
IDL: A Possible Alternative to Matlab?
Ecaterina Coman

Department of Mathematics and Statistics, University of Maryland, Baltimore County

Senior Thesis, Spring 2012

Thesis mentor Dr. Matthias K.Gobbert

Abstract

Created by Exelis Visual Information Solutions, IDL (Interactive Data Language) is
a commercial package used for data analysis. We compared the usability and efficiency
of IDL to that of Matlab to determine if IDL is a viable substitute. Two studies were
performed for this analysis. The first, a basic test inspired by the CIRC Tutorial for
Basic Matlab, consisted of solving a system of linear equations using basic operations,
computing eigenvalues and eigenvectors, and creating two-dimensional plots. It showed
identical results between the two packages, though it is important to note that the
syntax and display of output between IDL and Matlab differs greatly. The second test
focused on direct and iterative solutions of a large sparse system of linear equations.
This system arises from the finite difference discretization of the Poisson equation
with homogeneous Dirichlet boundary conditions and is prototypical for linear systems
in many related contexts. In Matlab, Gaussian elimination was used as the direct
method of solving the Poisson test problem. Unfortunately, such a method was not
available with our license of IDL to solve sparse systems as it required a more expensive
IDL Analyst License. Originally, we aimed to solve the problem iteratively using the
conjugate gradient method, but, though a function was available in Matlab for solving
a sparse system this way, none existed in IDL. Instead, we turned to the biconjugate
gradient method. The numerical results of this method in IDL are identical to those in
Matlab, but IDL runs the code slightly faster for finer meshes. Those looking to make a
switch from Matlab to IDL might have a difficult time encountering a different syntax,
output display, and the need for a more expensive license to run a larger breadth of
functions or procedures, but if efficiency is of concern, IDL can potentially be faster
than Matlab.

1 Introduction

1.1 Overview

There are several numerical computational packages that serve as educational tools and are
also available for commercial use. Matlab is the most widely used such package. The focus of
this study is to introduce an additional numerical computational package, IDL, and provide
information on whether or not this package is compatible to Matlab and can be used as
an alternative. Section 1.3 provides a more detailed description of these two packages. To
evaluate IDL, a comparative approach is used based on a Matlab user’s perspective. To
achieve this task, we perform some basic and some complex studies on Matlab and IDL.

1

The basic studies include basic operations solving systems of linear equations, computing
the eigenvalues and eigenvectors of a matrix, and two-dimensional plotting. The complex
studies include direct and iterative solutions of a large sparse system of linear equations
resulting from finite difference discretization of an elliptic test problem.

In Section 2, we perform the basic operations test using Matlab and IDL. This includes
testing the backslash operator, computing eigenvalues and eigenvectors, and plotting in two
dimensions. The backslash operator works easily in Matlab to produce a solution to the
linear system given. Instead of the backslash operator, the LUDC and LUSOL commands
are used in IDL to compute the LU decomposition and use its result to solve the system.
The command eig computes eigenvalues and eigenvectors in Matlab, whereas IDL requires
a three-step process. IDL uses ELMHES to reduce the matrix to upper Hessenberg format,
and then HQR to compute the eigenvalues. Given the eigenvalues, EIGENVEC then gives the
eigenvectors. Plotting is another important feature we analyze by an m-file containing the
two-dimensional plot function along with some common annotation commands. Like Matlab,
IDL uses a basic plot command to create the 2D plot, but one has to use quite different,
but equivalent commands for annotation.

Section 3 introduces a common test problem, given by the Poisson equation with homo-
geneous Dirichlet boundary conditions, and discusses the finite discretization for the problem
in two dimensional space. In the process of finding the solution, we use a direct method,
Gaussian elimination, and an iterative method, the biconjugate gradient method. To be able
to analyze the performance of these methods, we solve the problem on progressively finer
meshes. The Gaussian elimination method built into the backslash operator successfully
solves the problem up to a mesh resolution of 4,096 × 4,096 in Matlab, but in IDL there
does not exist a Gaussian elimination method for sparse matrices without an expensive IDL
Analyst license. For this reason, the IDL Gaussian elimination test was not conducted. We
had originally planned a comparison using the conjugate gradient iterative method in both
Matlab and IDL, but such a method did not exist in IDL for solving sparse systems. For this
reason, the biconjugate gradient method was used in both packages for comparison. The
biconjugate gradient method is available in the bicg function in Matlab and in IDL through
the command LINBCG. The sparse matrix implementation of the iterative method allows us
to solve a mesh resolution up to 8,192× 8,192 in Matlab and IDL. The existence of the mesh

in Matlab allows us to include the three-dimensional plots of the numerical solution and the
numerical error. In IDL, the SURFACE plots match those of Matlab. IDL showed to be quite
different from Matlab when considering syntax. Many of the commands were either entirely
unavailable for our license (kron) or had to be applied differently (no backslash operator
resulted in the use of LUDC and LUSOL, and the lack of an eig function led to the use of
ELMHES, HQR, and EIGENVEC). The tests focused on usability lead us to conclude that the
package is not too compatible with Matlab, since it does not use the same syntax and some
functions are not available. Is it important to note that, even though syntax is different,
IDL is able to solve the same problems as Matlab.

Fundamentally, Matlab and IDL turn out to be able to solve complex problems of the
same size, as measured by the mesh resolution of the problem. Matlab and IDL also took
about the same time to solve the problem, though IDL was slightly faster. The data that

2

these conclusions are based on are summarized in Tables 3.1 and 3.2.
The next section contains some additional remarks on features of the software packages

that might be useful, but go beyond the tests performed in Sections 2 and 3. Sections 1.3
and 1.4 describe the two numerical computational packages in more detail and specify the
computing environment used for the computational experiments, respectively.

1.2 Additional Remarks: Ordinary Differential Equations

One important feature to test would be the ODE solvers in the packages under considera-
tion. For non-stiff ODEs, Matlab has three solvers: ode113, ode23, and ode45 implement an
Adams-Bashforth-Moulton PECE solver and explicit Runge-Kutta formulas of orders 2 and
4, respectively. For stiff ODEs, Matlab has four ODE solvers: ode15s, ode23s, ode23t, and
ode23tb implement the numerical differentiation formulas, a Rosenbrock formula, a trape-
zoidal rule using a “free” interpolant, and an implicit Runge-Kutta formula, respectively.

With the availability of an IDL Analyst License, IDL also has ODE solvers. For a possibly
stiff ODE, IMSL_ODE implements the Adams-Gear method. If known that the problem is not
stiff, a keyword to this command can use the Runge-Kutta-Verner methods or orders 4 and 6
instead. There also exist outside functions, such as DDEABM written by Craig Markwardt using
an adaptive Adams-Bashford-Moulton method to solve primarily non-stiff and mildly stiff
ODE problems or RunKut_step written by Frank Varosi using a fourth order Runge-Kutta
method.

It becomes clear that all software packages considered have at least one solver. Matlab
and IDL have state-of-the-art variable-order, variable-timestep methods for both non-stiff
and stiff ODEs available, with Matlab’s implementation being the richest and its stiff solvers
being possibly more efficient.

1.3 Description of the Packages

1.3.1 Matlab

“MATLAB is a high-level language and interactive environment that enables one to perform
computationally intensive tasks faster than with traditional programming languages such
as C, C++, and Fortran.” The web page of the MathWorks, Inc. at www.mathworks.

com states that Matlab was originally created by Cleve Moler, a Numerical Analyst in the
Computer Science Department at the University of New Mexico. The first intended usage of
Matlab, also known as Matrix Laboratory, was to make LINPACK and EISPACK available
to students without facing the difficulty of learning to use Fortran. Steve Bangert and Jack
Little, along with Cleve Moler, recognized the potential and future of this software, which led
to establishment of MathWorks in 1983. As the web page states, the main features of Matlab
include high-level language; 2-D/3-D graphics; mathematical functions for various fields;
interactive tools for iterative exploration, design, and problem solving; as well as functions
for integrating MATLAB-based algorithms with external applications and languages. In
addition, Matlab performs the numerical linear algebra computations using for instance
Basic Linear Algebra Subroutines (BLAS) and Linear Algebra Package (LAPACK).

3

1.3.2 IDL

IDL (Interactive Data Language) was created by Exelis Visual Information Solutions, for-
merly ITT Visual Information Solutions. The webpage for Exelis at www.exelisvis.com

states that IDL can be used to create meaningful visualizations out of complex numerical
data, processing large amounts of data interactively. IDL is an array-oriented, dynamic
language with support for common image formats, hierarchical scientific data formats, and
.mp4 and .avi video formats. IDL also has functionality for 2D/3D gridding and interpola-
tion, routines for curve and surface fitting, and the capability of performing multi-threaded
computations.

IDL can be run on Windows, Mac OS X, Linux, and Solaris platforms. It can be
downloaded from the Exelis webpage at http://www.exelisvis.com/language/en-US/

Downloads/ProductDownloads.aspx after registering.

1.4 Description of the Computing Environment

The computations for this study are performed using Matlab R2011a and IDL 8.1 under the
Linux operating system Redhat Enterprise Linux 5. The Cluster tara in the UMBC High
Performance Computing Facility (www.umbc.edu/hpcf) is used to carry out the computa-
tions and has a total of 86 nodes, with 82 used for computation. Each node features two
quad-core Intel Nehalem X5550 processors (2.66 GHz, 8,192 kB cache per core) with 24 GB
of memory.

4

2 Basic Operations Test

This section examines a collection of examples inspired by some basic mathematics courses.
This set of examples was originally developed for Matlab by the Center for Interdisciplinary
Research and Consulting (CIRC). More information about CIRC can be found at www.umbc.
edu/circ. This section focuses on the testing of basic operations using Matlab and IDL.
We will first begin by solving a linear system; then finding eigenvalues and eigenvectors of a
square matrix; and finally, 2-D functional plotting.

2.1 Basic operations in Matlab

This section discusses the results obtained using Matlab operations. To run Matlab on
the cluster tara, enter matlab at the Linux command line. This starts up Matlab with its
complete Java desktop interface. Useful options to Matlab on tara include -nodesktop,
which starts only the command window within the shell, and -nodisplay, which disables
all graphics output. For complete information on options, use matlab -h.

2.1.1 Solving Systems of Equations

The first example that we will consider in this section is solving a linear system. Consider
the system of equations

−x2 + x3 = 3,

x1 − x2 − x3 = 0,

−x1 − x3 = −3,

whose solution is (1,−1, 2)T . In order to use Matlab to solve this system, let us express this
linear system as a single matrix equation

Ax = b (2.1)

where A is a square matrix consisting of the coefficients of the unknowns, x is the vector of
unknowns, and b is the right-hand side vector. For this particular system, we have

A =

 0 −1 1
1 −1 −1
−1 0 −1

 , b =

 3
0
−3

 .

To find a solution for this system in Matlab, left divide (2.1) by A to obtain x = A\b. Hence,
Matlab use the backslash operator to solve this system. First, the matrix A and vector b are
entered using the following:

A = [0 -1 1; 1 -1 -1; -1 0 -1]

b = [3;0;-3].

5

Now use x = A\b to solve this system. The resulting vector which is assigned to x is:

x =

1

-1

2

Notice the solution is exactly what was expected based on our hand computations.

2.1.2 Calculating Eigenvalues and Eigenvectors

Here, we will consider another important function: computing eigenvalues and eigenvectors.
Finding the eigenvalues and eigenvectors is a concept first introduced in a basic Linear
Algebra course and we will begin by recalling the definition. Let A ∈ Cn×n and v ∈ Cn. A
vector v is called the eigenvector of A if v 6= 0 and Av is a multiple of v; that is, there exists
a λ ∈ C such that

Av = λv

where λ is the eigenvalue of A associated with the eigenvector v. We will use Matlab to
compute the eigenvalues and a set of eigenvectors of a square matrix. Let us consider a
matrix

A =

[
1 −1
1 1

]
which is a small matrix that we can easily compute the eigenvalues to check our results.
Calculating the eigenvalues using det(A − λI) = 0 gives 1 + i and 1 − i. Now we will use
Matlab’s built in function eig to compute the eigenvalues. First enter the matrix A and
then calculate the eigenvalues using the following commands:

A = [1 -1; 1 1];

v = eig(A)

The following are the eigenvalues that are obtained for matrix A using the commands stated
above:

v =

1.0000 + 1.0000i

1.0000 - 1.0000i

To check if the components of this vector are identical to the analytic eigenvalues, we can
compute

v - [1+i;1-i]

and it results in

ans =

0

0

6

This demonstrates that the numerically computed eigenvalues have in fact the exact integer
values for the real and imaginary parts, but Matlab formats the output for general real
numbers.

In order to calculate the eigenvectors in Matlab, we will still use the eig function by
slightly modifying it to [P,D] = eig(A) where P will contain the eigenvectors of the square
matrix A and D is the diagonal matrix containing the eigenvalues on its diagonals. In this
case, the solution is:

P =

0.7071 0.7071

0 - 0.7071i 0 + 0.7071i

and

D =

1.0000 + 1.0000i 0

0 1.0000 - 1.0000i

It is the columns of the matrix P that are the eigenvectors and the corresponding diagonal
entries of D that are the eigenvalues, so we can summarize the eigenpairs as(

1 + i,

[
0.7071

0− 0.7071i

])
,

(
1− i,

[
0.7071

0 + 0.7071i

])
.

Calculating the eigenvector enables us to express the matrix A as

A = PDP−1 (2.2)

where P is the matrix of eigenvectors and D is a diagonal matrix as stated above. To
check our solution, we will multiply the matrices generated using eig(A) to reproduce A as
suggested in (2.2).

A = P*D*inv(P)

produces

A=

1 -1

1 1

where inv(P) is used to obtain the inverse of matrix P . Notice that the commands above
lead to the expected solution, A.

7

(a) (b)

Figure 2.1: Plots of f(x) = x sin(x2) in Matlab using (a) 129 and (b) 1025 equally spaced
data points.

2.1.3 2-D Plotting

2-D plotting is a very important feature as it appears in all mathematical courses. Since
this is a very commonly used feature , let us examine the 2-D plotting feature of Matlab
by plotting f(x) = x sin(x2) over the interval [−2π, 2π]. The data set for this function
is given in the data file matlabdata.dat and is posted along with the tech. report [3] at
www.umbc.edu/hpcf under Publications. Noticing that the data is given in two columns,
we will first store the data in a matrix A. Second, we will create two vectors, x and y, by
extracting the data from the columns of A. Lastly, we will plot the data.

A = load (’matlabdata.dat’);

x = A(:,1);

y = A(:,2);

plot(x,y)

The commands stated above result in the Figure 2.1 (a). Looking at this figure, it can be
noted that our axes are not labeled; there are no grid lines; and the peaks of the curves are
rather coarse. The title, grid lines, and axes labels can be easily created. Let us begin by
labeling the axes using xlabel(’x’) to label the x-axis and ylabel(’f(x)’) to label the
y-axis. axis on and grid on can be used to create the axis and the grid lines. The axes
are on by default and we can turn them off if necessary using axis off. Let us also create
a title for this graph using title (’Graph of f(x)=x sin(x^2)’). We have taken care of
the missing annotations and lets try to improve the coarseness of the peaks in Figure 2.1 (a).
We use length(x) to determine that 129 data points were used to create the graph of f(x).
To improve this outcome, we can begin by improving our resolution using

x = [-2*pi : 4*pi/1024 : 2*pi];

to create a vector 1025 equally spaced data points over the interval [−2π, 2π]. In order to
create vector y consisting of corresponding y values, use

8

y = x .* sin(x.^2);

where .* performs element-wise multiplication and .^ corresponds to element-wise array
power. Then, simply use plot(x,y) to plot the data. Use the annotation techniques men-
tioned earlier to annotate the plot. In addition to the other annotations, use
xlim([-2*pi 2*pi]) to set limit is for the x-axis. We can change the line width to 2 by
plot(x,y,’LineWidth’,2). Finally, Figure 2.1 (b) is the resulting figure with higher resolu-
tion as well as the annotations. Observe that by controlling the resolution in Figure 2.1 (b),
we have created a smoother plot of the function f(x). The Matlab code used to create the
annotated figure is as follows:

x = [-2*pi : 4*pi/1024 : 2*pi];

y = x.*sin(x.^2);

H = plot(x,y);

set(H,’LineWidth’,2)

axis on

grid on

title (’Graph of f(x)=x sin(x^2)

xlabel (’x’)

ylabel (’f(x)’)

xlim ([-2*pi 2*pi])

2.1.4 Programming

Here we will look at a basic example of Matlab programming using a script file. Let’s try
to plot Figure 2.1 (b) using a script file called plotxsinx.m. The extension .m indicates to
Matlab that this is an executable m-file. Instead of typing multiple commands in Matlab,
we will collect these commands into a script. Now, call the script from the command-line to
execute it and create the plot with the annotations for f(x) = x sin(x2). The plot obtained
in this case is Figure 2.1 (b). This plot can be printed to a graphics file using the command

print -djpeg file_name_here.jpg

2.2 Basic operations in IDL

In this section, we will perform the basic operations using IDL. From the command line,
enter idl to run the package in command line mode, or idlde to run the full development
environment. To enter IDL online help, use idlhelp from the Linux command line or ? at
the IDL command line.

We will again begin by solving the linear system Ax = b as in Section 2.1.1. Create the
matrices in IDL using the commands

A=[[0.0,-1.0,1.0],[1.0,-1.0,-1.0],[-1.0,0.0,-1.0]]

b=[3.0,0.0,-3.0]

9

Unlike Matlab, IDL does not have a dedicated backslash command to solve systems of linear
equations. Instead, IDL uses the LUDC procedure along with the LUSOL function. The LUDC

procedure finds the LU decomposition of the matrix of equations and outputs a permutation
matrix. Following the LUDC procedure, the LUSOL function is called, with inputs including
the matrix A, the vector of row permutations, and the column vector b. All matrices must
be of type float or double to run the LUDC and LUSOL commands, and b must be a column
vector to run LUDC. The following commands will solve the system of equations:

LUDC,A,index

x=LUSOL(A,index,b)

Here, index is an input vector that LUDC creates which contains a record of the row
permutations. These commands give a result

1.00000 -1.00000 2.00000

which is a row representation of the solution vector

x =

 1.00000
−1.00000

2.00000

and is consistent with the manual calculations and previous computational software results.

Next, let us consider the operation of computing eigenvalues and eigenvectors. We will use
the matrix A introduced in Section 2.1.2. We will first use IDL’s ELMHES function to reduce
the matrix A to upper Hessenberg format, after which we will compute the eigenvalues of
this new, upper Hessenberg matrix using the IDL function HQR. To compute eigenvectors and
residuals, we will use the EIGENVEC function which takes inputs of the matrix A and the new
matrix of eigenvalues, and outputs the residual. The commands to obtain the eigenvalues
and eigenvectors are the following:

A=[[1.0,-1.0],[1.0,1.0]]

hesA = ELMHES(A)

eval = HQR(hesA)

evec = EIGENVEC(A,eval, /DOUBLE, RESIDUAL=residual)

The eigenvalues calculated by HQR are

(1.00000, -1.00000)(1.00000,1.00000)

and the eigenvectors are

(0.70710678,1.7677670e-21)(1.7677670e-21,0.70710678)

(-1.7677670e-21,0.70710678)(0.70710678,-1.7677670e-21)

10

(a) (b)

Figure 2.2: Plots of f(x) = x sin(x2) in IDL using (a) 129 and (b) 1025 equally spaced data
points.

IDL outputs complex numbers in parentheses, with the first number being the real part and
the second the imaginary part. So, if we consider double-precision floating-point numbers on
the scale of 10−21 as 0, then the above output specifies the following eigenpairs in standard
mathematical notation for complex numbers and rounded to fewer digits:(

1− i,

[
0.7071
0.7071i

])
,

(
1 + i,

[
0.7071i
0.7071

])
.

IDL outputs each eigenvector as a row vector, which is very different in appearance from
the output produced by the other packages whose output is based on the matrix P, whose
columns are the eigenvectors. We notice that the eigenvalues were output in reverse order
than by Matlab. Taking this into account and also noting that multiplying by −i shows
[0.7071i, 0.7071]T = [0.7071,−0.7071i]T , we see that the eigenpairs are the same as those
computed by Matlab.

We are able to express the matrix A as PDP−1, where P is the matrix of eigenvectors and
D is the diagonal matrix of eigenvalues, to reproduce the matrix A. Remembering that IDL
outputs eigenvectors as row vectors, we turn the output matrix of eigenvectors into the matrix
P by taking the transpose with the command P=transpose(evec) then use INVERT(P) to
obtain the inverse of P . To create D, we create a matrix with the eigenvalues on the diagonal.
This can easily be created with the command D=[[eval[0],0],[0,eval[1]]], which takes
the complex values in the vector of eigenvalues found using HQR and puts them on the
diagonal. In IDL, the ## operator is used for matrix multiplication, and computing PDP−1

with the command P##diag##invert(P) gives a result of

(1.00000000,-0.00000000)(-1.00000000,0.00000000)

(1.00000000,0.00000000)(1.00000000,0.00000000)

which is A to at least 8 significant digits.
Next, we will examine the similarities between the plotting commands using f(x) =

x sin(x2). To obtain data from a file, the following commands will get the number of lines in

11

the file and create a two-column double-type array to hold the data, open the file and create
a logical unit number which will be associated with that opened file, read the data into the
double array, and close the file and free the logical unit number:

nlines=FILE_LINES(’matlabdata.dat’)

data=DBLARR(2,nlines)

openr, lun, ’matlabdata.dat’, /get_lun

readf, lun, data

free_lun, lun

Using x=data(0,*) and y=data(1,*) will create vectors x and y The plot procedure,
PLOT, x, y will then create Figure 2.2 (a) using vectors x and y. These commands have an
obvious agreement to the LOAD and PLOT commands in matlab as Figure 2.2 (a) is the same
as Figure 2.1 (a). To annotate this graph, use the TITLE command to add a graph title, the
XTITLE and YTITLE commands to add a horizontal and vertical axis title, respectively. To
create a grid, we use XTICKLEN and YTICKLEN and edit the line style using XGRIDSTYLE and
YGRIDSTYLE. Now, we want to have a smoother graph made of more equally spaced data
points. We create a second vector x using x=(4*!pi)*FINDGEN(1025)/1024 - (2*!pi),
where FINDGEN creates an array of 1025 values from 0 to 1024, to get a range of numbers
from −2π to 2π at intervals of pi. Using this new x, make the vector y with the command
y=x*sin(x^2). This annotated data can be plotted using

PLOT, x, y, XSTYLE=1, THICK=2, TITLE=’Graph of f(x)=xsin(x!E2!N)’, $

XTITLE=’x’, YTITLE=’f(x)’,XTICKLEN=1.0, YTICKLEN=1.0,$

XGRIDSTYLE=1, YGRIDSTYLE=1

The command XSTYLE=1 makes sure IDL is displaying the exact interval, as it normally wants
to produce even tick marks which create a wider range than desired. Also, the command
THICK changes the thickness of the grid lines and $ is the line continuation character. This
annotated plot procedure generates Figure 2.2 (b). These commands can all be placed into
a procedure file, which can run them all at once from the IDL command line. To save this
plot to a jpg file, save the contents of the current Direct Graphics window into a variable
and write that variable using

image=tvrd()

write_jpeg, ’filename.jpg’, image

12

3 Complex Operations Test

3.1 The Test Problem

Starting in this section, we study a classical test problem given by the numerical solution with
finite differences for the Poisson problem with homogeneous Dirichlet boundary conditions [1,
4, 5, 9], given as

−4u = f in Ω,
u = 0 on ∂Ω.

(3.1)

This problem was studied before in, among other sources, [1,3,4,6–9]. Here ∂Ω denotes the
boundary of the domain Ω while the Laplace operator is defined as

4u =
∂2u

∂x2
+

∂2u

∂y2
.

This partial differential equation can be used to model heat flow, fluid flow, elasticity, and
other phenomena [9]. Since u = 0 at the boundary in (3.1), we are looking at a homogeneous
Dirichlet boundary condition. We consider the problem on the two-dimensional unit square
Ω = (0, 1)× (0, 1) ⊂ R2. Thus, (3.1) can be restated as

−∂2u
∂x2 − ∂2u

∂y2 = f(x, y) for 0 < x < 1, 0 < y < 1,

u(0, y) = u(x, 0) = u(1, y) = u(x, 1) = 0 for 0 < x < 1, 0 < y < 1,
(3.2)

where the function f is given by

f(x, y) = −2π2 cos(2πx) sin2(πy)− 2π2 sin2(πx) cos(2πy).

The problem is designed to admit a closed-form solution as the true solution

u(x, y) = sin2(πx) sin2(πy).

3.2 Finite Difference Discretization

Let us define a grid of mesh points Ωh = (xi, yj) with xi = ih, i = 0, . . . , N + 1, yj = jh, j =
0, . . . , N + 1 where h = 1

N+1
. By applying the second-order finite difference approximation

to the x-derivative at all the interior points of Ωh, we obtain

∂2u

∂x2
(xi, yi) ≈

u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2
. (3.3)

If we also apply this to the y-derivative, we obtain

∂2u

∂y2
(xi, yi) ≈

u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

h2
. (3.4)

13

Now, we can apply (3.3) and (3.4) to (3.2) and obtain

− u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2

− u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

h2
≈ f(xi, yj).

(3.5)

Hence, we are working with the following equations for the approximation ui,j ≈ u(xi, yj):

−ui−1,j − ui,j−1 + 4ui,j − ui+1,j − ui,j+1 = h2fi,j i, j = 1, . . . , N
u0,j = ui,0 = uN+1,j = ui,N+1 = 0

(3.6)

The equations in (3.6) can be organized into a linear system Au = b of N2 equations for
the approximations ui,j. Since we are given the boundary values, we can conclude there are
exactly N2 unknowns. In this linear system, we have

A =

S −I
−I S −I

.

−I S −I
−I S

 ∈ RN2×N2

,

where

S =

4 −1
−1 4 −1

.

−1 4 −1
−1 4

 ∈ RN×Nand I =

1

1
. . .

1
1

 ∈ RN×N

and the right-hand side vector bk = h2fi,j where k = i+(j−1)N . The matrix A is symmetric
and positive definite [4, 9]. This implies that the linear system has a unique solution and
it guarantees that the iterative Krylov subspace methods converge, of which the conjugate
gradient method as well as the biconjugate gradient method are examples.

To create the matrix A in Matlab effectively, we use the observation that it is given by a
sum of two Kronecker products [4, Section 6.3.3]: Namely, A can be interpreted as the sum

A =

T

T
. . .

T
T

 +

2I −I
−I 2I −I

.

p −I 2I −I
−I 2I

 ∈ RN2×N2

,

where

T =

2 −1
−1 2 −1

.

−1 2 −1
−1 2

 ∈ RN×N

14

and I is the N ×N identity matrix, and each of the matrices in the sum can be computed
by Kronecker products involving T and I, so that A = I ⊗ T + T ⊗ I.

One of the things to consider to confirm the convergence of the finite difference method is
the finite difference error. The finite difference error is defined as the difference between the
true solution u(x, y) and the numerical solution uh defined on the mesh points by uh(xi, yj) =
ui,j. Since the solution u is sufficiently smooth, we expect the finite difference error to
decrease as N gets larger and h = 1

N+1
gets smaller. Specifically, the finite difference theory

predicts that the error will converge as ‖u− uh‖L∞(Ω)
≤ C h2, as h → 0, where C is a

constant independent of h [2, 5]. For sufficiently small h, we can then expect that the ratio
of errors on consecutively refined meshes behaves like

Ratio =
‖u− u2h‖
‖u− uh‖

≈ C (2h)2

C h2
= 4 (3.7)

Thus, we will print this ratio in the following tables in order to confirm convergence of the
finite difference method.

3.3 Matlab Results

3.3.1 Gaussian Elimination

Let us begin solving the linear system arising from the Poisson problem by Gaussian elimina-
tion in Matlab. We know that this is easiest approach for solving linear systems for the user
of Matlab, although it may not necessarily be the best method for large systems. To create
matrix A, we make use of the Kronecker tensor product, as described in Section 3.2. This
can be easily implemented in Matlab using the kron function. The matrix A is stored in
sparse storage mode, which does not store the zeros in the matrix. The system is then solved
using the backslash operator. Figure 3.1 shows the results of this for a mesh with N = 32.

(a) (b)

Figure 3.1: Mesh plots for N = 32 in Matlab (a) of the numerical solution and (b) of the
numerical error.

15

Table 3.1: Convergence results for the test problem in Matlab using (a) Gaussian elimination
and (b) the biconjugate gradient method. The tables list the mesh resolution N , the number
of degrees of freedom (DOF), the finite difference norm ‖u− uh‖L∞(Ω)

, the ratio of consecutive
errors, and the observed wall clock time in HH:MM:SS.

(a) Gaussian Elimination
N DOF ‖u− uh‖ Ratio Time
32 1,024 3.0128e-3 N/A <00:00:01
64 4,096 7.7812e-4 3.8719 <00:00:01

128 16,384 1.9766e-4 3.9366 <00:00:01
256 65,536 4.9807e-5 3.9685 <00:00:01
512 262,144 1.2501e-5 3.9843 00:00:01

1,024 1,048,576 3.1313e-6 3.9923 00:00:31
2,048 4,194,304 7.8362e-7 3.9959 00:00:27
4,096 16,777,216 1.9610e-7 3.9960 00:02:07
8,192 out of memory

(b) Biconjugate Gradient Method
N DOF ‖u− uh‖ Ratio #iter Time
32 1,024 3.0128e-3 N/A 48 <00:00:01
64 4,096 7.7811e-4 3.8719 96 <00:00:01

128 16,384 1.9765e-4 3.9368 192 <00:00:01
256 65,536 4.9797e-5 3.9690 387 00:00:02
512 262,144 1.2494e-5 3.9856 783 00:00:18

1,024 1,048,576 3.1266e-6 3.9961 1,581 00:02:07
2,048 4,194,304 7.8019e-7 4.0075 3,192 00:20:38
4,096 16,777,216 1.9366e-7 4.0286 6,452 02:34:19
8,192 67,777,216 4.7400e-8 4.0857 13,033 21:31:20

Figure 3.1 (a) shows the mesh plot of the numerical solution vs. (x, y). The error at each
mesh point is computed by subtracting the numerical solution from the analytical solution
and is plotted in Figure 3.1 (b). Notice that the maximum error occurs at the center.

Table 3.1 (a) shows the results of a study for this problem using Gaussian elimination
with mesh resolutions N = 2ν for ν = 1, 2, 3, . . . , 13. The table lists the mesh resolution N ,
the number of degrees of freedom (DOF) N2, the norm of the finite difference error ‖u− uh‖ ,
the ratio of consecutive error norms (3.7), and the observed wall clock time in HH:MM:SS.

The norms of the finite difference errors clearly go to zero as the mesh resolution N
increases. The ratios between error norms for consecutive rows in the table tend to 4, which
confirms that the finite difference method for this problem is second-order convergent with
errors behaving like h2, as predicted by the finite difference theory. By looking at this table,
it can be concluded that Gaussian elimination runs out of memory for N = 8,192. Hence,

16

we are unable to solve this problem for N larger than 4,096 via Gaussian elimination. This
leads to the need for another method to solve larger systems. Thus, we will use an iterative
method to solve this linear system.

3.3.2 Biconjugate Gradient Method

Now, we use the biconjugate gradient method to solve the Poisson problem [1, 9]. This
iterative method is an alternative to using Gaussian elimination to solve a linear system and
is accomplished by replacing the backslash operator by a call to the bicg function. We use
the zero vector as the initial guess and a tolerance of 10−6 on the relative residual of the
iterates.

Table 3.1 (b) shows results of a study using the biconjugate gradient method with the
system matrix A in sparse storage mode. The column #iter lists the number of iterations
taken by the iteration method to converge. The finite difference error shows the same
behavior as in Table 3.1 (a) with ratios of consecutive errors approaching 4 as for Gaussian
elimination; this confirms that the tolerance on the relative residual of the iterates is tight
enough.

Tables 3.1 (a) and (b) indicate that Gaussian elimination is faster than the biconjugate
gradient method in Matlab, whenever it does not run out of memory. For problems greater
than 4,096, the results show that the biconjugate gradient method is able to solve for larger
mesh resolutions.

3.4 IDL Results

3.4.1 Gaussian Elimination

Unfortunately, there is no function or routine in IDL written to compute Gaussian elimina-
tion for sparse matrices without the purchase of a separate license. With the IDL Analyst
license, IMSL_SP_LUSOL or IMSL_SP_BDSOL can be used to solve a sparse system of linear
equations in various storage modes.

3.4.2 Biconjugate Gradient Method

No function or routine exists in the basic IDL license to compute the conjugate gradient
method to solve the Poisson problem. With an extra IDL Analyst license, the routine
IMSL_SP_CG is available to solve a real symmetric definite linear system using a conjugate
gradient method. As this routine is not available with our current license, we will use
the biconjugate gradient method available instead. The biconjugate gradient method is an
iterative method which can replace the use of LU decomposition in IDL with the LINBCG

function. The zero vector is used as our initial guess. We also set the keyword ITOL=1,
specifying to stop the iteration when |Ax−b|/|b| is less than the tolerance. This convergence
test with the tolerance 10−6 matches those used in the other languages.

To create the matrix A, we use three arrays holding the column and row locations, and
the specific values at those locations, in the SPRSIN function to create a sparse matrix A.

17

Table 3.2: Convergence results for the test problem in IDL using the biconjugate gradient
method. The tables list the mesh resolution N , the number of degrees of freedom (DOF),
the finite difference norm ‖u− uh‖L∞(Ω)

, the ratio of consecutive errors, and the observed
wall clock time in HH:MM:SS.

Biconjugate Gradient Method
N DOF ‖u− uh‖ Ratio #iter Time
32 1,024 0.0030128 N/A 48 <00:00:01
64 4,096 7.7811e-4 3.8719 96 <00:00:01

128 16,384 1.9764e-4 3.9368 192 <00:00:01
256 65,536 4.9798e-5 3.9690 387 00:00:01
512 262,144 1.2494e-5 3.9856 783 00:00:12

1,024 1,048,576 3.1267e-6 3.9961 1,581 00:01:55
2,048 4,194,304 7.8029e-7 4.0070 3,192 00:16:28
4,096 16,777,216 1.9395e-7 4.0232 6,452 02:22:06
8,192 67,777,216 4.9022e-8 3.9563 13,044 18:21:34

In addition, we used CMREPLICATE, created by Craig B. Markwardt, to replicate an array
and create a full grid similar to the command ndgrid in Matlab. The SURFACE routine
was used to create Figure 3.2 (a), the surface plot of the numerical solution vs. (x, y) and
Figure 3.2 (b) the surface plot of the error vs. (x, y).

To create Table 3.2, we used a version of the IDL procedure file with the plotting and

(a) (b)

Figure 3.2: Surface plots for N = 32 in IDL (a) of the numerical solution and (b) of the
numerical error.

18

graphics commands commented out. This IDL biconjugate gradient method solves the prob-
lem for all mesh sizes without running out of memory and is slightly faster than the Matlab
results in Table 3.1 (b).

Acknowledgments

This work was made possible with the help of Andrew Raim at the University of Maryland,
Baltimore County (UMBC). The hardware used in the computational studies is part of the
UMBC High Performance Computing Facility (HPCF). The facility is supported by the
U.S. National Science Foundation through the MRI program (grant no. CNS–0821258) and
the SCREMS program (grant no. DMS–0821311), with additional substantial support from
the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/hpcf for more
information on HPCF and the projects using its resources.

References

[1] Kevin P. Allen. Efficient parallel computing for solving linear systems of equations.
UMBC Review: Journal of Undergraduate Research and Creative Works, vol. 5, pp. 8–
17, 2004.

[2] Dietrich Braess. Finite Elements. Cambridge University Press, third edition, 2007.

[3] Matthew Brewster and Matthias K. Gobbert. A comparative evaluation of Matlab,
Octave, FreeMat, and Scilab on tara. Technical Report HPCF–2011–10, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2011.

[4] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[5] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cam-
bridge Texts in Applied Mathematics. Cambridge University Press, second edition, 2009.

[6] Andrew M. Raim and Matthias K. Gobbert. Parallel performance studies for an el-
liptic test problem on the cluster tara. Technical Report HPCF–2010–2, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2010.

[7] Neeraj Sharma. A comparative study of several numerical computational packages.
M.S. thesis, Department of Mathematics and Statistics, University of Maryland, Bal-
timore County, 2010.

[8] Neeraj Sharma and Matthias K. Gobbert. A comparative evaluation of Matlab, Octave,
FreeMat, and Scilab for research and teaching. Technical Report HPCF–2010–7, UMBC
High Performance Computing Facility, University of Maryland, Baltimore County, 2010.

[9] David S. Watkins. Fundamentals of Matrix Computations. Wiley, third edition, 2010.

19

