e-04 (4.00) 2.008e-04 (4.00)

255 1.079e-05 (3.88) 3.065e-05 (4.03) 4.420e-05 (4.03) 4.905e-05 (4.01) 5.004e-05 (4.00) 5.014e-05 (4.00)

(c) L∞-norm of the Errors, ‖u− uh‖L∞(Ω)
for tolerance τ

(lin)
relres

= 10−10

N t = 1 (Ratio) t = 2 (Ratio) t = 3 (Ratio) t = 4 (Ratio) t = 5 (Ratio) t = 6 (Ratio)

7 1.092e-02 3.272e-02 4.708e-02 5.197e-02 5.292e-02 5.302e-02

15 2.671e-03 (4.09) 7.993e-03 (4.09) 1.150e-02 (4.09) 1.269e-02 (4.10) 1.292e-02 (4.10) 1.295e-02 (4.10)

31 6.643e-04 (4.02) 1.987e-03 (4.02) 2.858e-03 (4.02) 3.155e-03 (4.02) 3.212e-03 (4.02) 3.219e-03 (4.02)

63 1.662e-04 (4.00) 4.957e-04 (4.01) 7.132e-04 (4.01) 7.875e-04 (4.01) 8.018e-04 (4.01) 8.035e-04 (4.01)

127 4.185e-05 (3.97) 1.236e-04 (4.01) 1.780e-04 (4.01) 1.967e-04 (4.00) 2.004e-04 (4.00) 2.008e-04 (4.00)

255 1.078e-05 (3.88) 3.065e-05 (4.03) 4.421e-05 (4.03) 4.907e-05 (4.01) 5.007e-05 (4.00) 5.019e-05 (4.00)

(d) Iteration Counts for tolerance τ
(lin)
relres

= 10−6

N t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

7 3 2 2 2 1 0
15 3 2 2 1 1 1
31 3 2 1 2 1 0
63 3 2 2 1 2 0
127 2 2 3 2 2 0
255 4 3 3 3 2 0

(e) Iteration Counts for tolerance τ
(lin)
relres

= 10−8

N t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

7 2 2 2 1 1 1
15 2 2 2 1 1 1
31 3 2 2 1 1 1
63 4 4 3 2 1 1
127 9 7 6 4 3 2
255 19 15 12 10 4 5

(f) Iteration Counts for tolerance τ
(lin)
relres

= 10−10

N t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

7 3 3 3 2 2 1
15 4 3 3 3 2 1
31 5 4 4 3 2 1
63 8 7 6 4 4 2
127 16 14 12 10 7 4
255 34 30 26 21 14 9

22

in a larger iteration count for each mesh resolution, it is necessary to decrease the

tolerance to 10−10 in order to obtain the proper quality of convergence for finer mesh

resolutions when we implement this method in C.

We can observe the effectiveness of this method by plotting the numerical solution

in Figure 3.3.1 and the error ‖u− uh‖L∞(Ω)
in Figure 3.3.2 for mesh resolution N = 32,

time step ∆t = 10−4, and tolerance τ
(lin)
relres = 10−8 at times t = 1, . . . , 6. As we can

see from Figure 3.3.1, the shape of the numerical solution is very close to that of the

true solution in Figure 2.2.1. Figure 3.3.2 confirms this and shows that the error is

greatest at the center of the domain where u reaches its maximum. As we can see

from Table 3.3.2 (b), the maximum error increases slightly as time increases. We also

see that the error compares well to the order of magnitude ∆t+ h2 ≈ 1.08× 10−3 of

the theoretically predicted error.

3.4 Implementation of the Numerical Method Using C

We have an implementation of the CG method from Section 3.1. Matlab stores the

system matrix in sparse form. For our implementation in C, we take advantage of the

fact that the CG method only requires the matrix-vector product of the system matrix

with a vector. Thus, similar to the Khuvis’ implementation [10], we can compute

Au without ever assembling A. We can achieve this by providing a function that

computes v = Au without ever assembling A. This function computes v component-

wise directly from the component vector u using the values of the non-zero components

of A. Thus, we can implement the conjugate gradient method without storing the

matrix A.

In the parallel implementation of this method, we parallelize the function Au

that computes v = Au. In the parallel implementation of this function, each vector

is split into as many blocks as there are parallel processes available, and one block

23

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6

Figure 3.3.1 Mesh plots of the numerical solution for the test problem using the

conjugate gradient method at times t = 1, 2, . . . , 6 for mesh resolution N = 32 and

∆t = 10−4.

24

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6

Figure 3.3.2 Mesh plots of the numerical error for the test problem using the con-

jugate gradient method at times t = 1, 2, . . . , 6 for mesh resolution N = 32 and

∆t = 10−4. Notice the scales on the vertical axes.

25

Table 3.5.1 Convergence study in serial C code for the test problem using the con-

jugate gradient method with ∆t = 10−4 and τ
(lin)
relres = 10−10.

(a) L∞-norm of the Errors, ‖u− uh‖L∞(Ω)

N t = 1 (Ratio) t = 2 (Ratio) t = 3 (Ratio) t = 4 (Ratio) t = 5 (Ratio) t = 6 (Ratio)

7 1.092e-02 3.272e-02 4.708e-02 5.197e-02 5.292e-02 5.302e-02

15 2.671e-03 (4.09) 7.993e-03 (4.09) 1.150e-02 (4.09) 1.269e-02 (4.10) 1.292e-02 (4.10) 1.295e-02 (4.10)

31 6.643e-04 (4.02) 1.987e-03 (4.02) 2.858e-03 (4.02) 3.155e-03 (4.02) 3.212e-03 (4.02) 3.219e-03 (4.02)

63 1.662e-04 (4.00) 4.957e-04 (4.01) 7.132e-04 (4.01) 7.874e-04 (4.01) 8.018e-04 (4.01) 8.034e-04 (4.01)

127 4.185e-05 (3.97) 1.236e-04 (4.01) 1.780e-04 (4.01) 1.967e-04 (4.00) 2.003e-04 (4.00) 2.008e-04 (4.00)

255 1.079e-05 (3.88) 3.065e-05 (4.03) 4.420e-05 (4.03) 4.905e-05 (4.01) 5.004e-05 (4.00) 5.014e-05 (4.00)

(b) Iteration Counts

N t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

7 3 3 3 2 2 1
15 4 3 3 3 2 1
31 5 4 4 3 2 1
63 8 7 6 5 4 2
127 16 14 12 10 7 4
255 34 30 26 21 14 9

of each vector is given to each process. With this implementation, the vectors u

and v never need to be fully assembled on any one process. Instead the blocks are

assembled and stored on the process using them. Using this implementation, the

local portions of v can be computed simultaneously on all processes. Since the matrix

A contains non-zero off-diagonal elements, each process will require elements of u

contained on neighboring blocks to compute v. Thus, there is a need for point-to-

point communications between neighboring processes. Most of the components of v

are not computed using data contained on neighboring processes. Thus, it is most

efficient for each process to compute the components of the v that only require data

local to the process while communicating with neighboring blocks to obtain the data

necessary to compute the remaining components of v. This can be implemented using

non-blocking MPI communication commands MPI_Isend and MPI_Irecv [11].

3.5 Convergence Study for the Test Problem using C

To test the implementation of the numerical method in C, we run convergence

studies for our test problem. First in Tables 3.5.1 (a) and (b), we present the results

for mesh resolutions N = 7, 15, . . . , 255 with time step ∆t = 10−4 and τ
(lin)
relres = 10−10 in

26

Table 3.5.2 Convergence study in parallel C code for the test problem using the

conjugate gradient method with ∆t = 10−4 and τ
(lin)
relres = 10−10.

(a) L∞-norm of the Errors, ‖u− uh‖L∞(Ω)

N t = 1 (Ratio) t = 2 (Ratio) t = 3 (Ratio) t = 4 (Ratio) t = 5 (Ratio) t = 6 (Ratio)

32 6.217e-04 1.859e-03 2.675e-03 2.953e-03 3.006e-03 3.012e-03

64 1.609e-04 (3.86) 4.800e-04 (3.87) 6.906e-04 (3.87) 7.625e-04 (3.87) 7.764e-04 (3.87) 7.780e-04 (3.87)

128 4.120e-05 (3.91) 1.217e-04 (3.94) 1.752e-04 (3.94) 1.936e-04 (3.94) 1.972e-04 (3.94) 1.976e-04 (3.94)

256 1.070e-05 (3.85) 3.040e-05 (4.00) 4.386e-05 (3.99) 4.868e-05 (3.98) 4.968e-05 (3.97) 4.980e-05 (3.97)

512 3.008e-06 (3.55) 7.374e-06 (4.12) 1.073e-05 (4.09) 1.212e-05 (4.01) 1.245e-05 (3.99) 1.250e-05 (3.98)

1024 1.075e-06 (2.80) 1.590e-06 (4.64) 2.407e-06 (4.46) 2.934e-06 (4.13) 3.100e-06 (4.02) 3.129e-06 (3.99)

2048 5.907e-07 (1.82) 1.406e-07 (11.31) 3.217e-07 (7.48) 6.327e-07 (4.64) 7.577e-07 (4.09) 7.811e-07 (4.01)

(b) Iteration Counts

N t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

32 5 4 4 3 2 1
64 8 7 6 5 4 2
128 16 15 12 10 7 4
256 34 30 26 21 15 9
512 72 64 56 45 31 20
1024 149 134 117 95 65 42
2048 309 278 244 199 137 82

order to compare the results with those we obtained using Matlab in Tables 3.3.2 (c)

and (f), respectively. For each of these results, the code was run in serial using 1

node and 1 process per node. We observe that the the errors, ‖u− uh‖L∞(Ω)
, in this

table are identical for at least the first several decimal places to those obtained in

Table 3.5.1. We observe that for each mesh resolution N , the iterations taken for the

conjugate gradient method to converge at each time are the same as those taken in

Table 3.3.2, except for N = 63 at time t = 4, where the iteration count is 5 for our

method in C and 4 for our method in Matlab. The round-off errors in Matlab and

C result in a slightly different iterate count due to the small differences they cause

in each iteration of the conjugate gradient method. In some very rare cases, these

differences can lead to some difference in the quantity in the stopping test that can

cause exactly one more or fewer iteration to be needed for the conjugate gradient

method to converge at a fixed time step. Thus, we can conclude that the code for our

test problem in Matlab and C give identical results up to round-off.

Next we present convergence studies for the mesh resolutions used in the parallel

performance studies in Chapter 4. We first present a convergence study using ∆t =

27

10−4 and τ
(lin)
relres = 10−10 at mesh resolutions N = 32, 64, . . . , 2048 in Table 3.5.2. This

is the same tolerance and time step used in Table 3.5.1. We change our choice of mesh

resolutions at this point because our parallel C code only accepts mesh resolutions that

are divisible by the total number of parallel processes used. The parallel performance

studies run in Chapter 4 are run using parallel processes that are increasing powers

of 2, so our choice of mesh resolutions must be divisible by powers of 2 as well. This

choice of N still results in h decreasing by close to a factor of 2 each time we increase

our mesh resolution, so we would still expect the ratio of consecutive errors to be

close to 4.

As we can see in Table 3.5.2, the time step ∆t = 10−4 is not small enough to obtain

the proper rate of spatial convergence for the finest mesh resolutions. We observe that

at mesh resolutions N = 1024 and N = 2048, the norms of the finite difference errors

decrease at an erratic rate at times t = 1, 2, 3, 4. They should decrease by a factor

of about 4 each time the mesh resolution is refined by a factor of 2. However, at

t = 1 the norms decrease at a much slower rate, and at times t = 2, 3, 4, the norms

decrease at a faster rate, which indicates that it may be necessary to refine ∆t further

so that the error with respect to time does not dominate the spatial error. In order

to obtain the theoretically predicted rate of convergence, we decrease the time step

to 10−5. The results for this choice of ∆t are presented in Table 3.5.3. We can see

from the results in Table 3.5.3 (a) that this is a sufficiently small time step to obtain

the theoretically predicted convergence results. We can also observe from comparing

Table 3.5.2 (b) and Table 3.5.3 (b) that with a much smaller time step, the number of

iterations it takes for the conjugate gradient method to converge at each time step is

much smaller. The conjugate gradient method converges much more quickly at each

time step because the initial guess for the conjugate gradient method is much better.

28

Table 3.5.3 Convergence study in parallel C code for the test problem using the

conjugate gradient method with ∆t = 10−5 and τ
(lin)
relres = 10−10.

(a) L∞ Norm of the Errors

N t = 1 (Ratio) t = 2 (Ratio) t = 3 (Ratio) t = 4 (Ratio) t = 5 (Ratio) t = 6 (Ratio)

32 6.213e-04 1.860e-03 2.675e-03 2.953e-03 3.006e-03 3.012e-03

64 1.609e-04 (3.86) 4.803e-04 (3.87) 6.910e-04 (3.87) 7.627e-04 (3.87) 7.765e-04 (3.87) 7.780e-04 (3.87)

128 4.081e-05 (3.94) 1.220e-04 (3.94) 1.755e-04 (3.94) 1.937e-04 (3.93) 1.972e-04 (3.94) 1.976e-04 (3.94)

256 1.032e-05 (3.95) 3.071e-05 (3.97) 4.419e-05 (3.97) 4.880e-05 (3.97) 4.970e-05 (3.97) 4.980e-05 (3.97)

512 2.621e-06 (3.94) 7.682e-06 (4.00) 1.106e-05 (3.99) 1.224e-05 (3.99) 1.247e-05 (3.99) 1.250e-05 (3.98)

1024 6.887e-07 (3.81) 1.898e-06 (4.05) 2.743e-06 (4.03) 3.054e-06 (4.01) 3.120e-06 (4.00) 3.130e-06 (3.99)

2048 2.045e-07 (3.37) 4.492e-07 (4.23) 6.579e-07 (4.12) 7.537e-07 (4.05) 7.768e-07 (4.02) 7.827e-07 (4.00)

(b) Iteration Counts

N t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

32 2 2 2 1 1 1
64 2 2 2 1 1 1
128 3 2 2 2 1 1
256 5 4 3 2 2 1
512 10 8 7 5 3 3
1024 22 17 15 11 4 7
2048 47 36 31 26 10 9

CHAPTER 4

PARALLEL PERFORMANCE STUDIES

In this chapter we present the results of our parallel performance studies for the

solution of the parabolic test problem on the 2013 portion of the maya cluster and on

the Stampede cluster. Section 4.1 contains parallel performance studies for the test

problem on CPUs using MPI only code. Section 4.2 contains parallel performance

studies on CPUs using hybrid MPI+OpenMP code. Section 4.3 contains parallel

performance studies on 1 hybrid CPU/Phi node in native mode using MPI only code.

Section 4.4 contains parallel performance studies on 1 hybrid CPU/Phi node in native

mode using hybrid MPI+OpenMP code. Section 4.5 contains parallel performance

studies on 1 hybrid CPU/Phi in symmetric mode. Section 4.6 provides a summary of

all relevant results for the clusters maya and Stampede.

We omit parallel performance studies for the performance of the test problem

on a CPU and Intel Phi in offload mode because this mode was shown have poor

performance by Khuvis for the 2D elliptic test problem, (3.1.1) [8]. The poor per-

formance in this mode was due to the cost of communication required inside of the

conjugate gradient method. All versions of the code in offload mode performed worse

than the CPU only code run on 16 cores. Since the 2D parabolic test problem (1.1.1)

requires the same amount of communication inside of the conjugate gradient method,

we expect similarly poor performance for our test problem.

Each section except for Section 4.5 contains performance studies on both the

maya and Stampede clusters. We omit studies on CPUs and Intel Phis in symmetric

mode on the maya cluster because symmetric mode is currently not working on maya.

For each of the other modes studied we present extensive studies done on the maya

cluster and reach a conclusion about each of the different modes tested. We then

29

30

use the Stampede cluster to confirm the conclusions reached using the maya cluster

and extend our results to CPUs and Intel Phis in symmetric mode. Each of the

studies presented for the Stampede cluster are shown with the goal of comparing the

effectiveness of each of the different modes for the test problem on a hybrid node that

contains 2 CPUs and 2 Intel Phis.

The 2013 portion of the maya cluster has computes nodes that are made up of two

eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and have 64 GB memory. The

two CPUs in each node are connected by two QPI (quick path interconnect) links.

The nodes in this portion of the cluster are connected by a quad-data rate InfiniBand

interconnect. The majority of the compute nodes on Stampede have two eight-core

2.6 GHz Intel E5-2680 Sandy Bridge CPUs with 32 GB memory. Nodes on Stampede

are connected by a fourteen-data rate (FDR) InfiniBand network from Mellanox in a

2-level fat-tree topology.

Each of the hybrid nodes used for runs with the Phi on maya have 2 CPUs each

connected to an an Intel Phi 5110P. On Stampede some hybrid nodes contain 2 CPUs

and only 1 Intel SE10P. These nodes were used to conduct runs on Stampede using

only 1 Intel Phi. Other nodes on Stampede contain 2 CPUs each connected to an

Intel SE10P. These nodes were used to conduct runs on Stampede using 2 Intel Phis.

Each Intel Phi has 8 GB of onboard memory. The Intel Phi on maya is capable of 4

threads on each of the 60 cores on the 5110P for a total of 240 threads. The Intel Phi

on Stampede is capable of 4 threads on each of the 61 cores on the SE10P for a total

of 244 threads.

Numerical experiments for the test problem (1.1.1) were conducted using progres-

sively finer spatial meshes, N = 128, 256, 512, 1024, 2048. For each of these resolu-

tions, the time step ∆t is 10−5 and the tolerance of the conjugate gradient method is

10−10. For all runs, the test problem was solved up to time t = 10.

31

The memory usage of this code is estimated by observing that our code requires

5 double precision vectors of length N2 (and several vectors of much smaller size) to

run. Since each double-precision number requires 8 bytes of storage, we can estimate

the amount of memory needed in gigabytes by taking 8 ·5N2/10243. The largest mesh

resolution used in this study is N = 2048, so we do not expect the total memory used

to be much more than 156 megabytes for small numbers of parallel processes. The

memory usage is slightly higher than the predicted usage because of the presence

of several other smaller double precision vectors, However the total memory usage

is well under 1 GB for all runs, regardless of the number of parallel processes used.

Therefore, memory is not a limiting factor for any of our performance studies.

4.1 Parallel Performance Studies on CPUs Using MPI Only Code

In this section we will describe the results of performance studies using on the

2013 portion of the maya cluster and on the Stampede cluster using CPUs and MPI

only code. All of the results were obtained using the default Intel compiler and Intel

MPI. Each run was submitted using a SLURM submission script that uses the srun

command to initiate a job on maya and ibrun on Stampede. The SLURM submission

script specifies the number of nodes and the number of processes per node for the

job using the nodes and ntasks-per-node options respectively. For all results in the

performance studies, the entire node is dedicated to the job, with the remaining cores

idling while the job runs. This is achieved using the exclusive flag in the SLURM

submission script.

Numerical experiments were conducted on the 2013 portion of maya using all

possible combinations of nodes from 1 to 32 by powers of two and processes per node

from 1 to 16 by powers of two, except for cases where the total number of processes

equals or exceeds the mesh resolution, and the serial case for N = 2048 which has

32

an excessive runtime. Numerical experiments were conducted on Stampede for mesh

resolutions N = 128, 256 and 512 using 1 node with 1, 2, 4, 8, and 16 processes per

node, and for mesh resolutions N = 1024 and 2048 using 1 node and 16 processes

per node. We conduct these experiments in order to compare the results to those

obtained for different modes on 1 hybrid node with 2 CPUs and 2 Intel Phis on the

Stampede cluster.

In Subsection 4.1.1 we will present a summary of the results on maya using CPUs

only on multiple nodes up to 32 nodes. In Subsection 4.1.2 we will present a summary

of our results on maya and Stampede using 1 hybrid node.

4.1.1 Summary of Performance on CPUs Only Using Multiple Nodes on

maya

We will first discuss the performance studies for the 2013 portion of maya. Sev-

eral different performance studies were conducted for I_MPI_FABRICS with 3 different

settings, which is an environment variable from the Intel MPI Library that controls

the particular network fabric to be used for communication [5]. The default setting

on the maya 2013 cluster is I_MPI_FABRICS=shm:ofa. The shm option is set to use

shared memory for intra-node communication. The option ofa is used to set the fab-

ric for inter-node communication. This is the network fabric provided by the Open

Fabrics Alliance (OFA). Another setting that was tested in performance studies is

I_MPI_FABRICS=shm:tmi, where tmi sets network fabrics with tag matching capa-

bilities through the Tag Matching Interface (TMI) for inter-node communication [6].

Each of these options can be set by executing the command export I_MPI_FABRICS=

shm:ofa or export I_MPI_FABRICS=shm:tmi from the command line session on the

head node before submitting a run. The last option that was tested was to unset

I_MPI_FABRICS using the command unset I_MPI_FABRICS in the SLURM submis-

33

sion file.

We found that setting I_MPI_FABRICS=shm:ofa results in the same parallel per-

formance as unsetting I_MPI_FABRICS. While there was no difference in runtimes

between the two settings, we found that unsetting I_MPI_FABRICS will occasionally

result in nodes on the maya cluster that have Intel Phi coprocessors becoming stuck

in the completing stage. Therefore, when choosing between these two settings for

CPU only runs, it is best to avoid unsetting I_MPI_FABRICS if nodes on the maya

cluster with Intel Phi coprocessors may be used.

We found that setting I_MPI_FABRICS=shm:tmi produces the best results for CPU

only runs. Using this fabric improves the runtimes for all mesh resolutions and com-

binations of nodes and processes per node on the maya cluster. The improvements

become more pronounced as the number of nodes and processes per node increases.

This option can only be used for runs on maya using nodes that do not have Intel Phi

coprocessors. For all of the performance studies on the maya cluster in this section,

the --exclude=nodes flag was added to our SLURM submission script, where nodes

is the list of nodes on the maya 2013 cluster that have Intel Phis.

Table 4.1.1 contains the observed wall clock times for mesh resolutions N =128,

256, 512, 1024 and 2048 for CPU only runs using MPI only code on the 2013 portion

of maya. It is arranged into 5 different subtables corresponding to each of the mesh

resolutions the test problem was run for. In each subtable, the rows are arranged by

processes per node, and the columns are arranged by amount of nodes used. Each

entry in the subtable lists the wall clock time (total time to execute the code) in

HH:MM:SS (hours:minutes:seconds) format. There are dashes (--) in the Table in

cases where the number of parallel processes is smaller than slices in y-direction. In

these cases, the code would not have any points in y-direction on an MPI process.

We will discuss the mesh resolution N = 512 in detail as an example. The first

34

row of this subtable presents the timing results for N = 512 using 1 process per node

up to 32 nodes. The first column of this row contains the runtime for the serial case,

as it uses only 1 process per node and 1 node. For this case, the serial runtime took 3

hours, 31 minutes, and 5 seconds. Moving over one column from 1 to 2 nodes we can

see that the runtime is nearly halved. Similarly, moving down 1 row from 1 process

per node to 2 processes per nodes, we can see that the runtime is nearly halved in

this case as well. Moving down the first column, we can see that the runtime is nearly

halved as we double the amount of processes on each node up to 16 processes per

node. The runtime is nearly halved again as we go from 1 node with 16 processes

per node to 2 nodes with 16 processes per node. We observe that the runtime is not

halved as we increase the number of parallel processes further, but there is still a

significant improvement in runtime as the the number of processes increases.

Tables 4.1.1 (a) through (d) exhibit largely analogous behavior. In each of these

subtables, the runtime is approximately halved as the number of parallel processes

doubles for up to a certain number of parallel processes. There is still a significant

improvement in runtime in most cases as we further increase the number of parallel

processes, but not the optimal halving of runtimes that occurred for smaller numbers

of parallel processes. We also note that in these cases it is slightly more efficient to

use as few nodes as possible. For example, we can see that in each of these cases the

runtime using 1 node and 16 processes per node is slightly faster than cases using the

equivalent number of parallel processes spread across more nodes. This is because for

simulations with small memory usage like our test problem intra-node communication

is slightly faster than communication between nodes.

The results in Table 4.1.1 (e) for N = 2048 exhibit different behavior than the

results for other mesh resolutions. We observe that while the runtimes improve in

this case as we move from 4 to 8 processes per node and from 8 to 16 processes

35

Table 4.1.1 Wall clock time in HH:MM:SS on the 2013 portion of the maya cluster

using CPUs only with MPI only code for the parabolic test problem arranged by

nodes and processes per node.

(a) Mesh resolution N = 128

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:09:29 00:05:09 00:02:55 00:01:54 00:01:31 00:01:27

2 processes per node 00:05:05 00:02:52 00:01:52 00:01:25 00:01:21 00:01:30

4 processes per node 00:02:41 00:01:42 00:01:14 00:01:09 00:01:16 —

8 processes per node 00:01:34 00:01:10 00:01:00 00:01:06 — —

16 processes per node 00:01:01 00:00:55 00:00:58 — — —

(b) Mesh resolution N = 256

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:42:49 00:22:27 00:11:49 00:07:30 00:04:11 00:03:09

2 processes per node 00:22:05 00:11:40 00:08:11 00:04:16 00:02:56 00:02:44

4 processes per node 00:11:34 00:06:28 00:03:49 00:02:37 00:02:18 00:02:26

8 processes per node 00:06:18 00:03:44 00:02:32 00:02:02 00:02:04 —

16 processes per node 00:03:32 00:02:22 00:01:53 00:01:51 — —

(c) Mesh resolution N = 512

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 03:31:05 01:48:01 00:55:49 00:29:59 00:17:31 00:11:12

2 processes per node 01:47:36 00:56:01 00:29:48 00:16:39 00:11:43 00:08:08

4 processes per node 00:56:24 00:29:58 00:17:06 00:10:32 00:06:48 00:05:42

8 processes per node 00:30:21 00:16:31 00:13:40 00:06:24 00:05:09 00:04:52

16 processes per node 00:16:25 00:09:43 00:08:11 00:04:46 00:04:30 —

(d) Mesh resolution N = 1024

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 24:59:09 10:47:08 05:09:06 02:42:32 01:30:14 00:51:21

2 processes per node 10:07:35 05:15:24 02:43:23 01:28:51 00:50:37 00:31:44

4 processes per node 05:16:24 02:48:41 01:28:01 00:49:04 00:29:59 00:22:05

8 processes per node 02:55:43 01:33:20 00:49:14 00:28:50 00:20:12 00:16:07

16 processes per node 01:32:36 00:49:47 00:29:05 00:25:56 00:17:03 00:14:16

(e) Mesh resolution N = 2048

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 216:39:07 105:00:57 44:56:16 17:31:51 09:10:28 04:59:14

2 processes per node 104:43:22 44:43:46 17:10:06 09:07:43 04:56:48 02:48:38

4 processes per node 58:38:03 24:50:14 09:04:05 04:57:30 02:42:31 01:45:15

8 processes per node 41:10:56 16:54:53 05:31:54 02:42:05 01:34:38 01:01:10

16 processes per node 36:19:55 13:37:19 02:58:23 01:38:52 01:02:54 00:52:14

36

per node, the halving of runtimes that we saw for smaller mesh resolutions does not

occur. For example, as we move from 1 node and 8 processes per node to 1 node and

16 processes per node, we see that the runtime only improves from approximately 41

hours to approximately 36 hours. However, the runtime using 2 nodes and 8 processes

per node is slightly less that 17 hours, and the runtime using 4 nodes and 4 processes

per node is just over 9 hours. Depending on which combination of nodes and processes

per node are considered, the runtime is either more than halved or nearly halved up

to 128 parallel processes, and we still observe a significant reduction in runtime up to

all 512 parallel processes used.

The performance for N = 2048 is due to memory access, which can be a limiting

factor in the performance of memory-bound code. For this case, we expect a bot-

tleneck when the 8 processes on each CPU attempt to access the memory through

4 memory channels. If we examine the performance studies run for the Poisson test

problem we observe similar behavior in the results for the same mesh size [10]. That

is, for the elliptic test problem, (3.1.1), for mesh resolution N = 2048, the runtimes

are nearly halved using up to 4 processes per node. However, we observe much more

limited improvements in runtimes going to 8 and 16 processes per node for the elliptic

test problem as well.

We can draw several conclusions from Table 4.1.1. The first basic, but important

conclusion we reach is that for all problem sizes and node choices it is most efficient to

use all 16 processes per node. That is, it is never more efficient to leave cores idling on

a node. The next is that as the problem sizes increase, we observe the desired halving

of the code for larger numbers of parallel processes. Finally, we observe that this

problem scales to multiple nodes very well on maya, with the runtime being halved

or more than halved in many cases as we double the amount of nodes.

In order to observe the parallel scalability of our results for the test problem we

37

can arrange our results by total number of parallel processes and present speedup and

efficiency data. Table 4.1.2 does this. Each of the subtables arranges the columns

by an increasing number of parallel processes p and the rows by increasing mesh

resolution N . In Table 4.1.2 (a), the wall clock time is listed in HH:MM:SS format.

This is similar to Table 4.1.1, except that each row represents one mesh resolution,

and the timing results are listed for an increasing number of parallel processes. For

most values of p there are several possible combinations of nodes and processes per

node that can be chosen. Due to our observation that using as many processes per

node as possible performs best for N = 128, . . . , 1024, we maximize processes per

node used for each choice of p for each of these mesh resolutions. So for p = 1, 2, 4, 8,

and 16, we use only one node and p processes per node, and for larger choices of

p, we use 16 processes per node. For N = 2048, we make use of our observation

that performance is limited when the 8 processes on each CPU try to access memory

through only 4 memory channels to arrange our results using only 4 processes per

node.

Tables 4.1.2 (b) and (c) list speedup and efficiency numbers for our results.

Speedup and efficiency tables and plots allow us to view parallel scalability in a

different way. Ideal behavior for the parallel code would be for a problem of size N

to be p times faster than the serial code using p processes. Denoting Tp(N) as the

wall clock time of the test problem with mesh resolution N using p processes, the

speedup of the code from 1 to p processes is Sp(N) = T1(N)/Tp(N). The optimal

value for speedup is Sp(N) = p. Similarly, efficiency Ep(N) = Sp(N)/p character-

izes how close a run with p parallel processes is to the optimal value. If the code is

behaving optimally then Ep = 1. Parallel code that behaves optimally is strongly

scalable. Figures 4.1.1 (a) and (b) visualize the numbers in Tables 4.1.2 (b) and (c)

respectively.

38

Table 4.1.2 Wall clock time arranged by total number of parallel processes and

speedup and efficiency on CPUs only using MPI only code for the parabolic test

problem on the maya 2013 cluster.
(a

)
W

a
ll

cl
o
ck

ti
m

e
in

H
H

:M
M

:S
S

N
p

=
1

p
=

2
p

=
4

p
=

8
p

=
1
6

p
=

3
2

p
=

6
4

p
=

1
2
8

p
=

2
5
6

p
=

5
1
2

1
2
8

0
0
:0

9
:2

9
0
0
:0

5
:0

2
0
0
:0

2
:4

2
0
0
:0

1
:3

4
0
0
:0

1
:0

1
0
0
:0

0
:5

5
0
0
:0

0
:5

8
—

—
—

2
5
6

0
0
:4

2
:4

9
0
0
:2

2
:0

5
0
0
:1

1
:3

4
0
0
:0

6
:1

8
0
0
:0

3
:3

2
0
0
:0

2
:2

2
0
0
:0

1
:5

3
0
0
:0

1
:5

1
—

—
5
1
2

0
3
:3

1
:0

5
0
1
:4

7
:3

6
0
0
:5

6
:2

4
0
0
:3

0
:2

1
0
0
:1

6
:2

5
0
0
:0

9
:4

3
0
0
:0

8
:1

1
0
0
:0

4
:4

6
0
0
:0

4
:3

0
—

1
0
2
4

2
4
:5

9
:0

9
1
0
:0

7
:3

5
0
5
:1

6
:2

4
0
2
:5

5
:4

3
0
1
:3

2
:3

6
0
0
:4

9
:4

7
0
0
:2

9
:0

5
0
0
:2

5
:5

6
0
0
:1

7
:0

3
0
0
:1

4
:1

6
2
0
4
8

2
1
6
:3

9
:0

7
1
0
4
:4

3
:2

2
5
8
:3

8
:0

3
2
4
:5

0
:1

4
0
9
:0

4
:0

5
0
4
:5

7
:3

0
0
2
:4

2
:0

5
0
1
:4

5
:1

5
0
1
:0

1
:1

0
0
0
:5

2
:1

4

(b
)

O
b

se
rv

ed
sp

ee
d

u
p
S
p

N
p

=
1

p
=

2
p

=
4

p
=

8
p

=
1
6

p
=

3
2

p
=

6
4

p
=

1
2
8

p
=

2
5
6

p
=

5
1
2

1
2
8

1
.0

0
1
.8

6
3
.5

3
6
.0

3
9
.3

3
1
0
.3

7
9
.8

6
—

—
—

2
5
6

1
.0

0
1
.9

4
3
.7

0
6
.7

9
1
2
.1

1
1
8
.0

4
2
2
.6

5
2
3
.1

1
—

—
5
1
2

1
.0

0
1
.9

6
3
.7

4
6
.9

5
1
2
.8

6
2
1
.7

2
2
5
.8

0
4
4
.2

5
4
6
.9

1
—

1
0
2
4

1
.0

0
2
.4

7
4
.7

4
8
.5

3
1
6
.1

9
3
0
.1

1
5
1
.5

4
5
7
.8

2
8
7
.9

6
1
0
5
.1

1
2
0
4
8

1
.0

0
2
.0

7
3
.7

0
8
.7

2
2
3
.8

9
4
3
.7

0
7
9
.9

9
1
2
3
.5

1
2
1
2
.5

2
2
4
8
.8

7

(c
)

O
b

se
rv

ed
E

ffi
ci

en
cy

E
p

N
p

=
1

p
=

2
p

=
4

p
=

8
p

=
1
6

p
=

3
2

p
=

6
4

p
=

1
2
8

p
=

2
5
6

p
=

5
1
2

1
2
8

1
.0

0
0
.9

3
0
.8

8
0
.7

5
0
.5

8
0
.3

2
0
.1

5
—

—
—

2
5
6

1
.0

0
0
.9

7
0
.9

2
0
.8

5
0
.7

6
0
.5

6
0
.3

5
0
.1

8
—

—
5
1
2

1
.0

0
0
.9

8
0
.9

4
0
.8

7
0
.8

0
0
.6

8
0
.4

0
0
.3

5
0
.1

8
—

1
0
2
4

1
.0

0
1
.2

3
1
.1

8
1
.0

7
1
.0

1
0
.9

4
0
.8

1
0
.4

5
0
.3

4
0
.2

1
2
0
4
8

1
.0

0
1
.0

3
0
.9

2
1
.0

9
1
.4

9
1
.3

7
1
.2

5
0
.9

6
0
.8

3
0
.4

9

39

(a) Speedup Plot (b) Efficiency Plot

Figure 4.1.1 Speedup and efficiency plots for CPUs.

Table 4.1.2 confirms our conclusions for Table 4.1.1. We observe near optimal

speedup and efficiency up to 16 processes for all mesh resolutions except N = 128.

We also observe that as the problem size increases there is near optimal speedup

for an increasing number of parallel processes. We observe optimal or better than

optimal speedup for N = 2048 up to 128 parallel processes. There is suboptimal

speedup past this point although we still observe a significant reduction in runtime

as we further increase the number of parallel processes. These results show that the

efficiency eventually decreases very substantially for code with small memory usage.

Hence, there is an intermediate, moderate number of processes that is the optimal

choice. For example, we see that for N = 1024 there are very good efficiency numbers

up to 64 parallel processes. However, we see a severe drop-off in efficiency past this

point. For N = 2048, where memory usage is not as small, we see optimal efficiency

up to 128 processes. However, there is a drop-off in efficiency past this point.

40

4.1.2 Summary of Performance on CPUs only using 1 Hybrid Node on

maya and Stampede

Next we present parallel performance studies on maya and Stampede using only 1

node with 2 CPUs. We present these studies in order to allow for a direct comparison

for our performance studies in subsequent sections on the Intel Phi. The runs on

both maya and Stampede use the default setting for I_MPI_FABRICS as this is the

setting that is used for all runs on the Intel Phi in native mode and symmetric mode.

Here we note that results were generated using multiple nodes on Stampede and the

speedup and efficiency in these cases was analogous to the results on the maya 2013

cluster but we do not include results for multiple nodes because this is not relevant

to our studies for the Intel Phi.

In Table 4.1.3 we present results using 1 node and 1,2,4,8, and 16 processes per

node for the clusters maya and Stampede. We present results for N = 128, 256, and

512 as these results are sufficient to show the speedup from using more processes

per node and confirm that we obtain similar results on both clusters. We will report

results for N = 1024 and 2048 as well for 1 node and 16 processes per node to confirm

that maya and Stampede give similar results, but we do not present the full results

for these mesh resolutions in Table 4.1.3.

Table 4.1.3 confirms that we obtain similar results on maya and Stampede for

CPU only runs using MPI only. We observe that runs are generally faster on the

slightly newer nodes of the 2013 portion of the maya cluster. In each case except

for N = 128, we observe near optimal halving up to 16 processes per node. Recall

however that we did not see this halving up to 16 processes per node for N = 2048 in

Table 4.1.1 because of the bottleneck caused by each CPU with 8 cores attempting

to access memory through only 4 memory channels. Here we report the timing for

N = 1024 using 16 processes on 1 node is 1 hour, 32 minutes, and 24 seconds on

41

Table 4.1.3 Wall clock times in HH:MM:SS on 1 node using CPUs only with MPI

only code for the parabolic test problem on the clusters maya and Stampede.

maya

MPI processes per node

N 1 2 4 8 16

128 00:09:37 00:05:00 00:02:40 00:01:35 00:01:04

256 00:42:56 00:22:08 00:11:24 00:06:21 00:03:41

512 03:36:02 01:48:06 00:56:16 00:30:21 00:16:25

Stampede

MPI processes per node

N 1 2 4 8 16

128 00:11:01 00:05:44 00:03:01 00:01:36 00:00:59

256 00:49:23 00:25:34 00:13:08 00:06:59 00:03:31

512 04:03:33 02:02:01 01:04:17 00:32:44 00:17:29

maya and 1 hour, 35 minutes, and 4 seconds on Stampede. The timing for N = 2048

using 16 processes on 1 node is 36 hours, 58 minutes, and 11 seconds on maya and

37 hours, 9 minutes and 24 seconds on Stampede. Thus, we can conclude that we

obtain similar results on maya and Stampede nodes for CPUs only using MPI only

code, and that it is most efficient to use all 16 cores on 1 hybrid node.

42

4.2 Parallel Performance Studies on CPUs using Hybrid

MPI+OpenMP Code

This section presents the results of the parallel performance studies for the so-

lution of the test problem on the 2013 portion of the maya cluster on CPUs using

hybrid MPI+OpenMP code. We modify the existing MPI only code so that it is a hy-

brid MPI+OpenMP code. This is done by taking the existing MPI only code for the

parabolic test problem and parallelizing the function that computes v=Au, matrix-

vector multiplication, and dot product functions with OpenMP. The advantage of

using this hybrid code is that we can use MPI for message passing between processes

and OpenMP for multithreading inside of each process. In order to run parallel perfor-

mance studies using the hybrid code several options must be set in the SLURM sub-

mission script. The number of nodes, processes per nodes, and OpenMP threads per

process are set using the nodes, ntasks-per-node, and export OMP_NUM_THREADS

options respectively. In addition, we set OMP_PROC_BIND=spread equal to the num-

ber of OpenMP threads used for the run. Before each run on maya was submitted,

I_MPI_FABRICS was set to shm:tmi. This is because just like our code in the previous

section, we tried using several different settings for I_MPI_FABRICS and this setting

ended up producing the best results.

Performance studies were run using up to 4 nodes. On each node, 1, 2, 4, 8, and

16 MPI processes were used with 16, 8, 4, 2, and 1 OpenMP threads respectively.

This study was run using mesh resolutions N = 128, 256, 512, 1024, and 2048. For

each mesh resolution, optimal performance is obtained using all 16 cores on each

node, so we restrict our study to cases that use all 16 cores. Table 4.2.1 collects the

results of our study. We restrict our studies to only 4 nodes as this is enough to draw

conclusions about the effectiveness of using hybrid MPI+OpenMP code for CPUs on

multiple nodes compared to pure MPI only code.

43

We observe in Table 4.2.1 that in most cases there is not an advantage to using

a combination of MPI processes and OpenMP threads. In several cases, the code

performs optimally using 16 MPI processes and 1 OpenMP thread. In the cases

where the code does not perform optimally using 16 processes and 1 OpenMP thread,

the advantage to using a combination of MPI processes and OpenMP threads is

not very significant and it is not clear from this table which combination of MPI

processes and OpenMP threads performs optimally. We can conclude from these

results that using a combination of MPI processes and OpenMP threads does not

provide a significant advantage over MPI only code using CPUs only. We also observe

that for N = 128, . . . , 1024, the hybrid code performs slightly better than the MPI

only code in cases that use 16 processes per node. However, for N = 2048 the MPI

only code performs slightly better when using 1 and 2 nodes.

We do not present results using hybrid code on Stampede except to note that we

reach the same conclusion that we did on maya. Results on Stampede show that it

is generally most effective to use 16 MPI processes with 1 OpenMP process. This

is reinforced by the results obtained by Khuvis [8] for the elliptic test problem that

support the conclusion there is no clear advantage to using a combination of MPI

processes and OpenMP threads. We conclude that using MPI only is a reasonable

choice for runs using CPUs only.

44

Table 4.2.1 Wall clock times using CPUs only with hybrid MPI+OpenMP code for

the parabolic test problem on maya on 1, 2, and 4 nodes.

(a) Mesh Resolution N = 128

MPI processes threads 1 node 2 nodes 4 nodes

1 16 00:01:33 00:01:45 00:01:53

2 8 00:01:06 00:01:15 00:01:21

4 4 00:01:02 00:01:09 00:01:12

8 2 00:01:01 00:01:06 00:01:10

16 1 00:00:56 00:01:02 00:01:08

(b) Mesh Resolution N = 256

MPI processes threads 1 node 2 nodes 4 nodes

1 16 00:03:43 00:03:21 00:03:09

2 8 00:03:11 00:02:33 00:02:22

4 4 00:03:01 00:02:27 00:02:12

8 2 00:02:59 00:02:22 00:02:16

16 1 00:02:51 00:02:17 00:02:06

(c) Mesh Resolution N = 512

MPI processes threads 1 node 2 nodes 4 nodes

1 16 00:13:38 00:09:39 00:07:43

2 8 00:13:21 00:08:44 00:06:39

4 4 00:13:24 00:08:43 00:06:16

8 2 00:13:02 00:08:24 00:06:11

16 1 00:13:04 00:08:29 00:06:29

(d) Mesh Resolution N = 1024

MPI processes threads 1 node 2 nodes 4 nodes

1 16 01:17:06 00:46:15 00:31:09

2 8 01:15:38 00:44:54 00:28:49

4 4 01:16:40 00:44:28 00:33:58

8 2 01:17:59 00:45:18 00:27:28

16 1 01:18:30 00:43:28 00:27:09

(e) Mesh Resolution N = 2048

MPI processes threads 1 node 2 nodes 4 nodes

1 16 40:55:47 15:02:43 02:39:58

2 8 40:42:31 14:27:31 02:35:06

4 4 41:10:41 15:47:27 02:35:03

8 2 37:47:35 13:58:08 02:34:48

16 1 37:43:24 13:36:51 02:49:39

45

4.3 Parallel Performance Studies for the Intel Phi in Native Mode

Using MPI Only Code

This section describes parallel performance studies for the solution of the test

problem using an Intel Phi 5110P in native mode on maya and an Intel SE10P in

native mode on Stampede using MPI only code. We conduct numerical experiments

on five mesh sizes, N = 128, 256, 512, 1024, and 2048. Parallel performance studies

are run using the same MPI only code developed for parallel performance studies for

our test problem on CPUs only with MPI only. To run this code on the Phi, the

-mmic must be added to the compilation command of the Intel compiler.

Table 4.3.1 presents the results of performance studies using one Intel Phi in native

mode with MPI only code. The Intel Phi on maya is capable of 4 threads on each of

the 60 cores on the 5110P for a total of 240 threads. Restricting our code to powers

of 2 like we did in the previous sections, this means we can run the code using up to

128 processes per Phi. Each of the results in this table were obtained using a compute

node on the maya 2013 cluster with 2 Intel Phis.

We report results for N = 128, . . . , 1024 in Table 4.3.1 with the number of MPI

processes per Phi increasing by powers of 2 from 1 MPI process per Phi to 128 MPI

processes per Phi. We note that for N = 1024 we do not present results using

1 or 2 MPI processes per Phi because in each of these cases we expect the runs

would take several days to complete and would not provide any additional insight

into performance on the Phi in native mode. We report the observed wall clock times

in Table 4.3.1 (a), speedup in Table 4.3.1 (b) and efficiency in Table 4.3.1 (c). We

can draw several conclusions from Table 4.3.1. The first observation we make is that

performance on the Phi scales much better for larger problem sizes. In particular, we

observe for N = 128 and 256 that the performance degrades severely as we move past

16 MPI processes and that runtimes actually increase using 64 or 128 processes. We

46

Table 4.3.1 Wall clock times in HH:MM:SS and speedup and efficiency for 1 Phi in

native mode with MPI only code for the parabolic test problem on maya. ET denotes

excessive time requirement.

MPI processes per Phi

N 1 2 4 8 16 32 64 128

Observed wall clock time in HH:MM:SS

128 00:48:45 00:25:02 00:15:33 00:09:13 00:07:02 00:05:48 00:06:46 —

256 04:09:10 02:28:14 01:04:44 00:37:41 00:20:30 00:17:07 00:39:04 01:25:54

512 23:16:03 12:50:14 06:53:49 03:44:32 01:55:34 00:54:13 00:45:29 00:44:58

1024 ET 79:35:19 42:22:18 22:37:32 12:40:43 07:31:58 05:41:45 05:06:21

Observed Speedup Sp

128 1.00 1.94 3.12 5.27 6.91 8.37 7.18 —

256 1.00 1.68 3.85 6.61 12.15 14.56 6.38 2.90

512 1.00 1.81 3.37 6.22 12.08 25.75 30.69 31.05

1024 ET 2.00 3.76 7.03 12.55 21.12 27.95 31.17

Observed Efficiency Ep

128 1.00 0.97 0.78 0.66 0.43 0.26 0.11 —

256 1.00 0.84 0.96 0.83 0.76 0.46 0.10 0.02

512 1.00 0.91 0.84 0.78 0.75 0.80 0.48 0.24

1024 ET 1.00 0.94 0.88 0.78 0.66 0.44 0.24

see that as we move to N = 512 and 1024, runtimes decrease up to 128 processes,

although the decrease in runtime is minimal when we increase the number of processes

to 64 and 128. Comparing the results in Table 4.3.1 to the results in Table 4.1.3, we

observe that for these problem sizes, the Intel Phi in native mode performs far worse

than 1 node using 2 CPUs. For example, the best runtime we observe for N = 1024

on the Phi is 5 hours, 6 minutes, and 21 seconds. Using all 16 cores on 1 node for

N = 1024 results in a runtime of only 1 hour, 33 minutes, and 19 seconds. We observe

this poor performance for all mesh resolutions in Table 4.3.1, so we can conclude from

47

(a) Speedup Plot (b) Efficiency Plot

Figure 4.3.1 Speedup and efficiency plots for the Intel Phi in native mode using MPI

only code on maya.

these results that the Intel Phi in native mode using MPI only code does not perform

well for these problem sizes.

Table 4.3.2 Best observed wall clock times in HH:MM:SS for 1 Phi in native mode

with MPI only code for the parabolic test problem on maya and Stampede.

Stampede maya

N MPI processes 1 Phi MPI processes 1 Phi

128 32 00:06:39 32 00:05:48

256 32 00:14:58 32 00:17:07

512 32 00:56:20 128 00:44:58

1024 64 06:03:45 128 05:06:21

2048 128 34:16:21 128 31:28:13

Table 4.3.2 collects the best observed wall clock times for each mesh resolution

on the maya and Stampede Phis and the corresponding MPI processes per Phi for

these times. We observe similar behavior and runtime on the maya and Stampede

Phis for N = 128, 256, and 512. In these cases the Phis on Stampede perform slightly

better because they have a slightly higher clock rate. However, the Intel Phis on

48

maya outperform the Intel Phis on Stampede when using 64 and 128 processes per

Phi. We observe for N = 1024, there was an increase in runtime on the Stampede

Phis when using 128 MPI processes, while on maya, it is more effective to use 128

MPI processes and the runtime is significantly faster than on Stampede. Similarly,

the Phis on maya outperform the Phis on Stampede for N = 2048. The cases that

use 64 and 128 processes are the only cases where multiple processes are allocated to

the same core. In these cases, the slightly newer Phis on maya are able to handle this

issue better.

The Intel Phi in native mode performs much better for N = 2048. We observe in

Table 4.3.2 that it is more efficient to use 128 MPI processes per Phi on both maya and

Stampede. Comparing the results in Table 4.3.2 to those in Section 4.1 Section 4.2,

we also observe that for N = 2048 the Intel Phi in native mode outperforms 1 node

using both CPUs. We can conclude from these results that the Intel Phi is more

effective for larger problem sizes for the test problem.

49

4.4 Parallel Performance Studies for the Intel Phi in Native Mode

Using Hybrid MPI+OpenMP Code

This section describes parallel performance studies for the solution of the test

problem using an Intel Phi 5110P in native mode on maya with modified hybrid

MPI+OpenMP code. We use the same hybrid code used in Section 4.2 for the test

problem using hybrid code on CPUs. In this section we restrict our studies to parallel

processes increasing by powers of 2 up to 128 total parallel processes.

Table 4.4.1 collects the results of performance studies for N = 128, 256, and 512

on the maya cluster using 1, 2, 4, 8, 16, 32, 64, and 128 MPI processes and OpenMP

threads up to 128 total parallel processes. For each mesh resolution in Table 4.4.1

different combinations of MPI processes and OpenMP threads produce optimal re-

sults. We cannot conclude from Table 4.4.1 that it is beneficial to use any particular

combination of MPI processes and OpenMP threads. Comparing Table 4.4.1 with Ta-

ble 4.3.1, we observe that there is no clear advantage to using hybrid MPI+OpenMP

code instead of MPI Only code for these problem sizes. The best observed runtimes

for each mesh resolutions are very similar, and in some cases the MPI Only code

slightly outperforms the hybrid code.

50

Table 4.4.1 Wall Clock Time in HH:MM:SS on 1 Phi in native mode using hybrid

MPI+OpenMP code on for the parabolic test problem for N = 128, 256 and 512 on

the maya cluster.

(a) N = 128

MPI Processes per node

1 2 4 8 16 32 64 128

t = 1 00:38:18 00:22:32 00:16:02 00:09:47 00:28:55 00:15:02 01:02:21 NA

t = 2 00:21:32 00:16:08 00:24:49 00:10:23 00:17:05 00:17:14 NA NA

t = 4 00:14:42 00:12:21 00:23:43 00:09:38 00:18:32 NA NA NA

t = 8 00:10:25 00:16:35 00:20:44 00:10:43 NA NA NA NA

t = 16 00:09:37 00:18:58 00:24:50 NA NA NA NA NA

t = 32 00:10:32 00:12:45 NA NA NA NA NA NA

t = 64 00:13:09 NA NA NA NA NA NA NA

t = 128 NA NA NA NA NA NA NA NA

(b) N = 256

MPI Processes per node

1 2 4 8 16 32 64 128

t = 1 03:45:23 02:04:13 01:09:00 00:31:24 00:31:07 00:16:58 00:18:23 00:24:19

t = 2 01:56:08 01:03:37 00:35:19 00:23:21 00:20:40 00:20:44 00:40:56 NA

t = 4 00:59:43 00:45:38 00:25:37 00:20:11 00:21:15 00:20:49 NA NA

t = 8 01:09:27 00:35:32 00:19:29 00:18:48 00:23:26 NA NA NA

t = 16 00:36:56 00:32:11 00:19:48 00:21:17 NA NA NA NA

t = 32 00:35:51 00:34:38 00:20:04 NA NA NA NA NA

t = 64 00:38:20 00:33:37 NA NA NA NA NA NA

t = 128 00:39:39 NA NA NA NA NA NA NA

(c) N = 512

MPI Processes per node

1 2 4 8 16 32 64 128

t = 1 20:50:55 12:23:38 06:25:41 03:48:54 01:48:43 01:10:04 00:59:18 01:03:45

t = 2 11:25:04 06:22:41 03:51:09 01:59:16 01:04:16 00:59:51 01:00:57 NA

t = 4 06:00:16 03:46:02 01:47:27 01:13:57 00:52:14 00:59:03 NA NA

t = 8 03:35:14 02:02:24 01:11:13 00:59:06 00:55:10 NA NA NA

t = 16 01:38:21 01:19:34 01:01:29 01:08:20 NA NA NA NA

t = 32 01:02:27 01:00:40 01:00:58 NA NA NA NA NA

t = 64 01:04:53 01:07:13 NA NA NA NA NA NA

t = 128 01:09:08 NA NA NA NA NA NA NA

51

For mesh resolutions N = 1024 and 2048, we restrict our studies to cases that use

128 threads over all MPI processes. We present the results for N = 1024 using 128

total threads on maya and Stampede and 2048 on maya in Table 4.4.2. We observe

that it is more efficient to use a combination of MPI processes and OpenMP threads

for N = 2048 and more efficient to use only 1 MPI process and 128 OpenMP threads

for N = 1024. Similar to the results in Table 4.4.1, it is not clear from Table 4.4.2

which combination of MPI processes and OpenMP threads generally produces optimal

results.

Table 4.4.2 Parallel performance studies for the Intel Phi in native mode on maya

and Stampede using hybrid MPI+OpenMP code.

maya Stampede

MPI processes threads N = 1024 N = 2048 N = 1024

1 128 04:21:18 33:00:02 03:40:11

2 64 05:00:42 33:55:02 04:37:42

4 32 04:55:27 33:01:44 04:30:03

8 16 05:13:55 39:31:24 04:30:11

16 8 04:40:37 33:25:30 04:04:45

32 4 04:46:34 31:40:09 04:24:39

64 2 05:16:48 31:28:06 05:41:08

128 1 26:51:58 33:12:12 07:33:09

Table 4.4.2 displays one of the differences between performance on maya and on

Stampede. On maya, we do not see a clear advantage to using a combination of

MPI processes and OpenMP threads. For N = 2048, MPI only code outperforms the

hybrid code for all combinations of MPI processes and OpenMP threads in Table 4.4.2.

However, on Stampede we observe a clear advantage to using a combination of MPI

processes and OpenMP threads. On Stampede for N = 1024 we observed an increase

in runtime going from 64 to 128 processes using MPI only code, and the best observed

runtime was slightly more than 6 hours. Using a combination of MPI processes and

52

OpenMP threads significantly reduces the runtime except for in the case that uses

128 MPI processes. Similarly, for N = 2048 the best runtime using MPI only code

is 34 hours, 16 minutes, and 21 seconds. However, using 16 MPI processes and 8

OpenMP threads per process results in a runtime of only 29 hours, 14 minutes, and

16 seconds. Thus, we can conclude that on Stampede there is a clear advantage to

using a combination of MPI processes and OpenMP threads for the Intel Phi in native

mode.

Up to this point in our performance studies, we have limited the number of cores

used on the Intel Phi to powers of 2. However, this does not utilize all 240 cores on

the Intel Phi. We modify our existing code to test performance using all 240 cores

available on the Intel Phi on maya. Using hybrid MPI+OpenMP code on all 240

threads of the Intel Phi results in much better performance than using MPI only

code for all 240 processes. However, the runtime using 240 total threads over all MPI

processes still results in a significant increase in runtime compared to using only 128

total threads. The best observed runtime on maya using 240 total threads is 34 hours,

57 minutes, and 57 seconds. The best observed runtime on Stampede using 240 total

threads in 36 hours, 29 minutes, and 32 seconds. On both maya and Stampede these

runtimes are significantly longer than those observed using only 128 total threads.

We see that the runtimes in some cases using 240 threads is comparable to the

runtimes using 128 threads. However, we still find that it is more efficient to not use

all available threads. This may be due to the added communication between processes

slowing down performance because the problem size is not large enough. In this case

the benefit of using more cores does not outweigh the added cost of communication

from having more processes. There may be a slightly better number of threads than

128, but it does not appear to be 240.

53

4.5 Parallel Performance Studies for the Test Problem on CPUs and

Intel Phis in Symmetric Mode

This section describes the performance of the test problem on CPUs and Intel

Phis in symmetric mode. In this mode, MPI ranks are run on the CPU and Intel

Phi allowing for communication between the two architectures. All results in this

section were generated using the Stampede cluster because we are currently unable

to complete runs on the maya cluster in symmetric mode. This is because the maya

cluster uses an Infiniband from QLogic and Stampede uses an Infiniband from Mel-

lanox. Issues with the Infiniband from QLogic result in an inability to communicate

over the network on maya.

The key to good performance in symmetric mode is proper load balancing between

the Intel Phis and CPUs. Since symmetric mode requires communication between

CPUs and Phis, larger problems observe better speedup, so we will restrict our studies

in this section to the mesh resolution N = 2048. Recall from Sections 4.3 that we

observe better performance on the Intel Phi than on 2 CPUs. Optimal performance on

the CPUs was observed using 16 MPI processes with MPI only code. On Stampede,

optimal performance on 1 Intel Phi was observed using a combination of MPI processes

and OpenMP threads.

Table 4.5.1 summarizes the results using CPUs only, 1 and 2 Phis in native mode,

and 1 hybrid node in symmetric mode. Recall that optimal performance on Stampede

was obtained using a total of 128 threads across all MPI processes. For the runs

using 1 and 2 Phis in native mode, 16 MPI processes with 8 threads per process

were used on each Phi. For runs in symmetric mode, MPI only code is used on the

CPUs. Several different combinations of processes and threads were tested on the

Phi. Runs were submitted using both hybrid MPI+OpenMP code on the Phi as well

as MPI only code. We did not observe good results using hybrid code on the Phi

54

in symmetric mode. Using 16 MPI processes with 8 OpenMP threads on each Phi

resulted in an increase in runtime compared to using 2 Phis in native mode. Runs

with this configuration on the Phis did not complete in the 24 hour time limit placed

on nodes on Stampede containing 2 Intel Phis. This is likely caused by the workload

not being properly balanced between the CPUs and the Phis. We observe that using

MPI processes only on both the Phi and the CPUs better balances the workload and

leads to a further reduction in runtime in symmetric mode. We observe that using

128 total MPI processes with 16 MPI processes on the CPUs and 56 MPI processes on

each Phi results in a runtime of only 16 hours, 31 minutes, and 15 seconds. Increasing

the number of processes on each Phi results in an increase in runtime. This points

further to the importance of balancing the workloads between different architectures

in symmetric mode. We can conclude from these results that using 2 CPUs and 2

Phi produces optimal performance on a node with 2 CPUs and 2 Phis.

Table 4.5.1 Symmetric mode for the parabolic test problem on 1 node on Stampede.

CPUs Phis Mode CPU prog. model Phi prog. model Runtime

2 0 CPU only MPI Only NA 37:09:24

0 1 Native NA MPI+OpenMP 29:14:16

0 2 Native NA MPI+OpenMP 17:16:39

2 2 Symmetric MPI only MPI Only 16:31:15

55

4.6 Summary of Performance on One Hybrid Node

This section provides a summary of all relevant results on 1 hybrid node. Perfor-

mance studies were run for the test problem using mesh resolutions N = 128, 256,

512, 1024, and 2048. For mesh resolutions N = 128, 256, 512, and 1024 we observe

good performance using CPUs only. In each case it is most efficient to use all 16

cores on the node. These mesh resolutions scale well on the CPUs, as we observe

that the runtime is nearly halved each time we double the number of cores used up

all 16 CPU cores on the node. We found that there was no clear advantage to using

a combination of MPI processes and OpenMP threads on the CPUs as opposed to

using MPI only code. We observed this behavior on both maya and Stampede.

We found that the Intel Phi in native mode does not perform well for N = 128,

256, 512, 1024. For each of these mesh resolutions we ran studies on the Intel Phi

using both MPI only code and hybrid MPI+OpenMP code. Similar to our results for

CPUs, we found that there was no clear advantage to using a combination of MPI

processes and OpenMP threads. For each of these mesh resolutions we found the

Intel Phi performed significantly worse than the CPUs on both maya and Stampede.

Performance on maya and Stampede was similar for the Intel Phi in native mode.

However, we found that the slightly newer Intel Phis on maya outperformed those on

Stampede for runs that used 64 or 128 cores. None of these mesh resolutions were

found to perform well in symmetric mode as the Intel Phis perform poorly for these

runs, resulting in slower runs than those conducted using CPUs only.

Table 4.6.1 summarizes our results for N = 2048 on maya and Stampede. We

report the best runtimes for each different mode on the maya and Stampede clusters.

For N = 2048, we reach the conclusion that there is no clear advantage to using hybrid

MPI+OpenMP code instead of MPI only code on both the CPUs. On Stampede,

there is a clear advantage to using hybrid MPI+OpenMP code on the Intel Phis in

56

native mode. We found that the Intel Phi in native mode performs much better for

N = 2048. The Intel Phi outperforms 1 node using 2 CPUs only. We also found that

symmetric mode performs much better for this problem size. We observe using both

CPUs and Intel Phis on 1 hybrid node on the Stampede cluster more than halves the

runtime using only 1 Phi or both CPUs. Our results confirm that the Intel Phi and

symmetric mode perform better for larger problem sizes.

Table 4.6.1 Summary of parabolic test problem results for N = 2048 on 1 hybrid

node.

Stampede

CPUs Phis Mode CPU prog. model Phi prog. model Runtime

2 0 CPU only MPI only NA 37:58:11

0 1 Native NA MPI only 34:16:21

0 1 Native NA MPI+OpenMP 29:14:16

0 2 Native NA MPI+OpenMP 17:16:39

2 2 Symmetric MPI only MPI only 16:31:15

maya

CPUs Phis Mode CPU prog. model Phi prog. model Runtime

2 0 CPU only MPI only NA 36:19:55

2 0 CPU only MPI+OpenMP NA 37:43:24

0 1 Native NA MPI only 31:28:13

0 1 Native NA MPI+OpenMP 31:28:06

CHAPTER 5

CONCLUSIONS

In this chapter, we draw conclusions for the performance of one or more hybrid

nodes with two CPUs and two Phis for a linear parabolic test problem whose structure

is representative of kernels of real-world application codes. This test problem is the

linear heat equation with homogeneous Dirichlet boundary conditions, (1.1.1). This

test problem lies in complexity between the linear stationary elliptic test problem and

the CICR problem. We use this test problem to evaluate performance on CPUs, the

Intel Phis, and CPUs in combination with Phis. We evaluate parallel performance

studies for the 2013 portion of the maya cluster in the UMBC High Performance

Computing Facility and on TACC’s Stampede system.

We find that for the test problem MPI only code is sufficient for good performance

on the CPUs and the Intel Phis on maya. On Stampede, MPI only code is sufficient

for good performance on the CPUs and a combination of MPI processes and OpenMP

threads results in optimal performance on the Intel Phi. The CPUs perform well for

all mesh resolutions studied. We found that the performance on CPUs scales well to

an intermediate number of nodes and this scalability improves as the mesh resolutions

are increased. We can conclude that the Intel Phis perform significantly worse than

the CPUs for cases with low memory usage, as we observe that runtimes on the CPUs

were significantly faster up to the mesh resolution N = 1024. However, for N = 2048

the Intel Phi performs excellently compared to the CPUs. We observe that 1 Intel

Phi in native mode outperforms two CPUs for N = 2048 and that symmetric mode

halves the runtimes using 2 CPUs or 1 Intel Phi. We can conclude that code with a

high degree of parallelism is required to take advantage of the many cores of the Phi

and to achieve better performance than on the CPUs.

57

58

One of the fundamental differences between the linear parabolic test problem

studies in this paper and the linear stationary elliptic test problem studied by Khuvis

is the choice of mesh resolutions studied [8]. Each of these test problems has different

limitations that determined the choice of mesh resolutions studied. For the elliptic

test problem, the primary limitation is memory usage during a run. The Intel Phi is

limited to problem sizes that use 8 GB or less of memory during a run, and the CPUs

are limited to problem sizes that use 64 GB or less of memory. For the elliptic test

problem, this limits the choice of mesh resolutions to 8192 when running experiments

using the Phis and 32768 when running experiments using only the CPUs. For the

elliptic test problem, runtime is not a limiting factor. For the parabolic test problem

studied here, memory usage is not a limiting factor. The largest mesh resolution

studied is 2048. Memory usage for this problem size is less than 1 GB, so the problem

can easily fit on both the Phis and the CPUs. The limiting factor for our test problem

is runtime. Mesh resolutions larger than 2048 could not be studied due to the excessive

runtimes associated with them.

The differences between the elliptic and parabolic test problems that were stud-

ied leads to some differences in the results between the two test problems. These

differences in results can be attributed to the limiting factors for each of the test

problems. For the elliptic test problem, each of the large mesh resolutions studied

exhibited typical performance for memory-bound code. Using 8 or 16 processes re-

sults in less than optimal speedup as the 8 processes on each CPU attempt to access

memory through only 4 memory channels. For our parabolic test problem only the

largest mesh resolution studied, 2048, exhibited this characteristic of memory-bound

code. For each of the smaller mesh resolutions studied, memory access did not limit

performance up to 16 processes per node, however the problem only scales well up to

an intermediate number of nodes because of the cost of communication between an

59

increasing number of parallel processes. For each of the smaller mesh resolutions with

low memory usage it is not possible to compare performance between the elliptic test

problem and the parabolic test problem. This is because the runtime in these cases

is trivial for the elliptic test problem, with even the serial runs for each of these mesh

resolutions lasting only a couple of seconds. Even for N = 2048, we are only able to

compare performance for a limited number of parallel processes, as past this point

the runtimes for this problem size become trivial for the elliptic test problem as well.

For N = 2048 the results for the elliptic and parabolic test problem show similar

speedup and efficiency up to 4 nodes. Further increasing the nodes used for this

problem size results in trivial runtimes for the elliptic test problem, which does not

allow for a direct comparison of the results. We observe similar behavior using the

CPUs, with the runtime being halved up to 4 processes per node. Past this point

the runtime is still reduced using 8 and 16 processes per node, but the improvement

in performance is much less significant than the optimal halving that occurs using a

smaller number of processes. For both test problems it is more efficient to use 1 Phi

in native mode than to use the CPUs. On Stampede, we see a further improvement

in performance using both Phis in native mode and both the CPUs and the Phis in

symmetric mode.

We can conclude that while there are many similarities between the elliptic test

problem and the linear parabolic test problem (1.1.1), the different limitations be-

tween the two problems lead to different performance on 1 hybrid node. A direct

comparison between equivalent mesh resolutions for each test problem is not possible

as the mesh resolutions studied for the parabolic test problem produce mostly trivial

runtimes for the elliptic test problem.

For the parabolic test problem, for code with low memory usage such as the

mesh resolutions N = 128, . . . , 1024, the code seems to be compute-bound rather

60

than memory-bound for the mesh resolutions considered, and we can conclude that

it is most efficient to use MPI only code on the CPUs, and performance scales well

up to 16 processes per node. Performance for these problem sizes on the Phis is

significantly worse as there is not a sufficiently high degree of parallelism in the code

to take advantage of the many cores of the Phis. For the case of N = 2048 we

observe optimal performance on the CPUs is still obtained using all 16 cores of the

CPUs, however we do not observe an optimal halving of the runtime using 8 and

16 processes per node, as this mesh resolution makes the code memory-bound rather

than compute-bound. Further, we find that for this problem size 1 Phi in native

mode outperforms the CPUs and that on Stampede using a combination of MPI

processes and OpenMP threads is key to optimal performance on the Phis. However,

we find equivalent performance for the Intel Phi on maya using MPI only code and

hybrid MPI+OpenMP code. Performance is further improved on Stampede using

both CPUs and Phis in symmetric mode. Thus, we can conclude that for problems

with higher memory usage and a high degree of parallelism the Phis outperform CPUs

and optimal performance on one hybrid node is obtained using both CPUs and Phis

in symmetric mode.

BIBLIOGRAPHY

[1] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley &

Sons, second edition, 1989.

[2] Dietrich Braess. Finite Elements. Cambridge University Press, third edition,

2007.

[3] Lawrence C. Evans. Partial Differential Equations, vol. 19 of Graduate Studies

in Mathematics. American Mathematical Society, second edition, 2010.

[4] HPCF. How to run programs on the intel phi on maya in-

troduction. http://hpcf.umbc.edu/resources-for-hpcf-users/

how-to-run-programs-on-the-intel-phi-on-maya, accessed on April 10,

2016.

[5] Intel. I MPI FABRICS. https://software.intel.com/en-us/node/535585,

accessed on March 25, 2016.

[6] Intel. Selecting fabrics. https://software.intel.com/en-us/node/535532,

accessed on March 25, 2016.

[7] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations.

Cambridge Texts in Applied Mathematics. Cambridge University Press, second

edition, 2009.

[8] Samuel Khuvis. Porting and Tuning Numerical Kernels in Real-World Applica-

tions to Many-Core Intel Xeon Phi Accelerators. Ph.D. Thesis, Department of

Mathematics and Statistics, University of Maryland, Baltimore County, 2016.

61

62

[9] Samuel Khuvis and Matthias K. Gobbert. Parallel performance studies for an el-

liptic test problem on maya 2013. Technical Report HPCF–2014–6, UMBC High

Performance Computing Facility, University of Maryland, Baltimore County,

2014.

[10] Samuel Khuvis and Matthias K. Gobbert. Parallel performance studies for an

elliptic test problem on the cluster maya. Technical Report HPCF–2015–6,

UMBC High Performance Computing Facility, University of Maryland, Balti-

more County, 2015.

[11] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[12] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, An-

drew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Pe-

terson, Ralph Roskies, J. Ray Scott, and Nancy Wilkens-Diehr. XSEDE: Ac-

celerating Scientific Discovery. Computing in Science and Engineering, vol. 16,

no. 5, pp. 62–74, 2014.

[13] David S. Watkins. Fundamentals of Matrix Computations. Wiley, third edition,

2010.

