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Abstract

We discuss two deterministic approaches to model free-molecular transport and reaction inside features on patterned wafers during thermal
deposition processes. One approach that has been widely used to model chemical vapor deposition processes, which are largely steady state at the
equipment scale, is based upon the ballistic transport and reaction model (BTRM). The major computational burden in BTRM based codes is
usually computing the geometry-defined matrix of transmission probabilities; each element of which is used to determine what fraction of material
leaving one point on the surface goes to each other point. This computation scales quadratically in the size of the discretizations, but is done in
parallel. The second approach to modeling transport and reaction in the free-molecular flow regime is based on the kinetic transport and reaction
model (KTRM). The KTRM starts from the Boltzmann equation and is particularly appropriate for processes operated under transient conditions
at the reactor scale; e.g., atomic layer deposition. The KTRM is computationally expensive; models in three spatial dimensions require the
discretization of the three spatial dimensions, three velocity dimensions, and time for transient studies. The spatial mesh scales with the third
power of the system size, for the same resolution. The KTRM is implemented in parallel.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The semiconductor industry makes extensive use of process-
es in which films are deposited on patterned wafers that are
exposed to multi-component reactive gas sources; e.g., chemical
vapor deposition (CVD), and atomic layer deposition (ALD).
Being able to predict and even engineer the shapes and
characteristics of the deposited films is highly desirable in
order to design and integrate these process steps to form reliable
ICs. Both academic and commercial ‘topography simulation’
packages [1–3], which give answers, or at least guidance, about
the shapes and perhaps compositions of the resulting films on a
feature scale, are available for features that can be represented in
2D as well as those that require 3D representations.

While several groups have contributed to the literature of
topography evolution, this paper focuses on two deterministic
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approaches used by us to determine film profile evolution in
features that need to be represented in 3D. The ratio of the mean
free path of the molecules to the characteristic length scales of the
features (the Knudsen number orKn) is significantly larger than 1
for the processes. These systems are said to be in the free-
molecular, or ballistic, transport regime. After a molecule enters a
feature, the probability it will collide with another gas phase
molecule before making contact with the feature surface is small.
In such cases, the chemical reactions that need to be considered
are those between gas phase species and the surface. We first
discuss the ballistic transport and reactionmodel (BTRM) that has
beenwidely used tomodel deposition processes that are run under
largely steady-state conditions (at the equipment scale) [2–4]. We
then discuss the Boltzmann equation-based kinetic transport and
reaction model (KTRM) that is appropriate to processes that are
run under transient conditions at the equipment scale; e.g., ALD.
The KTRM and BTRM have been used to model different types
of processes, for reasons discussed below, though there is some
overlap of applicability. Although they are beyond the scope of
the discussion here, other deterministic approaches have been
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Fig. 1. Schematic of the quantities used to compute q(x,x′).
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used to address similar problems, including but not limited to
Green's function methods [5], in addition to the large number of
Monte Carlo based methods that have been used [6–8] among
many].

Although we do not deal in this paper with the actual
movement of the surfaces due to deposition [9,10], it is
important to clarify how fluxes are determined as the feature
changes shape. In brief, for both the BTRM and the KTRM the
surface is assumed to evolve slowly relative to the redistribution
of fluxes [11]. This ‘pseudo-steady-state’ assumption essentially
means that the fluxes of all of the species in the problem are
computed assuming a fixed feature surface. After the species
fluxes and film deposition rates are determined as functions of
position, as discussed below, the surface is moved assuming the
growth rates are constant for a small time interval. After the
surface has been moved, the species fluxes and deposition rates
along the surface are re-computed.

We deal with thermal deposition processes to limit our
discussions to cosine, or diffuse, sources of species and re-
emission from surfaces [4], though much of the discussion is
valid for other ‘species flux distributions’ either as-is or with
little modification. Much of the discussion is valid for other
deposition and etch processes, with more general flux
distributions. While the chemistries considered here are simple,
in order to focus on species transport, the ability to implement
chemistry models that are fairly complicated, even mechanistic,
is an important aspect of ‘topography simulators’ [3].

2. The ballistic transport and reaction model

One well-studied approach to species transport and reaction
in features at low pressures is the ballistic transport and reaction
model (BTRM). The BTRM was reported by Cale et al. [12–
14], and has been applied to feature-scale simulations many
times over the years (see Refs. [2,3] and references therein);
some aspects are reviewed below. Other views of transport and
reaction at low pressures can be found in Ref. [2].

For many deposition processes, the BTRMmay be expressed
as a system of integral equations that are species balances along
∂R, the feature surface, given here for diffuse re-emission:

ha;t
i ðxÞ ¼ ha;1

i ðxÞ þ R
AR qðx; x 0Þ ha;t

i ðx 0Þ þ Riðha;t; n;TÞ� �
dx 0

for x 0; xaAR

ð1Þ

Here, ηi
a,1(x) represents the flux of species i arriving at point

x from the source, and not by re-emission from other surfaces.
ηi
a,t represents the total flux of the i-th species arriving at x,

which is often dominated by fluxes from other points on the
surface; i.e. re-emission. Ri is the reaction rate expression that
represents the generation rate of species i at point x (molecules/
time/area, just like fluxes), based on the local temperatures T,
the local fluxes of all species ηa,t, and the local surface
coverages ξ of reactive species on the surface. The term in
brackets within the integrand is the flux of the i-th species being
re-emitted from point x′. The quantity q(x, x′) is the differential
transmission probability for molecules leaving position x′ to
arrive at position x, after traveling in a straight line. It includes
both the possibility of intervening solids (shadowing) and the
relative orientations of the surface at both locations, x and x′
[4].

The ‘transmission probability matrix’ q contains the
geometric information about a particular system that is needed
to solve the transport part of the BTRM for a given feature
geometry. After discretizing the surface using N triangles, the
transmission probabilities are stored in an N by N matrix (q).
All BTRM solvers compute this matrix, either implicitly or
explicitly (perhaps convolved with another quantity). The size
of the task of determining q increases by the square of the size of
the discretizations (N), and usually constitutes the bulk of the
computation workload for solving the BTRM; certainly for
problems involving large or complicated structures and
reasonable chemistries.

To determine the elements of q ‘directly’, one can construct
lines or rays between all pairs of triangles, most commonly
between their centroids. If two triangles are facing each other
and can see each other, i.e., the line between them does not hit
another triangle, the transmission probability can be determined
from the geometry in Fig. 1. The transmission probability
between x′ and x is:

qðx; x 0Þ ¼ � cosXcosX 0

jj s jj 2 ð2Þ

where the terms are defined in Fig. 1. Note that Eq. (2) is all the
information that is needed to compute the transport for ‘cosine’
or ‘diffuse’ re-emission, which is a commonly used assumption
for re-emission of species with reasonable (thermal) energies. A
single line drawn between the centroids of two triangles can be
used to determine if the view is obstructed (visibility is 0), or not
(visibility is 1). Visibility and transmission probability determi-
nations are symmetric, i.e., qij=qji, which decreases the size of
the computation. Although beyond the scope of this paper, non-
diffuse re-emission models (e.g., specular reflection) can be
dealt with through careful alternate formulations of q when
computing the integral in Eq. (1).

A Monte Carlo method can also be used to determine the
transmission probabilities. A straightforward MC method is to
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emit large numbers of rays from the i-th triangle, and then
following or ‘tracing’ each one to see which triangle it intersects
first. By emitting rays at angles sampled from a distribution, an
entire row of the q matrix associated with triangle i may be
determined; that is, the fraction of the total number of rays
emitted that hits each other triangle (or leaves the feature). The
main downside to using this method is that the number of rays
that must be cast to determine a row in q can be quite large in
order to get good statistics in each column (receiving triangle).
Although good statistics can be quickly achieved on nearby or
large triangles, smaller triangles or triangles that are far from the
emitting triangle receive rays at much lower rates, and so the
quality of the statistics associated with these triangle pairs
increases more slowly. This becomes a problem because
neighboring triangles can be assigned significantly different
values in the same row, resulting in a ‘noisy’ simulation and
artificial roughness in the film growth rates, particularly for
non-linear reaction kinetics [15].

It is easy to demonstrate that the direct method discussed
above is more efficient and usually more accurate than the MC
method discussed. Though there are different ways to
implement the direct method to determine q, the approach
avoids the noise associated with poor statistics for entries in q
with low values when using the MC method. Example
comparisons of the approaches for simple structures are given
in Ref. [16]. Both approaches to determining q can be
implemented in parallel.

Once the transmission probability matrix is determined and
the incoming distribution of species fluxes from the source gas
is known (thereby determining ηi

a,1 in Eq. (1)), the system of
equations may be solved. There is not a closed form solution for
the general case. However, the system usually responds well to
fixed point iteration methods, particularly when R is linear in
the fluxes ηa,t. The reaction rates determined as part of this
solution can then be used to compute local deposition rates and
film compositions along the surface. Examples of the application
of the BTRM can be found in several places [4 and references
therein].

3. The kinetic transport and reaction model

The KTRM is a deterministic model developed by Gobbert
et al. [17,18], and is based on the Boltzmann transport equation
[19,20]. The model applies to both collisional and collisionless
Fig. 2. (a) A representative dual damascene trench. Units in micrometers. (b) Slice
dimensionless concentration in the source (Kn=1.0, sticking factor 0.01) 5 ns after th
f=5×10−3 in velocity space. Units in 104 cm/s.
(free-molecular transport) conditions. For collisional systems,
the KTRM is limited to systems in which there is a gas phase
species that is dominant; e.g., a carrier gas. The KTRM is really
intended for systems with Kn of about 1 or higher. The quantity
solved for when the KTRM is used is the kinetic density of each
species fi(x,v,t), which is the probability of finding a molecule
of species i at spatial position x (in dx), that has velocity v (in
dv), at time t. Thus, in general one needs to consider three
spatial dimensions, three velocity directions, and time for
transient studies. So, rather than only the three spatial
dimensions explicitly considered in the BTRM, the KTRM
explicitly considers six or seven dimensions.

The Boltzmann transport equation for the kinetic density fi of
species i, in non-dimensional form is

Afi
At

þ vdjxfi ¼ 1
Kn

Qiðf Þ ð3Þ

where the subscript x indicates that the gradient is over spatial
variables, and Qi is a collision operator. Gobbert et al. [17,18]
use a spectral Galerkin method in velocity space and the
discontinuous Galerkin finite element method in physical space
to compute kinetic density functions of species, and a finite
difference method to integrate it in time. This time variable is
not necessarily process time, but can be rather just a variable
used to arrive at the solution for a fixed geometry; i.e., when the
usual pseudo-steady-state assumption discussed above is used.

The KTRM is applied in a fundamentally different way than
the BTRM, though both are ‘driven’ by the fluxes of species
into the feature from the source volume. The BTRM requires
‘surface discretizations’, e.g., triangles that represent a surface
in 3D. In contrast, the KTRM requires a ‘volume discretiza-
tions’, e.g., tetrahedral meshes of the spatial domains of interest.
Additionally, a mesh or grid in velocity space must be
established. Boundary conditions are applied both to represent
the species concentrations and incoming fluxes from the reactor
volume, as well as to represent the effects of collisions with the
surface and any resulting chemical reactions. With these
discretizations and boundary conditions in place, the kinetic
densities fi may be calculated as functions of velocity, at each
position in the domain; by integrating the equations to steady
state. The KTRM has been implemented in parallel [21].

To demonstrate the amount of information obtained in the
solutions of the KTRM, Fig. 2 shows representative results of a
plots of the dimensionless concentration of a precursor species, relative to its
e concentration front reaches the wafer surface. (c) Kinetic density isosurface for
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transient study of a single-species chemical vapor deposition
model with Kn=1 (in the transition regime) and a sticking
factor of 0.01. Fig. 2a shows a surface discretization of an
idealized ‘dual damascene’ structure (showing triangular faces
from the volume mesh on the solid wafer surface), into which
the species is flowing from the top of the three-dimensional
domain. Fig. 2b shows a slice plot of the number density in the
feature 5 ns after the species arrives at the wafer surface;
assuming the feature had no molecules of this species in it
initially. Fig. 2c shows the isosurface in velocity space of the
kinetic density f where f=5×10−3, at a spatial point that is level
with the top of the trench and centered over the via, at the same
time of 5 ns. This indicates how much information is embedded
in the set of fs for the system; for each species there is a 3D
probability density function in velocity space for each point in
physical space, for each time. Summarizing results becomes a
challenge. From the fs, many quantities of interest may be
calculated directly, including the number densities and fluxes to
points on the surface. The reaction rates at the feature surface,
and the film growth rates, may then be calculated as functions of
position from these intermediate quantities.

4. Discussion

There is clearly more information contained in the result of a
KTRM simulation than in a corresponding result of a BTRM
simulation. However, KTRM simulations require significantly
more complex mathematics [22], require more computer power,
and have far worse scaling behavior. In 3D, the number of
volume entities typically used to resolve a geometry increases as
the cube of the size of the system, faster than the number of
surface entities used to describe it for a BTRM calculation,
which increases quadratically. Thus, in problems for which the
assumptions of the BTRM hold, it seems like the clear choice of
approach.

The KTRM has the advantage that it starts with the
Boltzmann transport equation, which employs only the most
basic of assumptions [18,20] about the underlying gas and
conditions. It is thus applicable to a wider variety of systems than
the BTRM. There are two problems types for which the KTRM
seems to be the right choice. When the Knudsen number is no
longer significantly greater than 1, the assumptions of the
BTRM are violated, but the KTRM remains valid for certain
processes — though the difficulty expands considerably, since
collisions have to be considered [18]. The second problem type,
and one of interest to the microelectronics community, is that in
which transients in gas flow and pressure are important, such as
in ALD. ALD involves quick changes in partial pressures of
component gases, which must propagate from the reactor inlets
to the entirety of the feature-scale structures, in the presence of a
perhaps chemically active surface. Gobbert et al. [17,23,24]. and
Webster et al. [21] performed KTRM calculations with direct
application to ALD systems and were able to calculate the
number density of precursor molecules as a function of position
inside microelectronic features (such as that in Fig. 2) during
ALD pulses. One important result of those simulations is that the
time for species to enter features and the fluxes to stabilize takes
only order 100 ns. This supports the use of the pseudo-steady-
state assumption, even when considering ALD systems [21].

The KTRM continues to undergo development. For
example, the speed at which the kinetic density responds to
changes in boundary conditions is very quick. The presence of
these small time scales makes for expensive calculations when
simulating the response of a system that has additional, longer
time scales, such as those set by reaction kinetics or reactor set-
point changes. This issue can be addressed through the use of
implicit time integrators, adaptive time stepping; or steady-state
approaches when applicable.

5. Conclusions

Although different methods exist for simulating thermal low-
pressure vapor deposition processes, we feel that deterministic
methods continue to be good choices for microelectronics
applications. The BTRM is a standard way to address feature-
scale simulations in which the mean free path is significantly
greater than the size of features. One deterministic approach for
finding the transmission probabilitymatrix q, an essential quantity
in formulating the BTRM, employs a ray-tracing technique
similar to those used in Monte Carlo approaches. However, it
applies an analytical expression for pair-wise transmission
probabilities and avoids the statistical sampling noise found
when using MC methods. Depending upon the chemistry of the
process under consideration, the technique can be expected to be
at least a factor of 10 faster than the direct samplingMC technique
discussed for systems with thousands of surface triangles. The
BTRM scales as the square of the size of the discretization for
systems in which calculation of q dominates.

The KTRM approach is also deterministic, and although
more computationally expensive for the same problem, offers
capabilities that the BTRM does not have. The primary
dependent variables are the kinetic densities of each species
in the problem, from which species fluxes and reaction rates can
be computed. More generally, it can also simulate transient and
transition regime gas phase behavior. The KTRM scales with
the size of both the spatial mesh and the velocity mesh. To
maintain a particular resolution, the spatial mesh tends to scale
as the third power of the system size, although the velocity mesh
is unlikely to require scaling. Further development of the
KTRM has the potential to make it more efficient and reduce its
hefty computational cost.
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