Long-time Simulation of Calcium Induced Calcium Release
in a Heart Cell using the Finite Element Method on a
Hybrid CPU/GPU Node

Xuan Huang
Department of Mathematics and Statistics,
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250
hu6 @umbc.edu

ABSTRACT

A mathematical model of Calcium Induced Calcium Re-
lease in a heart cell has been developed that consists
of three coupled non-linear advection-diffusion-reaction
equations. A program in C with MPI based on matrix-
free Newton-Krylov method gives very good scalability,
but still requires large run times for fine meshes. A
programming model with CUDA and MPI that utilizes
GPUs on a hybrid node can significantly reduce the wall
clock time. This paper reports initial results that demon-
strate speedup using a hybrid node with two GPUs over
the best results on a CPU node.

Author Keywords
Calcium Induced Calcium Release, finite element
method, GPU, MPI

ACM Classification Keywords
1.6.1 SIMULATION AND MODELING (e.g. Model De-
velopment). : Performance

INTRODUCTION

A mathematical model for the calcium induced cal-
cium release (CICR) in a heart cell has been developed
[6—7] that consists of three coupled non-linear reaction-
diffusion equations, which describe the concentrations of
calcium ions (C), fluorescent calcium indicator (F), and
the endogenous calcium buffers (B). In [2] (see also [4]
for details) a matrix-free Newton-Krylov method for the
simulation of calcium induced calcium release in a heart
cell was presented. The underlying model of calcium flow
is given by a system of three coupled diffusion-reaction
equations, in which the occurring source terms are highly
nonlinear point sources modeled by Dirac delta distri-
butions. The method is based on a finite element dis-
cretization and implemented in a matrix-free manner.
The convergence of the finite element method in presence
of measure valued source terms, as they occur in the cal-
cium model, was rigorously shown in [11] and numerical
results agree well with the theoretical predictions.

This paper extends above by implementing finite ele-
ment with Newton-Krylov methods on GPUs (graphics
processing units). In [2], performance studies show good

HPC 2015 April 12-15, 2015, Alexandria, VA
Copyright © 2015 Society for Modeling & Simulation International
(SCS)

Matthias K. Gobbert
Department of Mathematics and Statistics,
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

gobbert@umbc.edu

scability, programmed in C with MPI. However, the run
time is still huge for large mesh size, requiring excessive
time if use few number of nodes. During recent years,
general purpose GPUs offer an opportunity to greatly
increase the throughput, and implement new ideas in
parallel computing.

CUDA (Compute Unified Device Architecture) is a par-
allel computing platform and programming model by
NVIDIA. The CUDA architecture included a unified
shader pipeline, allowing each and every arithmetic logic
unit (ALU) on the chip to be marshaled by a program
intending to perform general-purpose computations. A
typical Tesla K20 GPU that we use from NVIDIA has
2496 cores, and is capable to have a theoretical double
precision floating point performance of 1.17 TFLOP/s.
The problem discussed in this paper is both computa-
tionally intensive and massively parallel, offering a good
opportunity for better performance on hybrid nodes with
CPUs and GPUs. A problem of reaction-diffusion type is
solved in [8], where the authors compare different time-
integtation methods with a 2D model using one GPU.
A Jacobian-free Newton-Krylov method with GPU ac-
cleration is discussed in [9], where the problem size is
limited by using one GPU. Our method solves a PDE
system on three-dimensional domain with a degrees of
freedom more than 25 million. We use performance on
one state-of-the-art 16-core CPU node as baseline for
speedup computation, rather than serial CPU perfor-
mance on one core. Our implementation with MPI and
CUDA is scalable to multiple nodes with multiple GPUs.
This paper reports initial results on one node with 2
GPUs available.

BACKGROUND

The three-species application problem models the flow
of calcium on the scale of one heart cell. Calcium ions
enter into the cell at calcium release units (CRUSs) dis-
tributed throughout the cell and then diffuse. At each
CRU, the probability for calcium to be released increases
along with the concentration of calcium, thus creating a
feedback loop of waves re-generating themselves repeat-
edly. An accurate model of such waves is useful since
they are part of the normal functioning of the heart, but
can also trigger abnormal arrhythmias. This model re-
quires simulations on the time scale of several repeated

waves and on the spatial scale of the entire cell. This
requires long-time studies on spatial meshes that need
to have a high resolution to resolve the positions of the
calcium release units throughout the entire cell [2].

The problem can be modeled by a system of coupled,
non-linear, time-dependent advection-diffusion-reaction
equations

W~V (DD Vu®) 4 4O (V@) = @ (1)

of i = 1,...,ng species with u(Y = u(" (x,) representing
functions of space x € Q C R? and time 0 < ¢t < tg,. The
diffusivity matrix D) = diag (D), D{), D{)) € R3x3
consists of positive diagonal entries, which are assumed
to dominate the scale of the advection velocity vectors
B e R3, so that the system is always of parabolic type.
We consider the rectangular domain shown in Figure 1,
where numerical mesh is also demonstrated in a very
coarse way. The model also incorporates no-flux bound-

Figure 1. Rectangular domain, units in ym.

ary conditions

n-(Di(x)Vu) =0 forzed 0<t<tsg, (2)

and a given set of initial conditions

u(x,0) = ul(fl)l(x) forx € Q, t =0. (3)
The right-hand side ¢(*) of each PDE in (1) is written in
a way that distinguishes the different dependencies and
effects as

¢ =rO @, a)) + sO WD x, 1) + fD(x,1).

(4)
Our consideration of this problem is inspired by the need
to simulate calcium waves in a heart cell. The general
system (1) consists of ny = 3 equations corresponding to
calcium (i = 1), an endogenous calcium buffer (i = 2),
and a fluorescent indicator dye (i = 3). We describe
terms on the right hand side (4) as following: The term
f@ = f@ (x,t) incorporates a scalar linear test problem
that is been discussed in [3], here we set f() = 0 for
all i. Terms belonging only to the first equation are
multiplied with the Kronecker delta function d;1, where
1=1,...,n,

sO WD, %,t) = (= Jpump(U) +Jieas+Tsr (1™, %, 1))651.

(5)
These are the nonlinear drain term Jpymp, the constant
balance term Jie.x and the key term of the model Jgg.

This term houses the stochastic aspect of the model,
since the calcium release unites (CRUs) which are ar-
ranged discretely on a three-dimensional lattice, each
have a probability of opening depending on the concen-
tration of calcium present at that site. This process is
explained through the following equation:

JSR(U(l)axa t) = Z g Sﬁ(u(l)vt)a(x -)A() (6)
XEQ,

The equation models the superposition of calcium injec-
tion into the cell at special locations called calcium re-
lease units (CRUs), which are modeled as point sources.
g controls the amount of calcium injected into the cell
and), represents the set of all CRUs. Si is an indi-
cator function, its value is either 1 or 0 indicating the
CRU at x is open or closed. When the CRU is open, it
stays open for 5 millisecond, then it remains closed for
100 millisecond. The value of S is determined by com-
pare the value of a random number and the value of the
following probability function

P (u) 70
(I(prob)npmb + (u(l))npmb .

Jprob(u(l)) = (7)
When the value of the probability function is higher,
Sg = 1, otherwise Sg = 0. Furthermore, 6(x—%) denotes
a Dirac delta distribution for a CRU located in Xx.

The reaction terms (¥ shown below are nonlinear func-
tions of the different species and couple the three equa-
tions.

T(i) .

S RO@M W), fori=1,
=2

J
RO (41 D), fori=2,...,n,,

(®)

where the reaction rates are given by

R = —k‘ju(l)u(i) +k; (ﬂl - u(i)) fori=2,...,n,.
9)

A complete list of the model’s parameter values is given
in Table 1.

NUMERICAL METHODS

In order to numerically simulate the calcium induced
calcium release model, a numerical method must be de-
signed that is very efficient in memory use. The uniform
rectangular CRU lattice gives a naturally induced reg-
ular numerical mesh, see Figure 1. Additionally, the
model uses constant diffusion coefficients. Using a finite
element method (FEM) with these properties (constant
coefficients, regular mesh) will allow for system matri-
ces whose components can be computed by analytical
formulas. Therefore routines, specifically the matrix-
vector product, can be designed without an explicitly
stored system matrix. A matrix-free method dramati-
cally reduces the memory requirements of the method,
thereby making useful computations feasible. This re-
duced memory requirements also enable us to solve the

Table 1. Table of parameters for the CICR model.

Parameter Description Values/Units
t Time ms
X Position pm
u® Concentration uM
Q Rectangular domain in pm (—6.4,6.4) x (—6.4,6.4) x (—32.0,32.0)
DM Calcium diffusion coefficent diag(0.15,0.15,0.30) pm?/ ms
D® Mobile buffer diffusion coefficient diag(0.01,0.01,0.02) pum?/ ms
D®) Stationary buffer diffusion coefficient diag(0.00,0.00,0.00) z#m?/ ms
1(r111) Initial calcium concentration 0.1 uM
1(51) Initial mobile buffer concentration 45.9184 M
ul(fl’l) Initial stationary buffer concentration 111.8182 uM
Axg CRU spacing in z-direction 0.8 um
Ay CRU spacing in y-direction 0.8 um
Az CRU spacing in z-direction 0.2 pm
g Flux density distribution 110.0 M pm?3 / ms
Prax Maximum probability rate 0.3 / ms
prob Probability sensitivity 0.2 uM
Nprob Probability Hill coefficient 4.0
At CRU time step 1.0 ms
topen CRU opening time 5.0 ms
telosed CRU refractory period 100 ms
ki Forward reaction rate 0.08 / (uM ms)
ko Backward reaction rate 0.09 / ms
Ug Total of bound and unbound indicator 50.0 pM
ki Forward reaction rate 0.10 / (uM ms)
ks Backward reaction rate 0.10 / ms
Ug Total bound and unbound buffer 123.0 pM
Voump Maximum pump strength 4.0 uM / ms
Kpump Pump sensitivity 0.184 uM
Npump Pump Hill coefficient 4
Sleak Leak term 0.320968365152510 M / ms

problem on a fine mesh with relatively small GPU mem-
ory. The NVIDIA K20 GPU we use has 5 GB of mem-
ory, compared to 64 GB memory connected to CPU. The
convergence of the finite element method in presence of
measure valued source terms, as they occur in the model
(1) and (4), was rigorously shown in [11], and numerical
results agree well with the theoretical predictions [2].

The spatial discretization of the three-species application
problem with tri-linear nodal finite elements results in a
large system of ordinary differential equations (ODEs).
This ODE system is solved by the family of numeri-
cal differentiation formulas (NDFk) with variable order
1 < k < 5 and adaptively chosen time step size [12,13].
Since these ODE solvers are fully implicit, it is necessary
to solve the fully coupled non-linear system of equations
at every time step. For its solution a matrix-free new-
ton method is applied, which means that results of the
Jacobian-vector products needed in the Krylov subspace
method are provided directly without storing the Jaco-
bian. In addition, the usage of the exact Jacobian should
lead to quadratic convergence of the Newton method.
The linear solver makes use of the iterative BICGSTAB
method with matrix-free matrix-vector multiplies. Ta-
ble 2 summarizes several key parameters of the numerical
method and its implementation. The first three columns
show the spatial mesh resolution of N, x N, x N, the
number of mesh points N = (N, + 1)(N, + 1)(N. + 1),
and their associated numbers of unknowns n N for the
ns species that need to be computed at every time step,
commonly referred to as degrees of freedom (DOF). The
following column lists the number of time steps taken
by the ODE solver, which are significant and which in-
crease with finer resolutions. The final two columns list
the memory usage in GB, both predicted by counting
variables in the algorithm and by observation provided
in a memory log file produced from the performance run.
We notice that even the finest resolution fits comfortably
in the memory of one NVIDIA K20 GPU.

CUDA + MPI IMPLEMENTATION

Motivation

The motivations behind General-Purpose Computation
on Graphics Processing Unit (GPGPU) are multifold.
First of all, the models that we have are becoming more
and more complicated. We need to solve the compli-
cated problem with finer meshes, larger (cell) domain,
longer simulation time. We also need to prepare for more
species which means more PDEs coupled. Furthermore,
we might ran into situations that thousands of simula-
tions are required for certain studies [1].

The degree of freedom (DOF) as well as computational
burden will increase substantially as the model increases
complexity. And the current MPI approach that runs on
Multi-core CPU cluster will reach limit. This approach
has good scalability on the condition that you have ac-
cess to large number of compute nodes with cutting edge
CPUs.

Hence, offloading to accelerators such as GPUs are con-
sidered natural choices. Our problem is suitable for GPU
computation because of the following reasons: The pro-
gram is computationally intensive, heavy computation
can be done on the GPU, with few data transfer. The
program is also massively parallel, similar tasks are per-
formed repeatedly on different data. Also, from the cost
effective aspect, a state-of-the-art GPU card is much
cheaper to acquire compare to a up-to-date CPU node,
while providing comparable or more throughput.

Hardware Used

The hardware used in the computational studies is
part of the UMBC High Performance Computing Fa-
cility (HPCF). Each hybrid node contain two eight-core
2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB
memory, see Figure 2. Each CPU is connected to one
state-of-the-art NVIDIA K20 GPU, see Figure 3. The
nodes are connected by a high-speed quad-data rate
(QDR) InfiniBand network.

Compute Node

8 core Intel E5-2650v2 Ivy Bridge 8 core Intel E5-2650v2 Ivy Bridge |

1
.
c
.
1
&
I i
! 1
|
i !
|

T

Each core has: L1, 32kB Data and 32kB Instruction Cache L2: 256kB Cache |

Dual QPI SMP links

Figure 2. Schematics of CPU: Intel E5-2650v2 Ivy Bridge

Tesla K20 GPU (2496 cores)

1
1
| Streaming Multiprocessor (SM) 192 Cores Streaming Multprocessor (SM) 192 Cores :
| —
I m iﬁ mﬂ mm m Core :
I - [coe [o | - B e |
L o | - | - B - | ERERYNaR - |- | - B - | I
N . T wensens N :
1 H i H i i H i H |
el e] e B e | - |

B B !

- I
i [[I
. 1

1
1

I
1

1
1

1
I

Figure 3. Schematics of NVIDIA Tesla K20 GPU.

CUDA + MPI Workflow

In CUDA programming language, CPU and the system’s
memory are referred to as host, and the GPU and its
memory are referred to as device. Figure 4 explains
how threads are grouped into blocks, and blocks grouped
into grids. Threads unite into thread blocks — one- two
or three-dimensional grids of threads that interact with
each other via shared memory and synchpoints. A pro-
gram (kernel) is executed over a grid of thread blocks.
One grid is executed at a time. Each block can also be

Table 2. Sizing study listing the mesh resolution N, X Ny X N, the number of mesh points N = (N; +1) X (Ny +1) x (N, +1),
the number of degrees of freedom (DOF = nyN), the number of time steps taken by the ODE solver, and the predicted

and observed memory usage in MB for a one-process run.

N, x N, x N, N DOF [number of | memory usage (GB)
time steps | predicted | observed

32 x 32 x 128 140,481 421,443 58,416 0.05 0.08
64 x 64 x 256 | 1,085,825 | 3,257,475 73,123 0.41 0.48
128 x 128 x 512 | 8,536,833 | 25,610,499 89,088 3.24 3.68

[scs00 | o | soaco |
oecon | oo | souea

I 5

Figure 4. Schematic of Blocks and Threads

one-, two-, or three-dimensional in form. This is due
to the fact that GPUs used to work on graphical data,
which has 3 dimensions red, green and blue. This now
gives much flexibility in launching kernels with differ-
ent data structure. However, there are still limitations,
such as the maximum dimension size of a thread block
is (1024, 1024, 64), and the maximum number of threads
per block is 1024 for the K20 GPU we have.

The program used to perform the parallel computations
presented in this paper is an extension of the one de-
scribed in [2] and [10], which uses MPI for parallel com-
munications. Therefore, it inherited the main structure
of the C program. However, to enable efficient calcu-
lations on GPU, almost all calculations have been re-
designed to take advantage of GPU parallelism. While
inputs are still managed by host, C structs are shared by
host and device. Large arrays are allocated directly on
device memory before numerical iterations, hence to pre-
vent frequent communications between host and device.
Since host handles MPI communication and output to
files, data communications between host and device oc-
cur before and after these events. The CUDA program
has several levels, a detailed discussion is as follows:

The uppermost level is where computational resources
are managed. First, MPI processes are setup in main. cu.
After detect the number of CUDA capable devices
(NVIDIA GPUs) on each node, the main.cu function
then set CUDA device for each MPI process. The idea
behind this setup is to allow each MPI process to have
access to a unique GPU device. If more than one MPI
processes are accessing the same GPU, kernels will queue
up and the performance will be degraded. Since in our
cluster each GPU enabled node has two GPUs, each con-
nected to a CPU socket via PCI bus, as shown in Fig-
ure 3. This means the best approach is to request 2 pro-
cesses from each node and have each MPI process utilize
a unique GPU. We can also run the program in serial,

with a single MPI process and one GPU. The 5 GB GPU
memory can hold the memory allocated for all large ar-
rays for our current highest mesh 128 x 128 x 512. After
the computational resources are correctly allocated, the
main.cu program launches the program that does the ac-
tual computation. Lastly, the main.cu program records
the total memory used for each CPU node.

The next level, the program selects the right solver based
on a set of parameters. The code is a package that
can solve many different problems with one-dimensional,
two-dimensional and three-dimensional domains. In
the case of the CICR model, main.cu call the func-
tion run_parabolic.cu, Within problem_par_3d.cu,
we first read parameters from one input file, setup C
structs, allow them to be shared by both C and CUDA
code, and write arrays associated to the structs. Param-
eters in Table 1 are read in and setup in these steps. A
crucial arrangement in the code is to put C struct type
definitions in one h file called struct_define.h. After
the definition of various struct data types, need to de-
clare each struct with extern. Just like we declare all
other functions with extern "C", this is allows the mix-
ture of C and CUDA to work properly. This h file is then
included by every other .cu files. However, to be able
to compile correctly, we also need to put regular struct
declarations at the beginning of main. cu.

At level three, ODE solver is called. The solver is based
on numerical differentiation formulas (NDFk) with vari-
able order 1 < k < 5 and adaptively chosen time step
size, As described in Section , at each time step a nonlin-
ear system is solved via a matrix-free Newton method.
The matrix vector multiplication function therein have
many GPU kernels that can readily take data already
exist on GPU memory, hence to reduce the cost of trans-
ferring data between CPU and GPU memories. Cublas
is used for dot product with double precision. While
running with multiple MPI processes, data transfers be-
tween CPU and GPU memories are inevitable. Firstly,
data has to be transferred back to CPU memory for out-
put. Secondly, data needs to be transferred to CPU
memory before MPI communication, and transferred
back to GPU memory for calculation. But, it is expected
that the second level of paralism on GPU will outper-
form CPU. For the matrix-vector multiplication, we split
GPU kernels into two parts, one does not require com-
putation on MPI communicated data, the other does.
Since non-blocking MPI communication functions such
as MPI_Isend and MPI_Irecv returns immediately, we

can have MPI communication and the executation of
first kernel at the same time. We put a MPI_Waitall
only before the launch of the second kernel, making
sure the MPI communication is finished before access-
ing these data.

Lastly, it is vitally important to design kernels that can
run with different mesh size in Table 2, and also have
room for higher mesh. The most crucial design in ker-
nels are the choice of block and grid sizes. As men-
tioned before, each block and grid can have one, two or
three-dimensions. This gives much flexibility in launch-
ing kernels with different data structure. In the ap-
plication problem here, the number of threads in one
block is determined by the mesh on x-direction Nz, as
dim3 threads(Nx, 1). This allows Nx to be as large
as the limit of 1024 threads. Moreover the number of
blocks in one grid is determined by the mesh on y and
z-directions Ny and Iz, as dim3 blocks(Ny, 1_Nz). [
means local to the MPI process. dim3 can be used to
define arrays of up to three-dimensions. In this setup,
all utility functions and kernels that need to access large
arrays on GPU can be designed to use the same block
thread counts, making it much easier to program the
actual kernels.

RESULTS

Figure 5 shows CRU plots generated from simulations
using GPUs, which are similar to those generated by
previous C programs run on CPU nodes. The plots in
this figure show which CRUs are open at each time step
during the simulation. We see that at ¢ = 100 a few
CRUs are open, the wave mostly spreads along z- and
y-dimensions at this point. Later on we see that the
CRUs have begun to open on both sides of the cell and
spread across it. During our simulation of 1000 ms, sev-
eral waves have been generated and run across the cell,
with similar speed on both ways of the z-direction.

Table 3 summarizes the wall clock times for the CICR
problem solved with the finite element method using p =
1,2 and 16 MPI processes on a CPU node with two eight-
core CPUs. All runs fit into the memory of the node, but
some runs would take longer than the maximum time of
5 days allowed for a job on the system. For the cases,
where the run with p = 1 process is possible, the parallel
scalability is excellent to p = 2 processes, and using all
16 cores available on the node is clearly the fastest run
in each case.

Table 4 summarizes the wall clock times for the CICR
problem solved with the finite element method using a
hybrid CPU / GPU node. For mesh resolution 32 x
32 x 128, the wall clock time on one CPU core and one
GPU is more than 5 times faster than a serial run on
a CPU, but slower than using all 16 cores on a CPU
node. For this coarse resolution, the wall clock time on
one node with two MPI processes and two GPUs does
not improve performance. This is due to time spent on
data transfer between CPU and GPU memory dominate
over time spent on calculation.

For mesh resolution 64 x 64 x 256, the wall clock time
on one CPU core and one GPU is more than 15 times
faster than a serial run on a CPU. For this resolution,
the wall clock time on one node with two MPI processes
and two GPUs is 1.8 times faster than using all 16 cores
on a CPU node.

The amount of time needed for calculation increased
rapidly due to increased mesh size. For the fine mesh
resolution 128 x 128 x 512, the serial run on a CPU is
not available due to excessive time requirement. The
wall clock time on one node with two MPI processes and
two GPUs is around 3 times faster than using all 16 cores
on a CPU node.

Table 3. Wall clock time for CICR problem solved with
FEM using p MPI processes on a CPU node. E.T. indi-
cates excessive time requirement (more than 5 days).

Ny x Ny x N, p=1 p=2 p=16
32 % 32 x 128 | 04:12:42 | 02:11:30 | 00:20:28
64 x 64 x 256 | 29:39:29 | 15:33:52 | 02:36:56
128 x 128 x 512 E.T. E.T. | 42:07:19

Table 4. CICR problem solved with FEM on a hybrid
node using p MPI processes and one GPU per MPI pro-
cess. Each MPI process launches kernels on a unique
GPU. (a) Wall clock time, (b) speedup over p = 16 MPI
processes on a sixteen-core CPU node.

(a) Wall clock time

Nz x Ny x N, p=1 p=2
1 GPU 2 GPUs

32 x 32 x 128 | 00:42:33 00:43:32
64 x 64 x 256 | 01:58:19 01:25:32
128 x 128 x 512 | 25:09:06 13:46:41

(b) Speedup over p = 16 run on CPU Node

Ny X Ny x N, p=1 p=2

1 GPU 2 GPUs

32 x 32 x 128 0.48 0.47

64 x 64 x 256 1.33 1.83

128 x 128 x 512 1.67 3.06
CONCLUSIONS

The results demonstrate that using MPI and CUDA
on a hybrid node with two CPUs and two GPUs, the
CICR problem can be solved much faster than using
all 16 cores of two eight-core GPUs on a CPU node.
The data transfer between CPU and GPU memory is
inevitable, but can be improved by spliting kernels and
use non-block MPI communication. In the future we
will investigate possible further improvements like using
cuda-aware MPI. Moreover, algorithms that can mini-
mize the data communication without huge sacrifice of
accuracy are of interest. Additionally, the performance
of several hybrid nodes should be compared to using sev-
eral CPU nodes.

Acknowledgments
Xuan Huang acknowledges support from the UMBC
High Performance Computing Facility (HPCF). The

hardware used in the computational studies is part of
HPCF. The facility is supported by the U.S. National
Science Foundation through the MRI program (grant
nos. CNS-0821258 and CNS-1228778) and the SCREMS
program (grant no. DMS-0821311), with additional sub-
stantial support from the University of Maryland, Balti-
more County (UMBC). See www.umbc . edu/hpct for more in-
formation on HPCF and the projects using its resources.

REFERENCES
1. Brewster, M. W. The Influence of Stochastic
Parameters on Calcium Waves in a Heart Cell.
Senior thesis, Department of Mathematics and
Statistics, University of Maryland, Baltimore
County, 2014.

2. Gobbert, M. K. Long-time simulations on high
resolution meshes to model calcium waves in a
heart cell. SIAM J. Sci. Comput. 30, 6 (2008),
2922-2947.

3. Graf, J., and Gobbert, M. K. Parallel performance
studies for a parabolic test problem on the cluster
maya. Tech. Rep. HPCF-2014-7, UMBC High
Performance Computing Facility, University of
Maryland, Baltimore County, 2014.

4. Hanhart, A. L., Gobbert, M. K., and Izu, L. T. A
memory-efficient finite element method for systems
of reaction-diffusion equations with non-smooth
forcing. J. Comput. Appl. Math. 169, 2 (2004),
431-458.

5. Izu, L. T., Mauban, J. R. H., Balke, C. W., and
Wier, W. G. Large currents generate cardiac Ca?*
sparks. Biophys. J. 80 (2001), 88—102.

6. Izu, L. T., Wier, W. G., and Balke, C. W.
Theoretical analysis of the Ca?* spark amplitude
distribution. Biophys. J. 75 (1998), 1144-1162.

7. Izu, L. T., Wier, W. G., and Balke, C. W.
Evolution of cardiac calcium waves from stochastic
calcium sparks. Biophys. J. 80 (2001), 103-120.

8. Marcotte, C. D., and Grigoriev, R. O.
Implementation of pde models of cardiac dynamics
on gpus using opencl. arXiv preprint
arXiw:1309.1720 (2013).

9. Pethiyagoda, R., McCue, S. W., Moroney, T. J.,
and Back, J. M. Jacobian-free newton—krylov
methods with gpu acceleration for computing

nonlinear ship wave patterns. Journal of
Computational Physics 269 (2014), 297-313.

10. Schafer, J., Huang, X., Kopecz, S., Birken, P.,
Gobbert, M. K., and Meister, A. A
memory-efficient finite volume method for
advection-diffusion-reaction systems with
non-smooth sources. Numer. Methods Partial
Differential Equations 81, 1 (2015), 143-167.

11.

12.

13.

Seidman, T. I., Gobbert, M. K., Trott, D. W., and
Kruzik, M. Finite element approximation for
time-dependent diffusion with measure-valued
source. Numer. Math. 122, 4 (2012), 709-723.

Shampine, L. F. Numerical Solution of Ordinary
Differential Equations. Chapman & Hall, 1994.

Shampine, L. F., and Reichelt, M. W. The
MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1
(1997), 1-22.

www.umbc.edu/hpcf

t =900 t = 1,000
Figure 5. Open calcium release units throughout the cell using finite element method with mesh size 32 x 32 x 128. Based
on simulation with CUDA + MPI.

	Introduction
	Background
	Numerical Methods
	CUDA + MPI Implementation
	Motivation
	Hardware Used
	CUDA + MPI Workflow

	Results
	Conclusions
	REFERENCES

