
Statistical Properties of Alternating Least Squares Estimators of
a Collaborative Filtering Model

Michael Curtis1, Julia Baum2, Cynthia Cook3, Joshua Edgerton4, and Scott Rabidoux5

Graduate assistant: Andrew M. Raim1 Faculty mentor: Nagaraj K. Neerchal1

Client: Robert M. Bell6

University of Maryland, Baltimore County1,
Worcester Polytechnic Institute2 Catawba College3 Cornell University4 Wake Forest University5

AT&T Labs - Research6

Abstract

Recommender systems are emerging as important tools for improving customer satisfaction by math-
ematically predicting user preferences. Several major corporations including Amazon.com and Pandora
use these types of systems to suggest additional options based on current or recent purchases. Netflix
uses a recommender system to provide its customers with suggestions for movies that they may like,
which are based on their previous ratings. In 2006, Netflix released a large data set to the public and
offered one million dollars for significant improvements on their system. In 2009, BellKor’s Pragmatic
Chaos, a team of seven, won the prize by combining individual methods. Dr. Robert Bell, with whom we
collaborated, was a member of the winning team and provided us with the data set used in this project.
The database provided is a sparse matrix with rows of users and columns of movies. The entries of the
matrix are ratings given to movies by certain users. The objective is to obtain a model that predicts
future ratings a user might give for a specific movie. This model is known as a collaborative filtering
model, which encompasses the average movie rating (mu), the rating bias of the user (b), the overall
popularity of a movie (a), and the interaction between user preferences (p) and movie characteristics
(q). The method of Alternating Least Squares was used to estimate each parameter of this non-linear
regression model. In this paper, we take a look at the accuracy of our algorithm using simulated data
from a known set of parameter values.

1 Introduction

Collaborative filtering systems have had growing interest recently due to the Netflix million dollar challenge
to improve its existing algorithm for recommending movies. Through the contest, Netflix hoped to enhance
the method with which they recommend movies to their users. This method would be based on prior movies
the users have rated. The goal of the contest was to predict, as accurately as possible, what any particular
user would rate a movie. For instance, this could be interpreted as a standard regression problem; fitting
a model which relates the characteristics of movies with those preferred by users to develop an estimated
rating of the user. However, a closer look into the problem reveals that it is more challenging. The Netflix
data does not explicitly contain any information about movie or user characteristics, except for ratings that
users have given to movies. The ratings data are also sparse, i.e. some users have rated many movies, others
hardly any, and no user has rated a significant fraction let alone all of the movies. Collaborative filtering is
a technique that makes use of the sparse data and obtains good estimates for the parameters of a regression
model. The actual Netflix competition data is of the order of billions of entries and very sparse, and therefore
presents a significant computational problem. Although the Netflix challenge has already been conquered,
we believe that some of the iterative methods used for collaborative filtering can be modified and parallelized
to become significantly more efficient.

In section 4 we describe the Netflix data, and a smaller testing dataset which we used to develop our
implementation. We also describe the data structures we used to manipulate the data in code. We also
describe the computing cluster available at UMBC which we used to run our experiments. In section 2 we
describe the regression model for users’ movie preferences. In section 3 we describe the Alternating Least
Squares algorithm we developed and in section 6, we discuss our conclusions and opportunities for future
work.

1



2 The Model

The model is a variation of a linear regression model using several parameters to predict each users rating
for any particular movie. We denote the observed ratings as rui, the uth user’s rating of the ith movie, for
u in {1, . . . , U} and i in {1, . . . , I}. The rui are allowed to be any real number. A higher rating represents
a more favorable score for a movie, as usual. We also denote R for the U × I matrix of ratings, and r̂ui for
the predicted ratings.

The aim of the model is to have the smallest mean squared error between r and r̂. The full model comes
from Bell and Koren’s 2009 paper [1] on their prize-winning methods for the Netflix Problem. The original
base model is a latent factor model breaking the large matrix of ratings into three smaller ones, one of users,
one of movies, and one of averages. The parameter ai models the difference between a movie’s rating and
the average movie rating, for i = 1, . . . , I. Similarly, bu represents the difference between a user’s rating and
the average user’s rating for a particular movie for u = 1, . . . , U . The global average rating of all movies by
all users is µ. A more advanced model takes into account the characteristic vectors pu and qi each of length
d. Each element of pu gives a rating of user’s affinity for a certain characteristic, and the corresponding
element in qi quantifies the amount of this characteristic in the movie.

Consider a simple case scenario where a recommender system is to determine whether a given user
u = 1 will enjoy movie i = 1. The user has rated several movies in the past generating a characteristic
vector p1, where d = 3. Suppose the vector measures comedy, action, and horror on a scale from -5
to 5. If u1 likes comedy, loves action, but hates horror, his characteristic vector may be in the form
p1 = (3.897, 4.875,−2.456). The characteristic vector for i = 1 is also of size d = 3 and is measured on
comedy, action, and horror; suppose it is q1 = (4.132, 3.978,−4.978). By taking the dot product of the
two characteristic vectors, the recommender system can measure if the movie would be a good fit. In our
example, p′1q1 = 47.61, which means that movie i = 1 may be a good choice for user u = 1. Note that it is
up to the recommender system to determine the d characteristics through the data, and that they may or
may not have a simple interpretation as in this example. The full model cited in [1] is as follows:

r̂ui = µ+ ai + bu + p′uqi (2.1)

The model appears fairly straightforward, but fitting it requires special algorithms such as the one discussed
later. Our first task is to find an expression to minimize, with respect to the unknown parameters, which
will result in reasonable parameter estimates. Let

κ = {(u, i) : there is a rating rui in the dataset} ,

for whichever dataset is being considered. To fit the parameters of the model (2.1) we define the objective
function as ∑

(u,i)∈κ

(rui − r̂ui)2 + λ

(
U∑
u=1

‖pu‖2 +

I∑
i=1

‖qi‖2 +

U∑
u=1

b2u +

I∑
i=1

a2i

)
. (2.2)

The left side of the objective represents the sum-squared error between the true ratings and the fitted ones.
The portion with coefficient λ penalizes parameters with large magnitude.

3 Fitting the Model

Note that the problem presented in (2.1) and (2.2) is non-linear because of the presence of p′uqi term. Also,
the objective function is not a simple sum of squared errors, because it includes a penalty component. A
further complication is that we have a minute fraction, perhaps in the order of one percent, of all the possible
user/movie combinations available in the dataset. We use a method known as Alternating Least Squares
(ALS) to fit this model for this data. As we shall see in the next section, ALS is effective in fitting this
model, and also amenable to simplifications to increase computational efficiency.

2



The ALS method is a learning algorithm that finds a line to best fit given data by estimating unknown
parameters for a collaborative filtering model of the form

y = Xβ + ε. (3.1)

In particular, ALS is used with non-linear regression models when solving for two dependent variables. The
method fixes one of the dependent parameters, while solving for the other, creating a linear least squares
problem. The method alternates solving for one parameter than the other. The least squares method obtains
the best linear unbiased estimator

β̂ = arg min
β
‖y −Xβ‖2, (3.2)

where the solution minimizes the sum of squared residuals [3]. The formulas for linear least squares fitting
were independently derived by Gauss and Legendre [6]. The Gauss-Markov Theorem (GMT) [5] states that
the best linear unbiased estimator for our least squares problem is given by

β̂ = (X ′X + λI)−1X ′y.

Recall our collaborative filtering model from (2.1); note that it is linear in µ, ai, bu, and pu for a fixed qi.
Thus, for a fixed qi the best linear unbiased estimate of µ, ai, bu, and pu can be determined by the GMT.
Similarly, the model is linear in µ, ai, bu, and qi for a fixed pu. Thus, for a fixed pu the best linear unbiased
estimate of µ, ai, bu, and qi can be determined by the GMT. In either case, to use the GMT we let β be a
vector of the unknown parameters, X be a corresponding design matrix containing of fixed quantities, and
y be a vector of the ratings. The ALS method is an iterative algorithm that alternates between solving for
pu and qi and updates the parameters until MSE converges within a given tolerance or the iteration count
reaches the maximum iterations. We introduce some notation needed for the ALS algorithm:

• U = total number of users
• I= total number of movies
• K = total number of ratings
• Nu = number of ratings given by user u
• Mi = number of ratings given by item i

We begin the ALS algorithm by filling the characteristic vectors qi with randomly generated real numbers
ranging from -10 to 10. The quantities µ, ai, bu, and yui are initialized by the following equations using the
ratings given in the test data set

µ̂ =
1

K

∑
U

∑
I

rui

âi =
1

Mi

∑
u∈Mi

rui − µ̂

b̂u =
1

Nu

∑
i∈Nu

rui − µ̂− ai

yui = rui − µ̂− âi − b̂u.

As stated above, the variable yui is created by subtracting a, b, and µ from the ratings. This is done as
an attempt to adjust these parameters out of the data in order to simplify our set of regression equations.
We then iterate between fixing qi’s and solving for pu’s, and fixing pu’s and solving for qi’s. Our algorithm
continues to iterate solving for pu and qi on the training data set until each parameter converges or the
tolerance and/or iteration maximum is met. We have not yet mentioned how λ is chosen. In practice a
cross-validation approach is taken, fitting the model for many values of λ against the training dataset to
obtain the best possible MSE on the test dataset.

Notice that the model simplifies when d = 0 and λ = 0. With these values, the pu’s and qi’s drop out,
and the objective function (2.2) becomes a simple sum of squared errors. In this case the algorithm should
converge in one step, although the fit will most likely not be adequate.

3



Algorithm 1 : ALS

Set up vectors yUsers, yItems, xq, and xp
Initialize µ, ai, bu, yui

while MSE has not converged and current iteration ¡ max iteration limit
Create qi vectors
Solve for pu vectors

Create pu vectors
Solve for qi vectors

Rescale each pu and qi vector
Update µ, ai, bu, yui
Find MSE

End

4 The Simulation

While the Netflix data was available to us, it did not come with a set of actual values for our model. In
order to verify the model, trials were run using simulated data sets. The data was generated from supplied
values of model parameters, according to Table 1. The data set contained four users and four movies,
treating the two characteristics “comedy” and “violence” as relevant. We selected four movies at different
ends of these spectrums: MacGruber, National Lampoon’s Christmas Vacation, Citizen Kane, and Platoon.
For the purpose of this simulation we consider all four movies to be of the same overall quality, and let
a1 = a2 = a3 = a4 = 0.1. MacGruber and Christmas Vacation are comedies, so we set p11 = p21 = 1 and
use p31 = p41 = −1 for the others. For the violence attribute, MacGruber and Platoon should rate higher
and so we set p12 = p42 = 1, and use p22 = p32 = −1 for the others. We also consider four users whose
preferences lie in the same areas of the comedy/violence spectrum, and whose rating biases are all the same
(so that b1 = b2 = b3 = b4 = 0.1). We select µ = 2.5 as the overall average rating. From this scenario, the
rating data is generated using

rui = µ+ ai + bu + p′uqi + εui (4.1)

for i = 1, . . . , 4 and u = 1, . . . , 4 where εui ∼ Normal(0, 0.252). We selected several (u, i) combinations as
missing, so that users have rated only two or three movies.

We considered fitting the collaborative filtering model with ALS using three dimensions for the charac-
teristic vectors, d = 0, 1, 2 (where d = 2 is the true dimension). For each dimension, we tried seven settings of
λ = 0, 0.1, 0.25, 0.5, 1, 2.5, 5. We refer to a particular (d, λ) combination as a “trial”. Within each trial, 1000
randomly generated datasets are fitted with ALS; each fitting is referred to as a “subtrial”. In each trial,
the objective function, root mean squared error (RMSE) and mean squared error (MSE) were calculated for
each parameter over 1000 subtrials. We expect that over many subtrials, the estimates for a good model will
converge to the true parameters.

4



Movie ai qi1 qi2 Movie Description
1. MacGruber 0.01 1 1 violent comedy
2. National Lampoon’s Christmas Vacation 0.01 1 −1 non-violent comedy
3. Citizen Kane 0.01 −1 −1 non-violent serious
4. Platoon 0.01 −1 1 violent serious

User bu pu1 pu2 Prefers
User 1 0.01 1 1 violent comedy
User 2 0.01 1 −1 non-violent comedy
User 3 0.01 −1 −1 non-violent serious
User 4 0.01 −1 1 violent serious

Table 1: Parameters used in simulation study

5 Results and Analysis

d λ Mean Objective Mean RMSE Mean µ

0

0 48.7843330675 1.73096991795 3.01058333333
0.1 46.7860519979 1.6914636907 3.02332277178
0.25 44.1894575468 1.64192204618 3.00700052275
0.5 42.540685789 1.60602735548 3.00280910282
1 40.0203143852 1.55313419535 3.00219719171

2.5 36.6101262155 1.48377639945 2.99616445802
5 35.4367768618 1.46322151755 3.01400997558

1

0 10452.8247662 6.80482261867 1.60749681235
0.1 83.2385124012 2.1631521211 2.87724708008
0.25 57.2037276259 1.78858656703 2.90859193791
0.5 45.3393432814 1.54979883199 2.9354429455
1 37.0654539134 1.320608357 2.97186741034

2.5 36.5377653684 1.26168824043 2.98552998725
5 35.5553635051 1.44833363009 3.02328137997

2

0 2180676.2075 31.9381276206 0.538571380193
0.1 18.8149231344 0.89733579881 2.97667080541
0.25 19.4429303548 0.883623869685 3.00881879105
0.5 21.3728896677 0.877922362362 2.97914871683
1 24.9975900034 0.892402383518 2.99989496699

2.5 34.0362271225 1.13010450647 3.01049998491
5 35.5495743718 1.44785066195 3.02405842536

5



When d is zero, as in the first set of trials, the average rating is based on a and b and the given rating. The
true value in this case for all a’s and b’s is 0.01. As such, µ is not very likely to fluctuate. Also, remember that
the goal of ALS is to minimize the objective function. The lowest objective function result in the d = 0 trial
set was 35.43. Also for these trials, the ALS function is solving very similar, though randomly-generated,
linear equations. Consequentially, the RMSE is quite stable, as well as inaccurate. Remember that RMSE
is the square root of the average error.

The second set of trials used p and q vectors of length 1. In this set and the final set, the parameters
fluctuate as a result of the p and q vectors, which are given random initial values. The objective function and
RMSE also increase with λ, but not uniformly. The change between λ = 0.5 and λ = 1 is more apparent than
λ = 2.5 and λ = 5. These parameters still are not quite accurate, as the objective function is always higher
than its d = 0 counterpart. This is likely because that p and q are scalar values attempting to approximate
a vector.

The final seven trials were ran at the true dimension of p and q, d = 2. These trials also reported a better
objective function and RMSE for similar λ values than the other trial sets. The only case in which this is not
true is λ = 0, where none of the results are accurate. As usual, objective function values and RMSE increase
with λ. Note trial number 2 (λ = 0.1), which seemingly has the best balance between objective function
and µ. It may be possible that this trial is a prime example of ”overfitting” parameters to a dataset. At the
same time, it is also possible the λ = 0.1 provides a better general approximation for the regression.

For each trial set, λ = 0 always reported the worst objective function. This is because of the nature of
our objective function. Defined earlier, a quick look at equation 2.2 shows how λ = 0 cancels out a significant
portion of the objective function. Something else to observe is the final trial for each set. At λ = 5, the
accuracy of a and b is extremely great, and the MSE for p and q vectors remains the same throughout. At
the same time, the increase in objective function value and RMSE is not too great from the previous trial.
Lastly, the MSE of µ, the objective function and RMSE is the same for λ = 5, despite the change in d.

6 Conclusions

Through close work with Dr. Bell, a member of the winning team and the guidance of our mentors, we
built a fairly accurate model. Constructing it completely from scratch made us familiar with the underlying
framework, which made this study possible. From the results of these small data set trials, the Alternating
Least Squares algorithm accurately approximates the parameters in our model. Using the different dimen-
sions of d also confirmed that using the true dimension is important in fitting the model. For future work,
we would like to test with a larger data set, as well as a randomized data set.

6



Acknowledgements

Within the High Performance Computing Center at UMBC, we have available a system called Tara to run
our parallelized code. Completed and installed in 2009, Tara is a 86-node distributed-memory cluster with
two quad-core Intel Nehalem processors: one front end node, one management node, two development nodes,
and 82 compute nodes. We communicate directly with the front end node, which then sends our task to
available processors on the compute nodes. Each node has 24 GB of memory, an InfiniBand interconnect,
and 160 terabytes of central storage [2].

References

[1] R. Bell and Y. Koren, ”Matrix Factorization Techniques for Recommender Systems,” IEEE Inter-
national Conference on Data Mining Workshops, 2009.

[2] www.umbc.edu/hpcf, 2010.

[3] Yehuda Koren, Robert Bell and Chris Volinsky, ”Matrix Factorization Techniques for Recom-
mender Systems,” IEEE Vol. 0018-9162, pp.42-49, 2009.

[4] Robert Bell, ”Matrix Factorization for Recommender Systems,” presentation at UMBC, 2010.

[5] Jia Li, ”Linear, Ridge Regression, and Principal Component Analysis,” www.stat.psu.edu/jiali.

[6] Eric W. Weisstein, ”Least Squares Fitting,” From MathWorld–A Wolfram Web Resource. www.

mathworld.wolfram.com/LeastSquaresFitting.html, 2010.

7

www.umbc.edu/hpcf
www.stat.psu.edu/jiali
www.mathworld.wolfram.com/LeastSquaresFitting.html
www.mathworld.wolfram.com/LeastSquaresFitting.html

	Introduction
	The Model
	Fitting the Model 
	The Simulation
	Results and Analysis
	Conclusions

