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We investigate the order of convergence for a finite volume discretization in solving unsteady
three-dimensional advection-diffusion-reaction equations. Our implementation demonstrates
the effective solution of the calcium induced calcium release problem for long-time simula-
tion in the presence of strong advection. We give numerical evidence of convergence for test
problems with smooth as well as non-smooth source terms in two-dimensional and three-
dimensional settings. A parallel implementation using MPI allows for efficient computations
with a long simulation time. The ability to solve larger problems on finer mesh with stable
efficiency is demonstrated in a weak scalability study.
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1 INTRODUCTION

Advection-diffusion-reaction equations occur in a wide variety of applications, for instance fluid
flow, heat transfer, spread of pollutants, and transport-chemistry problems. We consider a very
general framework of this problem as a testbed to investigate the choices of numerical methods
in the face of Dirac delta distributions among the source terms. We also demonstrate the ability
of memory-efficient parallel implementations of these methods to solve the problem on extremely
fine meshes efficiently using a cluster with state-of-the-art CPU nodes and cutting-edge hybrid
CPU/GPU nodes. Our consideration of this problem is inspired by the need to simulate Calcium
Induced Calcium Release (CICR) in a heart cell [3, 4, 10]. CICR describes a physiological process
within a cell where calcium is able to activate calcium release from the sarcoplasmic reticulum into
the cytosol, which is crucial for excitation-contraction coupling in the cardiac muscle.

As a testbed, we consider the system of coupled, non-linear, time-dependent advection-diffusion-
reaction equations

u
(i)
t −∇ ·

(
D(i)∇u(i)

)
+ β(i) ·

(
∇u(i)

)
= q(i), i = 1, . . . , ns, (1.1)

with functions u(i) = u(i)(x, t), i = 1, . . . , ns, of space x ∈ Ω ⊂ R3 and time 0 ≤ t ≤ tfin representing

the concentrations of the ns species. The diffusivity matrices D(i) = diag (D
(i)
11 , D

(i)
22 , D

(i)
33 ) ∈ R3×3

consists of positive entries and are assumed to dominate the advection velocity vectors β(i) ∈ R3,
so that numerical methods for parabolic problems are always justified. The right-hand side q(i) is
written in a way that distinguishes the different dependencies and effects as

q(i)(u(i), . . . , u(ns),x, t) = s(i)(u(i),x, t) + r(i)(u(1), . . . , u(ns)) + f (i)(x, t). (1.2)
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The terms s(i)(u(i),x, t) in (1.2) contain many thousands of point sources modeled by Dirac delta
distributions on a large lattice throughout the cell. This crucial feature of the model is responsible
for many of the challenges: (i) The numerical method used as spatial discretization will not be
convergent to as high an order as conventional, since the source functions are not sufficiently
smooth. (ii) The point sources are the crucial driver of the physiological effects. The domain of the
cell needs to be discretized with a very fine mesh to accomodate the large number of point sources.
(iii) For application problems involving chemical reactions, the system in (1.2) conserves mass, and
thus, the numerical method should have this property, as well.

In (1.2), the reaction terms r(i) = r(i)(u(1), . . . , u(ns)) are, in general, non-linear autonomous
functions of all species and couple the reaction equations in the system (1.1). In (1.2), the term q(i)

also includes the function f (i) = f (i)(x, t), so that the scalar linear test problem ut −∇ · (D∇u) +
β · ∇u = f(x, t) is incorporated in the formulation. This combined formulation of the problems
allows one to switch the code from one problem to the other by turning on and off terms and is
useful in testing correctness of the code and convergence of the numerical methods in the testbed.
These terms will be discussed in detail in Section 2.

Gobbert [3] (see also [4] for details) gives a matrix-free Newton-Krylov method for the simulation
of calcium flow in a heart cell. The underlying model of calcium flow is given by a system of three
coupled diffusion-reaction equations, in which the occurring source terms can be divided into linear
and non-linear parts, as well as point sources. Due to the shape of a heart cell, a rectangular domain
with a structured grid is a natural choice. The method is based on a finite element discretization
and implemented in a matrix-free manner. The convergence of the finite element method in the
presence of the measure valued source terms which occur in the calcium model was rigorously shown
in [11].

In [10], a finite volume method for advection-diffusion-reaction systems with smooth and non-
smooth sources was introduced. The finite volume method is designed for transport problems, since
it satisfies mass conservation in the discretized equations. Moreover, since we intend to consider
a more general class of equation systems of advection-diffusion-reaction (ADR) type, the finite
volume method becomes a natural choice as opposed to finite element methods which would need
additional stabilization terms [8]. However, it is not clear whether a higher order discretization of
the advection term is necessary at the cost of more MPI communication among processes. This
paper extends [10] by fully analyzing the finite volume method for advection-diffusion-reaction
systems:

(i) We capture the effect of advection in three dimensional long-time simulation of the CICR
model. This is achieved by having a non-negative value before the z-direction advection term.
Different advection speeds of the calcium waves are observed, which in turn shows our numerical
methods are producing expected results.

(ii) In the absence of a rigorous convergence theory for problems involving non-smooth sources,
we demonstrate convergence of the method numerically and compare the results to those obtained
by the finite element method from [3]. We show convergence for scalar test problems with choices
between smooth versus non-smooth source terms and first-order versus second-order discretization
for advection term, in both two and three dimensional mesh spacing. Results are compared to
simulations using the finite element method in situations where there is no advection.

(iii) Our existing CICR model needs to be extended to incorporate one or two additional species
and needs to be solved up to larger final time to be better comparable to laboratory experiments
that might take a final time of one minute or more. Thus, our numerical methods and their parallel
implementation need to demonstrate the potential to scale up. A conventional performance study
in [10] demonstrates good strong scalibility by generally halving computing time when using twice
as many resources. However, the fixed problem size in that study does not reflect the motivation to
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solve larger problems. We introduce here weak scalability studies for a scalar test problem as well
as CICR simulation with advection. Our code demonstrates the ability to handle larger problems
with the same efficiency.

The outline of this paper is as follows. Section 2 gives a short description of the equations
modeling the calcium induced calcium release in a heart cell as well as the scalar test cases that
will be used to demonstrate the convergence of numerical method, as well as weak scalability. In
Section 3 we explain the numerical method. In particular the finite volume descritization. Section
4 illustrates the applicability of the method to long time simulations of calcium induced calcium
release in a heart cell, and shows the effect of advection. In Section 5 various convergence studies are
presented. Finally, the weak scalability of the scheme in parallel computations will be presented
in Section 6 along with comments on the parallel implementation of the method. Section ??
summarizes with conclusion.
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2 GOVERNING EQUATIONS

In this section we describe the governing equations, first for the physiological application problem
and then for the two scalar test problems with smooth and non-smooth source terms, respectively.

2.1 Calcium Induced Calcium Release with Advection

Calcium Induced Calcium Release (CICR) describes a physiological process where calcium is able
to activate calcium release into the cytosol, which is crucial for excitation-contraction coupling in
the cardiac muscle. This CICR model described in (1.1)–(1.2) was originally introduced in [5, 7],
extended in [6], and its numerics discussed in [3, 4, 10, 11]. A complete list of the parameter
values of the CICR model is given in Table 1. The problem can be modeled by the system of
time-dependent advection-reaction-diffusion equations (1.1)–(1.2) coupled by non-linear reaction
terms. We consider the rectangular spatial domain

Ω = (−6.4 µm, 6.4 µm)× (−6.4 µm, 6.4 µm)× (−32.0 µm, 32.0 µm) ⊂ R3

that captures the essential size and elongated shape of a heart cell. This model consists of ns = 3
equations corresponding to calcium (i = 1), an endogenous calcium buffer (i = 2), and a fluorescent
indicator dye (i = 3).

We describe the three terms on the right-hand side (1.2) as follows:
(i) In the present model, the term s(i)(u(i),x, t) applies only to the calcium species i = 1, which

is implemented using the Kronecker delta function δi1 in the definition

s(i)(u(i),x, t) =
(
JSR(u(1),x, t)− Jpump(u(1)) + Jleak

)
δi1, i = 1, . . . , ns. (2.1)

The key term JSR houses the stochastic aspect of the model, since it models how calcium is released
from the sarcoplasmic reticulum (SR) into the cytosol. The calcium release units (CRUs) which
represent release sites on the sarcoplasmic reticulum are arranged discretely on a three-dimensional
lattice. Each CRU has a probability of opening depending on the concentration of calcium present
at that site. This process takes the form

JSR(u(1),x, t) =
∑
x̂∈Ωs

g Sx̂(u(1), t) δ(x− x̂). (2.2)

The equation models the superposition of calcium injection into the cell at CRUs, which are modeled
as point sources at all x̂ in the set of CRU locations Ωs. The Dirac delta distribution δ(x − x̂)
together with the constant flux density g models a point source at a CRU located at x̂ ∈ Ωs. Sx̂
is an indicator function, its value is either 1 or 0 indicating whether the CRU at x̂ is open or
closed. The value of Sx̂ is determined by comparing a uniform random number to the value of the
probability distribution

Jprob(u(1)) =
Pmax (u(1))nprob

(Kprob)nprob + (u(1))nprob
. (2.3)

If the value of the probability distribution is higher than the random number, then the CRU
switches on by setting Sx̂ = 1, otherwise it remains closed by Sx̂ = 0. When the CRU is open, it
stays open for 5 ms, then it remains closed for 100 ms. In our physiological simulations, we study
the self-initiation of calcium waves without stimulation, therefore, the comparison of Jprob to the
uniform random number is the only mechanism available in the model to start a calcium wave.

The term s(1)(u(1),x, t) also houses the non-linear pump term

Jpump(u(1)) =
Vpump(u

(1))npump

(Kpump)npump + (u(1))npump
(2.4)
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and the constant balance term Jleak. By design, these terms balance out as Jleak = Jpump(0.1) ≡
constant (see Table 1) for the calcium concentration at basal level 0.1 µM.

(ii) The reaction terms in (1.2) are

r(i)(u(1), . . . , u(ns)) :=


ns∑
j=2

R(j)(u(1), u(j)), for i = 1,

R(i)(u(1), u(i)), for i = 2, . . . , ns,

(2.5)

where the reaction rates are given by

R(i) = −k+
i u

(1)u(i) + k−i

(
ui − u(i)

)
, for i = 2, . . . , ns, (2.6)

are modeled as autonomous non-linear functions of the different species and couple the equations in
the general system (1.1)–(1.2). Since the only sources/drains for the species i = 2, 3 are the terms
that model the binding/unbinding reactions with calcium, the no-flow boundary conditions assure
that the total concentration of these species bound and not bound with calcium remains constant,
and this constant is denoted by ūi, i = 2, 3; see Table 1.

(iii) The term f (i) = f (i)(x, t) is not physiological, but allows for the smooth scalar test problems
described in Section 2.2. For the CICR problem, we set f (i) ≡ 0 for all i.

The model uses the boundary conditions

n ·
(
D(i)∇u(i)

)
= 0 for x ∈ ∂Ω, 0 < t ≤ tfin (2.7)

and has the given initial conditions

u(i)(x, 0) = u
(i)
ini(x) for x ∈ Ω, t = 0. (2.8)

In the abscence of advection, these boundary conditions can be seen as no-flux boundary conditions.

The concentration of calcium, i = 1, is initialized at basal level of u
(i)
ini ≡ 0.1 µM. The initial values

of u
(i)
ini for i = 2, 3 are calculated, such that the reaction terms r(i) on the right-hand side 1.2 cancel.

The values of the initial concentrations are listed in Table 1. Thus, initially all terms on the right-
hand side of (1.2) vanish, and our simulations address the question whether a calcium wave can
self-initiate.

To demonstrate the effect of advection, we extend the model by artificially adding advection

to the right in the z-direction, i.e., setting β(i) = (0, 0, β
(i)
3 )T , i = 1, . . . , ns, with β

(i)
3 > 0. This

changes the behavior at the boundaries compared to the purely diffusive case. In particular, the
species flow in from the left and leave to the right end of the domain. Applying the numerical
method to this non-linear CICR application problem in Sections 4 and 6 is the key extension to
[10].

2.2 Scalar Test Problems

To demonstrate convergence and show weak scalability, we consider two scalar test problems, which
are simplifications of the system (1.1). Here, we only consider the advection-diffusion-reaction equa-
tion, where there is only one species, hence we drop the superscripts. To maintain the connection to
the application problem, the domain Ω is chosen to be the same as in the calcium problem as is the
diffusion coefficient matrix D = D(1) ≡ diag(0.15, 0.15, 0.30). The advection velocity is designed
as product of a weight ω and vector (0.15, 0.15, 0.30)T of the form β ≡ β(1) = ω (0.15, 0.15, 0.30)T

such that we can control the magnitude of advection by varying the constant ω. For ω = 0, there
is no advection, and for ω = 1, diffusion and advection are on the same order of magnitude. The
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two scalar test problems are different in their right-hand side (1.2), as explained in the following
subsections. Also to maintain the connection to the application problem, both scalar test problems
use the same boundary conditions as the application problem specified above. The two-dimensional
test problems are set up the same as the three-dimensional ones, except that the y-dimension is
dropped from the domain and model parameters, that is, the domain retains its elongated shape
in the last dimension. These scalar test problems are used in Sections 5 and 6.

2.2.1 Smooth Source Term

With respect to the right-hand side of the scalar test problem with smooth source term, we set
r ≡ 0 and s ≡ 0 in (1.2). This results in the problem ut−∇ · (D∇u) + β · ∇u = f . The right-hand
side f is chosen such that the true solution is exactly known as

u(x, y, z, t) =
1 + cos(λxx)e−Dxλ2

xt

2

1 + cos(λyy)e−Dyλ2
yt

2

1 + cos(λzz)e
−Dzλ2

zt

2
(2.9)

with λx = λy = π/6.4 and λz = π/32. The initial conditions are chosen consistent with the true
solution.

2.2.2 Non-smooth Source Term

To show the method’s convergence even in the presence of point sources, we set f ≡ 0 and r ≡ 0 in
(1.2), and Jpump ≡ Jleak ≡ 0 in (2.1). The intention is to simplify the calcium problem by modelling
a single CRU in the center of the domain, which opens at time t = 1 and remains open afterwards.
Therefore, we set Ωs = {(0, 0, 0)}, s ≡ s(1)(u,x, t) = g Sx̂(u, t) δ(x − x̂) with x̂ ∈ Ωs and g from
Table 1, and control manually Sx̂(u, t) = 0 for t < 1 and Sx̂(u, t) = 1 for t ≥ 1. This results in
the problem ut −∇ · (D∇u) + β · ∇u = g Sx̂(u, t) δ(x − x̂). The true solution is not available for
this test problem. To maintain the connection to the application problem, the initial condition is
chosen as uini ≡ 0.1.
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Table 1: Table of parameters for the CICR model.

Parameter Description Values/Units

t Time ms
x Position µm
ui Concentration µM
Ω Rectangular domain in µm (−6.4, 6.4) × (−6.4, 6.4) × (−32.0, 32.0)

D(1) Calcium diffusion coefficient diag(0.15, 0.15, 0.30) µm2/ ms

D(2) Mobile buffer diffusion coefficient diag(0.01, 0.01, 0.02) µm2/ ms

D(3) Stationary buffer diffusion coefficient diag(0.00, 0.00, 0.00) µm2/ ms

β(i) Advection velocity µm / ms

u
(1)
ini Initial calcium concentration 0.1 µM

u
(2)
ini Initial mobile buffer concentration 45.9184 µM

u
(3)
ini Initial stationary buffer concentration 111.8182 µM

∆xs CRU spacing in x-direction 0.8 µm
∆ys CRU spacing in y-direction 0.8 µm
∆zs CRU spacing in z-direction 0.2 µm
g Flux density distribution 110.0 µM µm3 / ms
Pmax Maximum probability rate 0.3 / ms
Kprob Probability sensitivity 0.2 µM
nprob Probability Hill coefficient 4.0
∆ts CRU time step 1.0 ms
topen CRU opening time 5.0 ms
tclosed CRU refractory period 100 ms
k+

2 Forward reaction rate 0.08 / (µM ms)
k−2 Backward reaction rate 0.09 / ms
ū2 Total of bound and unbound indicator 50.0 µM
k+

3 Forward reaction rate 0.10 / (µM ms)
k−3 Backward reaction rate 0.10 / ms
ū3 Total bound and unbound buffer 123.0 µM
Vpump Maximum pump strength 4.0 µM / ms
Kpump Pump sensitivity 0.184 µM
npump Pump Hill coefficient 4
Jleak Leak term 0.320968365152510 µM / ms
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3 NUMERICAL METHOD

In this section we describe the numerical method for the solution of the system (1.1). In Section 3.1
we give an outline of the finite volume space discretization, a detailed explaination can be found in
[10]. A brief description of the time integration, the non-linear solver, and the linear solver is given
in Section 3.2. Section 3.3 discusses the parallel implementation using MPI.

3.1 Spatial Discretization

To derive the finite volume discretization, let Th = {K1, . . . ,KM} be a mesh such that Ω =
⋃M
l=1K l.

Each Kl ∈ Th is an open subset of Ω and referred to as cell or control volume. Integating (1.1) over
an arbitrary cell Kl ∈ Th and applying the divergence theorem yields

d

dt

∫
Kl

u(i) dx−
∫
∂Kl

(D(i)∇u(i) − u(i)β(i)) · nl dS =

∫
Kl

q(i) dx, (3.1)

where ∂Kl denotes the boundary of Kl and nl its outward unit normal vector. This is the equation
we are actually trying to solve, since it imposes less regularity on the solution than (1.1). In
particular, solutions with discontinuities are now admissible. Denoting the volume of Kl by |Kl|,
the spatial mean value of u(i) over Kl is given by

ū
(i)
l (t) :=

1

|Kl|

∫
Kl

u(i)(x, t) dx. (3.2)

With this notation, (3.1) can be rewritten as

d

dt
ū

(i)
l −

1

|Kl|

∫
∂Kl

(D(i)∇u(i) − u(i)β(i)) · nl dS =
1

|Kl|

∫
Kl

q(i) dx. (3.3)

This is a system of ordinary differential equations for the temporal evolution of the mean values ū
(i)
l .

With this expression, the crucial issues are to compute the boundary fluxes in terms of neighboring
mean values as well as the volume integral on the right hand side.

Now, we introduce the mesh which is used for the discretization. In [3], a regular mesh Ωh ⊂ Ω
with constant mesh spacings ∆x, ∆y, and ∆z was used for the finite element space discretization.
Here we employ the corresponding dual mesh Th, which is constructed by connecting all centers of
mesh cubes of Ωh with lines parallel to the coordinate axes and extending these lines in a straight
manner to the boundary. The dual mesh is a rectilinear mesh and each inner node of Ωh is the center
of a cell of Th with volume ∆x∆y∆z. Furthermore, the volume of a cell is reduced to ∆x∆y∆z/2,
∆x∆y∆z/4, or ∆x∆y∆z/8, if this cell has a common face, edge, or corner, respectively, with the
boundary ∂Ω. The exterior views of a simple regular mesh and its corresponding dual mesh are
depicted in Figures 1 (a) and (b), respectively.

By construction, the number of nodes of Ωh equals the number of cells in Th. In the following,
we assume that Th consists of M = MxMyMz control volumes, with Mx, My, and Mz denoting the
number of cells in each direction and introduce the enumeration scheme

l = i+ (j − 1)Mx + (k − 1)MxMy (3.4)

for 1 ≤ i ≤Mx, 1 ≤ j ≤My, and 1 ≤ k ≤Mz. Thus, a control volume Kl has the neighbors Kl−1

and Kl+1 in the x-direction, Kl−Mx and Kl+Mx in the y-direction and Kl−MxMy and Kl+MxMy in
the z-direction.
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(a)

(b)

Figure 1: (a) Regular mesh of mesh resolution 4× 4× 8 and (b) its dual mesh.

For a given control volume Kl = (xL, xR) × (yL, yR) × (zL, zR) ∈ Th with spacings ∆xl =
xR − xL,∆yl = yR − yL,∆zl = zR − zL, and β = (β1, β2, β3), the boundary fluxes from (3.1) can
be written as ∫

∂Kl

(D∇u− uβ) · nl dS (3.5)

=

∫ zR

zL

∫ yR

yL

(D11∂xu− β1u)|x=xR − (D11∂xu− β1u)|x=xL dy dz

+

∫ zR

zL

∫ xR

xL

(D22∂yu− β2u)|y=yR − (D22∂yu− β2u)|y=yL dx dz

+

∫ yR

yL

∫ xR

xL

(D33∂zu− β3u)|z=zR − (D33∂zu− β3u)|z=zL dx dy.

Here we exploited the fact that the faces of Kl are parallel to the planes defined by the coordinate
axes, thus only one entry of the corresponding normal vectors is non-zero. Note that the superscripts
(i) were dropped for readability and that the above equation is valid for one of the ns species of
the system.

In order to approximate the advective flux βju(xl+1) in terms of the mean values ūl, we introduce
a numerical flux function H = H(û+

l , û
−
l+1). The values û+

l and û−l+1 are approximations to the
unknown values of u on either side of xl+1. Assuming that βj ≥ 0 as before, either a first-order or
second-order accurate upwind flux function can be defined:

• Assuming a constant distribution of u in Kl leads to the first-order discretization

Ha,j(û
+
l , û

−
l+1) = βj û

+
l , j = 1, 2, 3, û+

l = ūl. (3.6)

• Since the advection term is linear, no non-linear discretization is necessary, as would be
standard for non-linear fluid mechanics. To obtain the second-order discretization via a
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linear representation of the solution, we define a slope within the cell by

Ha,j(û
+
l , û

−
l+1) = βj û

+
l , j = 1, 2, 3, û+

l = ūl +
ūl − ūl−1

ml −ml−1
(xl+1 −ml), (3.7)

where ml and ml−1 denote the barycenters of the cells belonging to ūl and ūl−1, respectively.

To approximate the diffusive flux Djj∂lu(xl+1), we use a central difference of the neighboring
mean values and define the diffusive flux function as

Hd,j(ūl, ūl+1) = Djj
ūl+1 − ūl
ml+1 −ml

. (3.8)

In this case, the mean values on either side of xl+1 are sufficient to obtain a scheme of second order.
Now we can approximate the boundary fluxes as∫

∂Kl

(D∇u− uβ) · nl dS (3.9)

≈ ∆yl∆zl
(
Hd,1(ūl, ūl+1)−Ha,1(û1,+

l , û1,−
l+1)

)
−∆yl∆zl

(
Hd,1(ūl−1, ūl)−Ha,1(û1,+

l−1, û
1,−
l )

)
+ ∆xl∆zl

(
Hd,2(ūl, ūl+Mx)−Ha,2(û2,+

l , û2,−
l+Mx

)
)

−∆xl∆zl
(
Hd,2(ūl−Mx , ūl)−Ha,2(û2,+

l−Mx
, û2,−

l )
)

+ ∆xl∆yl
(
Hd,3(ūl, ūl+MxMy)−Ha,3(û3,+

l , û3,−
l+MMMy

)
)

−∆xl∆yl
(
Hd,3(ūl−MxMy , ūl)−Ha,3(û3,+

l−MxMy
, û3,−

l )
)
,

where the enumeration scheme (3.4) was used to describe the location of the input data of the flux
functions. The notation ûj,±l indicates that the approximation to the value of u lives in Kl and
belongs to the face which is between Kl and its neighbor of positive or negative side.

The last step of the discretization is the treatment of the volume integral on the right hand side
of (3.3). This can be approximated sufficiently using the midpoint rule∫

Kl

q(u(1), . . . , u(ns),x, t) dx ≈ |Kl| q(ū
(1)
l , . . . , ū

(ns)
l ,ml, t), (3.10)

with ml denoting the barycenter of Kl. In the special case of a Dirac delta distribution as source
term, i.e., q = δ(x− x̂), the volume integral can be computed exactly. The Dirac delta distribution
is defined by requiring δ(x− x̂) = 0 for all x 6= x̂ and

∫
R3 ψ(x)δ(x− x̂) dx = ψ(x̂) for any function

ψ ∈ C∞0 (R3). Thus, we obtain∫
Kl

q(x) dx =

∫
Kl

δ(x− x̂) · 1 dx =

{
1, x̂ ∈ Kl,

0, x̂ 6∈ Kl.
(3.11)

This completes the description of the finite volume discretization and, after division by the local
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volume |Kl| = ∆xl∆yl∆zl, (3.3) can now be written as

d

dt
ūl −

1

∆xl

(
Hd,1(ūl, ūl+1)−Ha,1(û1,+

l , û1,−
l+1)

)
(3.12)

+
1

∆xl

(
Hd,1(ūl−1, ūl)−Ha,1(û1,+

l−1, û
1,−
l )

)
− 1

∆yl

(
Hd,2(ūl, ūl+Mx)−Ha,2(û2,+

l , û2,−
l+Mx

)
)

+
1

∆yl

(
Hd,2(ūl−Mx , ūl)−Ha,2(û2,+

l−Mx
, û2,−

l )
)

− 1

∆zl

(
Hd,3(ūl, ūl+MxMy)−Ha,3(û3,+

l , û3,−
l+MxMy

)
)

+
1

∆zl

(
Hd,3(ūl−MxMy , ūl)−Ha,3(û3,+

l−MxMy
, û3,−

l )
)

= q(ū
(1)
l , . . . , ū

(ns)
l ,ml, t).

(3.13)

Let ū(i) = (ū
(i)
1 , . . . , ū

(i)
M )T , q(i) = (q

(i)
1 , . . . , q

(i)
M )T , q

(i)
l = q(i)(ū

(1)
l , . . . , ū

(ns)
l ,ml, t),

(3.12) now reads
d

dt
ū(i) =

(
H

(i)
diff −H

(i)
adv

)
ū(i) + q(i)(ū(1), . . . , ū(n)), (3.14)

where Hdiff,Hadv ∈ RM×M are the flux matrices, built from terms containing Hd,j and Ha,j in the
system of equations (3.12). Finally, collecting all ns vectors ū(i) in Ū ∈ RnsM the system (3.14)
can be written as

d

dt
Ū(t) = fode(t, Ū(t)) (3.15)

with fode = (f (1), . . . , f (n))T ∈ RnsM and components

f (i) = Å(i)ū(i) + q(i)(ū(1), . . . , ū(ns)), (3.16)

with
Å(i) = H

(i)
diff −H

(i)
adv. (3.17)
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3.2 Time Integration and Matrix-Free Implementation

The spatial discretization of the application problem (3.15) with ns = 3 species using the finite
volume method with M = MxMyMz control volumes results in a system of non-linear ordinary
differential equations (ODEs) with neq = nsM degrees of freedom (DOF). A method of lines
discretization of advection-diffusion-reaction equations with second-order spatial derivatives results
necessarily in a stiff ODE system, since the time step size restrictions due to the CFL condition
are considered too severe to allow for explicit time-stepping methods. To reach the very large
final times demanded to simulate laboratory time scales of the CICR application, we need to be
able to take fairly large time steps whenever possible. This necessitates the use of a sophisticated
ODE solver such as the family of numerical differentiation formulas (NDFk) with variable order
1 ≤ k ≤ 5 and adaptively chosen time step size [12, 13]. This method is also used for a method of
lines discretization using finite elements in [3]. We use relative and absolute tolerances of 10−6 and
10−8, respectively, for the error estimator of the NDFk method. In studies for the CICR problem,
the time step sizes vary widely, with fine step sizes on the order of 10−5 ms immediately after CRUs
open or close. Since the parabolic system is smooth away from these times, the time steps increase
steadily up to the order of 10−2 ms, all the while the error controller ensures that the total error
incurred from the time-stepping remains bounded by the selected tolerances. This high variation in
step size allows the solver to reach the desired final time of 1,000 ms in under 90,000 time steps for
the finest mesh. The average method order observed is 3, showing that we are profiting significantly
from the variable order method.

The implicit ODE method needed for a stiff problem demands the solution of a non-linear
system Fnewt(Ū) = 0 of neq equations at every time step. The Newton method is used with
Jacobian Jnewt(Ū) = ∇ŪFnewt(Ū). This method profits from the low-order spatial discretization
on a uniform mesh used, because we are able to compute analytically all matrices in (3.12), as
originally demonstrated in [4] for the method of lines using finite elements. The purpose of this
approach is to save memory and hence allow for computations on very fine meshes. In addition,
the usage of the exact Jacobian should lead to quadratic convergence of the Newton method. The
iteration is stopped if ‖Ūnew‖ < εnewt‖Ūnew − Ūold‖ . We use the tolerance of εnewt = 10−4 and
maximum number of Newton iterations of 4. Since the matrix-vector products in Krylov subspace
methods [9] used as linear solvers below are implemented in matrix-free form, this Jacobian is
automatically evaluated at the current Newton iteration without any additional cost.

At each Newton iteration, we need to solve a linear system with a non-symmetric system matrix
for the neq unknowns. Numerical experiments demonstrate that the biconjugate gradient stabilized
method (BiCGSTAB) is preferable over GMRES as well as to QMR, the latter one being used with
the finite element method in [3]. We stop the iteration within the linear solver if the residual r
satisfies the condition ‖r‖2 < εlin‖b‖2 with b denoting the right-hand side of the linear system and
a given tolerance εlin. We use a tolerance of εlin = 10−6.

3.3 Parallel Implementation

The code uses MPI to perform the parallel communications and is an extension of the one described
in [3]. To compute the matrix-vector products needed in the Krylov subspace methods, communica-
tions between neighboring processes are required. Non-blocking communications using MPI_Isend

and MPI_Irecv are used for neighboring process communications. Furthermore, MPI_Allreduce
is used for inner products and norm calculation. In the parallel implementation, all data are split
in the z-direction such that the Mz mesh points are block-distributed to the p parallel processes.
The division of the domain Ω into p subdomains in the long z-direction (instead of the shorter x-
or y-directions) minimizes the amount of data that neighboring processes need to exchange across
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the subdomain interfaces. For a fixed problem size with DOF approximately 25 million, parallel
computing using MPI demostrates good strong scalability [10]. However, each process has less
computation to perform after increasing the number of MPI processes, resulting in the degrada-
tion of speedup and efficiency. Section 6 discusses weak scability, to demonstate how efficcient the
implementation is as we increase problem size, all the way to approximately 800 million DOF.

Regarding the advection matrix, using a constant distribution or a linear reconstruction yields
different loads of communications between processes, which correcponds to first- or second-order
schemes, see (3.6) and (3.7) for details. This raises the question whether it is preferable to use
the first-order advection scheme, which sacrifices accuracy for smooth problems but restricts the
communication with each neighboring process to one slice, or to use the second-order reconstruction
and to accept the exchange of two slices between neighboring processes. This is a key question to
be analyzed in Section 5.

But first, the parallel code enables the effective solution of the physiological application problem
for long-time simulations in Section 4.
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4 SIMULATION OF CALCIUM WAVES

We solve the model of CICR from Section 2.1 given by the system of coupled, time-dependent
advection-reaction-diffusion equations (1.1)–(1.2), where the calcium injection is modeled by (2.2)
with a constant uniform CRU flux density g. The parameters are given in Table 1. This section
analyzes the influence of increasing advection in (1.1). The initial conditions are as specified
in Section 2.1. All studies use the same seed to the random number sequence to allow for a
physiological comparison of the simulations.

We first take the case where there are no advection effects, like in [3] and [2], to show three ways
to visualize the simulation results. In this case, we have several waves self initiate and propagate
throughout the cell, in both orientations of the z-direction. The first plotting method is called
a CRU Plot, shown in Figure 2. The long-time simulations of CICR model go up to the large
final time tfin = 1,000 ms, as noted in Section 2.1. The plots in this figure show which CRUs are
open at each timestep during the simulation. We see that at t = 100 a few CRUs are open, the
wave mostly spreads along x and y dimensions at this point. Later on we see that the CRUs have
begun to open on both sides of the cell and spread across it. During our simulation of 1,000 ms,
several waves have been generated and run across the cell, with similar speed on both ways of the
z-direction. The second plotting method is called an Isosurface Plot, shown in Figure 3. The plots
in the figure take the same time steps as in the CRU plots, but they show calcium concentration
instead of open CRUs. The Isosurface Plots give us a 3-dimensional representation how the calcium
diffuses through the cell based on the concentration of calcium species u1. The different shades
of blue, red and yellow indicate the level of calcium concentration throughout the cell, while red
indicates higher concentration, blue indicates lower. There is a critical value associated with our
plots, ucrit = 65 µM. Inside the plotted area, the concentration is higher than ucrit, while outside
the plotted area the concentration is lower than ucrit. On the boundary of the plotted area inside
the cell the concentration is equal to ucrit, and the color is blue. However on the boundary of the
cell domain, the concentration might be higher than ucrit, hence the color more is red. Again, we
see that when t = 100 in Figure 3 there is a small amount of calcium in the cell. As time advances,
we see that the amount of calcium in the cell increases and diffuses throughout the cell. The third
plotting method is called a Confocal Image Plot, shown in Figure 4. The confocal images are meant
to replicate what scientists see in the laboratory experiements using florescent dye to bind to the
calcium in the heart cell. The lighter of green shades indicate higher calcium concentrations, while
the darker green shades indicate lower concentrations of calcium. When t = 100, we see calcium
start to diffuse across the cell as shown in Figure 4.

The key motivation to expand the current model to include advection effects comes from work
such as [1] that details several mechanisms for intracellular calcium pathology and [14] that discusses
mechanisms for intracellular calcium waves to impact multicellular electrical arrhythmias. This
paper introduces a simple advection affect with constant advection velocity vectors β(i) in (1.1)
(i) to demonstrate that the model behaves correctly with advection and (ii) to test the convergence
of the numerical method for the advection term in Section 5. We study advection in the elongated

z-direction of the cell by setting β(i) = (0, 0, β
(i)
3 ), i = 1, . . . , ns, in the general system (1.1). We

vary the value of the z-component β
(i)
3 = 0.01, 0.03, 0.05, 0.1, 0.2. Figures 5, 7, 9, 11, and 13 show

CRU plots for these values of β3, analogous to Figure 2 without advection. These plots show
that with larger β3 the effect of advection is stronger, as demonstrated by the waves been pushed
progressively more in the positive z-direction.

To demonstate the effect of advection, Figures 15 and 16 show line scan plots of the calcium
concentration along the longitudinal axis of the cell. Each line scan plot shows the concentration
at fixed values of x and y, for −32 ≤ z ≤ 32 on the vertical and 0 ≤ t ≤ 1,000 on the horizontal

14



axis. The color represents the calcium concentration, with different shades of blue, yellow, and red
indicating the level of calcium concentration, where blue indicates a lower concentration and red
indicates a higher one.

Figure 15 shows line scan plots along the line segment for x = y = 0. Figure 15 (a) shows line
scan plots when there is no advection. At t = 0 ms, we see constant blue, which represents the
initial condition. At around t = 50 ms, we see lighter blue at some point P close to the center of the
line segment, which means the calcium concentration is higher at this point. As t gets larger, we
observe that the concentrations at neighboring points of P increase, and then the concentrations at
the points further away increase, and so on. These points form two symmetric skew lines, capturing
the propagation of the calcium waves along the line segment. We observe several pairs of symmetric
skew lines, representing several waves, which we have observed in Figures 2, 3, and 4. The slopes
of the lines are the speeds at which the calcium waves travel. In the case with no advection, the
calcium wave travels at the same speed along the positive and negative z-direction, hence the skew
lines are symmetric about the starting point P .

Figures 15 (b)–(f) show line scan plots with the z-component of advection velocity vector

β
(i)
3 = 0.01, 0.03, 0.05, 0.1, 0.2, respectively. We observe from Figure 15 (b) that the slopes of the

skew lines on the positive side of P are slightly increased, meanwhile the slopes of the skew lines
on the negative side of P are slightly decreased, compare to Figure 15 (a). This means that, as we
add the effect of advection on the positive z-direction, the calcium wave traveling in the positive
z-direction is faster, and the wave traveling in the negative z-direction is slower. We also observe
from Figure 15 (c) that as we increase advection, the slopes of the skew lines on the positive side of
P are further increased, and the concentrations on the skew lines are also higher. In the meantime,
the slopes of the skew lines on the negative side of P decreased significantly, and the lines are much
shorter. This indicates that the calcium waves cannot propagate to the far negative side of the

domain. The CRUs there cannot open due to low calcium concentration. As the β
(i)
3 gets larger

and larger, we observe from Figures 15 (d)–(f) that the slopes of the skew lines on the positive side
of P gets larger and larger, indicating the speed at which calcium waves travel along the positive
z-direction gets faster and faster. The calcium concentration on the skew lines are getting higher
and higher as well. We also observe that fewer waves are generated. No lines are observed on the
negative side of P . These plots match our observations from Figures 5, 7, 9, 11, and 13, and they
clearly demonstrate the impact of advection on the speed of calcium waves.

Figure 16 shows line scan plots along the line segment for x = y = 5.6, which is near the edge
of the domain Ω. In Figures 16 (a)–(f), We observe similar patterns just like Figures 15 (a)–(f),
respectively, but the calcium concentrations are generally lower due to the position of the line
segment in the domain. These plots confirm that we capture the effect of advection on calcium
waves in the whole domain, not just along any single line segment.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 2: Open calcium release units throughout the cell using finite volume method without
advection on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 3: Isosurface plots of the calcium concentration using finite volume method without advec-
tion on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 4: Confocal image plots of the calcium concentration using finite volume method without
advection on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 5: Open calcium release units throughout the cell using finite volume method with β(i) =
(0, 0, 0.01), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6: Isosurface plots of the calcium concentration using finite volume method with β(i) =
(0, 0, 0.01), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 7: Open calcium release units throughout the cell using finite volume method with β(i) =
(0, 0, 0.03), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 8: Isosurface plots of the calcium concentration using finite volume method with β(i) =
(0, 0, 0.03), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 9: Open calcium release units throughout the cell using finite volume method with β(i) =
(0, 0, 0.05), i = 1, . . . , ns, on mesh size 32× 32× 128.

23



t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 10: Isosurface plots of the calcium concentration using finite volume method with β(i) =
(0, 0, 0.05, i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 11: Open calcium release units throughout the cell using finite volume method with β(i) =
(0, 0, 0.1), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 12: Isosurface plots of the calcium concentration using finite volume method with β(i) =
(0, 0, 0.1), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 13: Open calcium release units throughout the cell using finite volume method with β(i) =
(0, 0, 0.2), i = 1, . . . , ns, on mesh size 32× 32× 128.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 14: Isosurface plots of the calcium concentration using finite volume method with β(i) =
(0, 0, 0.2), i = 1, . . . , ns, on mesh size 32× 32× 128.
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(a) no advection (b) β(i) = (0, 0, 0.01)

(c) β(i) = (0, 0, 0.03) (d) β(i) = (0, 0, 0.05)

(e) β(i) = (0, 0, 0.1) (f) β(i) = (0, 0, 0.2)

Figure 15: Time evolution of the longitudinal line scan showing the calcium concentration along
the line x = y = 0 µm, 0 ≤ t ≤ 1,000 ms.
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(a) no advection (b) β(i) = (0, 0, 0.01)

(c) β(i) = (0, 0, 0.03) (d) β(i) = (0, 0, 0.05)

(e) β(i) = (0, 0, 0.1) (f) β(i) = (0, 0, 0.2)

Figure 16: Time evolution of the longitudinal line scan showing the calcium concentration along
the line x = y = 5.6 µm, 0 ≤ t ≤ 1,000 ms.
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5 CONVERGENCE STUDIES

This section presents numerical studies of convergence order of the spatial discretization for the
two scalar test problems of Section 2.2. If the true solution is denoted by u and its numerical
approximation by uh, then classical results for the spatial error in the L2-norm have the form

‖u(x, t)− uh(x, t)‖
L2(Ω)

≤ C hq, as h→ 0, (5.1)

for all 0 < t ≤ tfin, where the constant C is independent of the mesh size h. The number q is the
convergence order of the spatial discretization. Here, the L2(Ω)-norm is defined as

‖v‖
L2(Ω)

=

(∫
Ω
v2 dx

)1/2

.

For the finite element method, the classical theory for linear elements specifies q = 2, which does
not depend on space dimension, see, e.g., [15]. The classical theory requires the source terms to be in
the function space L2(Ω), which is not true for source terms involving point sources modeled by the
Dirac delta distribution. For the finite element method, heuristic arguments and the computational
results of [3] indicate that q = 0.5 in three spatial dimensions and q = 1.0 in two spatial dimensions.
Motivated by these computational results, rigorous analysis in [11, Theorem 5.1] establishes that
(5.1) holds with q = 2− d/2− ε in dimensions d = 2, 3, which confirms the computational results.

For the finite volume method, we are not aware of any rigorous theory for problems involving
non-smooth source terms. The purpose of this section is to analyze the convergence order of
the finite volume method numerically, analogous to [3], and additionally (i) analyze the impact
of increasing advection on the convergence order and (ii) compare the first- and second-order
discretization of the advection term in (3.6) and (3.7), respectively.

The results in this section are collected in ten tables, with Tables 2 through 5 containing results
for problems on the three-dimensional domain Ω ⊂ R3, Tables 6 through 9 results for problems
on the two-dimensional domain Ω ⊂ R2, and Tables 10 and 11 providing summaries of the results.
Specifically, we start with Tables 2 and 3 considering the same method as in [10], using the second-
order discretization of the advection term (3.7). Then, Tables 4 and 5 provide the comparison to
using the first-order discretization of the advection term (3.6). The two pairs of Tables 6 and 7
and Tables 8 and 9 repeat the comparison of second- and first-order advection discretizations for
the problems in two dimensions.

Each of the Tables 2 through 9 contains five subtables. The entries in each subtable report
the L2-norm of the error ‖u(·, t) − uh(·, t)‖L2(Ω) and in parentheses a numerical estimate of the
convergence order q from (??), for four progressively finer meshes. Given numerical solutions on
two meshes with mesh widths h and 2h, the order q can be estimated using the formula

qest = log2

(
‖u(·, t)− u2h(·, t)‖

L2(Ω)

‖u(·, t)− uh(·, t)‖
L2(Ω)

)
. (5.2)

For problems, whose true solution u is not available, it is customary to use the numerical solution
on the finest available mesh as a reference solution in place of u in the norm of the errors. This
procedure is necessary for the non-smooth test problem. For consistency, we apply this procedure
also for the smooth test problem. Hence, all tables in this section show errors against a reference
solution. However, for the smooth problem, we also obtained the analogous results of ‖u(·, t) −
uh(·, t)‖L2(Ω) and qest using the true solution and confirmed that the procedure with the reference
solution worked correctly in this case.
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First, let us discuss results in three spatial dimensions. For instance, Table 2 reports error
and convergence order against reference solution using second-order discretization of the advection
term. The first subtable 2 (a) reports the results for the finite element method. Since this method
is not suitable for problems with advection, it is applied to the test problems without the advection
term. The convergence order results for the finite element method agree with those in [3] and
are included here to allow for a ready comparison. Recall from Section 2.2 and Table 1 that the
scalar test equations use the calcium diffusion coefficient matrix D = D(1) = diag(0.15, 0.15, 0.30).
The advection velocity is the product of the weight ω and vector (0.15, 0.15, 0.30)T of the form
β = β(1) = ω (0.15, 0.15, 0.30)T such that we can control the magnitude of advection by varying
the constant ω. For ω = 0, there is no advection, and for ω = 1, diffusion and advection are
on the same order of magnitude. Table 2 (b)–(e) contain results for the finite volume method
with second-order discretization of advection term described in (3.7), with ω = 0, 0.01, 0.1, 1. We
observe that both FEM and FVM with second-order advection discretization have a numerical
convergence order of q = 2. Table 3 contains five subtables for the test problem with non-smooth
source term. We observe a numerical convergence order of q = 0.5 for both FEM and FVM with
second-order advection discretization. Table 4 and Table 5 repeat the tests above but use the first-
order advection discretization as described in (3.6). Table 4 shows that as we increase the weight
of advection ω, the numerical convergence order dropped from 2 to 1.5, indicating the convergence
rate is lower when using first-order advection discretization for the test problem with smooth source
term. From Table 5 we observe the numerical convergence order of q = 0.5 for both FEM and FVM
with first-order advection discretization.

Notice that in Table 3 and Table 5 the actual observed errors have a magnitude of 10+1. This is
because the calcium release unit at the center of the domain is modeled by Dirac delta distribution,
which is a highly non-smooth source term. Note that the apparently large values for the error must
be viewed in the context of the large size of the domain Ω, which is (12.8)(12.8)(64) = 10, 485.76.
In the meantime, convergence studies in [3] have shown that the L2-norms have the magnitude
from 10−1 to 10−3 and converge quadratically on the domain Ω with a small area centered about
the calcium release unit removed. This confirms that the non-smooth source term is the reason of
observed convergence order q = 0.5.

Now, let us move on to results in two spatial dimensions. Table 6 and Table 7 show that with
second-order discretization of the advecton term, the numerical convergence order q = 2 for finite
volume method with smooth source term, and q = 1 with non-smooth source term. Table 8 and
Table 9 show that with first-order discretization of advecton term, q drops below 2 while increasing
the weight of advection with smooth source term, and q = 1 with non-smooth source term. This
shows that the convergence order is dependent on the space dimensions while dealing with highly
non-smooth source terms such as point sources here.
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Table 2: L2-error against reference solution (and estimated convergence order qest) for scalar test
problem with smooth source term in 3-D using a second-order advection discretization in the finite
volume method.

(a) FEM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 2.4322e–01 2.1725e–01 1.9453e–01
32× 32× 128 6.0327e–02 (2.0114) 5.3869e–02 (2.0119) 4.8182e–02 (2.0134)
64× 64× 256 1.4488e–02 (2.0579) 1.2954e–02 (2.0561) 1.1598e–02 (2.0546)
128× 128× 512 3.0194e–03 (2.2626) 2.7163e–03 (2.2536) 2.4465e–03 (2.2450)

(b) 2nd order FVM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 4.1596e–01 4.0106e–01 3.8575e–01
32× 32× 128 1.0682e–01 (1.9612) 1.0245e–01 (1.9689) 9.8285e–02 (1.9726)
64× 64× 256 2.6685e–02 (2.0011) 2.5573e–02 (2.0022) 2.4520e–02 (2.0030)
128× 128× 512 6.9077e–03 (1.9498) 6.6055e–03 (1.9529) 6.3208e–03 (1.9558)

(c) 2nd order FVM with ω = 0.01
t = 2 t = 3 t = 4

16× 16× 64 4.1588e–01 4.0096e–01 3.8564e–01
32× 32× 128 1.0683e–01 (1.9608) 1.0246e–01 (1.9684) 9.8294e–02 (1.9721)
64× 64× 256 2.6687e–02 (2.0011) 2.5574e–02 (2.0023) 2.4520e–02 (2.0031)
128× 128× 512 6.9076e–03 (1.9499) 6.6050e–03 (1.9530) 6.3202e–03 (1.9559)

(d) 2nd order FVM with ω = 0.1
t = 2 t = 3 t = 4

16× 16× 64 4.1551e–01 4.0076e–01 3.8570e–01
32× 32× 128 1.0699e–01 (1.9574) 1.0273e–01 (1.9639) 9.8654e–02 (1.9670)
64× 64× 256 2.6726e–02 (2.0011) 2.5638e–02 (2.0025) 2.4601e–02 (2.0037)
128× 128× 512 6.9112e–03 (1.9512) 6.6163e–03 (1.9542) 6.3338e–03 (1.9576)

(e) 2nd order FVM with ω = 1
t = 2 t = 3 t = 4

16× 16× 64 4.3888e–01 4.5043e–01 4.6647e–01
32× 32× 128 1.1749e–01 (1.9013) 1.2257e–01 (1.8777) 1.2900e–01 (1.8544)
64× 64× 256 2.9760e–02 (1.9811) 3.1218e–02 (1.9732) 3.3070e–02 (1.9638)
128× 128× 512 7.4323e–03 (2.0015) 7.5946e–03 (2.0393) 7.8554e–03 (2.0738)
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Table 3: L2-error against reference solution (and estimated convergence order qest) for scalar test
problem with non-smooth source term in 3-D using a second-order advection discretization in the
finite volume method.

(a) FEM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 5.4249e+01 5.0676e+01 5.0706e+01
32× 32× 128 3.6689e+01 (0.5643) 3.7651e+01 (0.4286) 3.7806e+01 (0.4235)
64× 64× 256 2.6378e+01 (0.4760) 2.6396e+01 (0.5124) 2.6400e+01 (0.5181)
128× 128× 512 1.6083e+01 (0.7138) 1.6083e+01 (0.7147) 1.6084e+01 (0.7149)

(b) 2nd order FVM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 7.6451e+01 8.5493e+01 8.8933e+01
32× 32× 128 6.4231e+01 (0.2513) 6.5344e+01 (0.3877) 6.5578e+01 (0.4395)
64× 64× 256 4.6063e+01 (0.4797) 4.6135e+01 (0.5022) 4.6152e+01 (0.5068)
128× 128× 512 3.0898e+01 (0.5761) 3.0903e+01 (0.5781) 3.0905e+01 (0.5786)

(c) 2nd order FVM with ω = 0.01
t = 2 t = 3 t = 4

16× 16× 64 7.6263e+01 8.5145e+01 8.8515e+01
32× 32× 128 6.4070e+01 (0.2513) 6.5172e+01 (0.3857) 6.5405e+01 (0.4365)
64× 64× 256 4.5999e+01 (0.4781) 4.6070e+01 (0.5004) 4.6087e+01 (0.5050)
128× 128× 512 3.0875e+01 (0.5751) 3.0880e+01 (0.5772) 3.0881e+01 (0.5776)

(d) 2nd order FVM with ω = 0.1
t = 2 t = 3 t = 4

16× 16× 64 7.4665e+01 8.2230e+01 8.5029e+01
32× 32× 128 6.2670e+01 (0.2527) 6.3683e+01 (0.3687) 6.3902e+01 (0.4121)
64× 64× 256 4.5425e+01 (0.4643) 4.5495e+01 (0.4852) 4.5512e+01 (0.4896)
128× 128× 512 3.0667e+01 (0.5668) 3.0672e+01 (0.5688) 3.0673e+01 (0.5693)

(e) 2nd order FVM with ω = 1
t = 2 t = 3 t = 4

16× 16× 64 6.5034e+01 6.6909e+01 6.7530e+01
32× 32× 128 5.2889e+01 (0.2982) 5.3328e+01 (0.3273) 5.3437e+01 (0.3377)
64× 64× 256 4.0584e+01 (0.3821) 4.0636e+01 (0.3921) 4.0648e+01 (0.3947)
128× 128× 512 2.8747e+01 (0.4975) 2.8751e+01 (0.4991) 2.8752e+01 (0.4995)
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Table 4: L2-error against reference solution (and estimated convergence order qest) for scalar test
problem with smooth source term in 3-D using a first-order advection discretization in the finite
volume method.

(a) FEM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 2.4322e–01 2.1725e–01 1.9453e–01
32× 32× 128 6.0327e–02 (2.0114) 5.3869e–02 (2.0119) 4.8182e–02 (2.0134)
64× 64× 256 1.4488e–02 (2.0579) 1.2954e–02 (2.0561) 1.1598e–02 (2.0546)
128× 128× 512 3.0194e–03 (2.2626) 2.7163e–03 (2.2536) 2.4465e–03 (2.2450)

(b) 1st order FVM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 4.1596e–01 4.0106-e-01 3.8575e–01
32× 32× 128 1.0682e–01 (1.9612) 1.0245e–01 (1.9689) 9.8285e–02 (1.9726)
64× 64× 256 2.6685e–02 (2.0011) 2.5573e–02 (2.0022) 2.4520e–02 (2.0030)
128× 128× 512 6.9077e–03 (1.9498) 6.6055e–03 (1.9529) 6.3208e–03 (1.9558)

(c) 1st order FVM with ω = 0.01
t = 2 t = 3 t = 4

16× 16× 64 4.1399e–01 3.9820e–01 3.8205e–01
32× 32× 128 1.0598e—01 (1.9658) 1.0122e–01 (1.9761) 9.6683e–02 (1.9824)
64× 64× 256 2.6350e–02 (2.0079) 2.5085e–02 (2.0126) 2.3890e–02 (2.0168)
128× 128× 512 6.8263e–03 (1.9486) 6.4894e–03 (1.9507) 6.1736e–03 (1.9522)

(d) 1st order FVM with ω = 0.1
t = 2 t = 3 t = 4

16× 16× 64 3.9932e–01 3.7901e–01 3.5979e–01
32× 32× 128 1.0109e–01 (1.9819) 9.5928e–02 (1.9822) 9.2084e–02 (1.9661)
64× 64× 256 2.5389e–02 (1.9934) 2.5096e–02 (1.9345) 2.5552e–02 (1.8495)
128× 128× 512 6.9876e–03 (1.8613) 7.2888e–03 (1.7837) 7.8148e–03 (1.7091)

(e) 1st order FVM with ω = 1
t = 2 t = 3 t = 4

16× 16× 64 5.4935e–01 7.1330e–01 8.7562e–01
32× 32× 128 2.4039e–01 (1.1923) 3.3733e–01 (1.0804) 4.2579e–01 (1.0401)
64× 64× 256 1.0429e–01 (1.2047) 1.4883e–01 (1.1805) 1.8866e–01 (1.1743)
128× 128× 512 3.5657e–02 (1.5484) 5.0768e–02 (1.5517) 6.4249e–02 (1.5541)
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Table 5: L2-error against reference solution (and estimated convergence order qest) for scalar test
problem with non-smooth source term in 3-D using a first-order advection discretization in the
finite volume method.

(a) FEM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 5.4249e+01 5.0676e+01 5.0706e+01
32× 32× 128 3.6689e+01 (0.5643) 3.7651e+01 (0.4286) 3.7806e+01 (0.4235)
64× 64× 256 2.6378e+01 (0.4760) 2.6396e+01 (0.5124) 2.6400e+01 (0.5181)
128× 128× 512 1.6083e+01 (0.7138) 1.6083e+01 (0.7147) 1.6084e+01 (0.7149)

(b) 1st order FVM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 7.6451e+01 8.5493e+01 8.8933e+01
32× 32× 128 6.4231e+01 (0.2513) 6.5344e+01 (0.3877) 6.5578e+01 (0.4395)
64× 64× 256 4.6063e+01 (0.4797) 4.6135e+01 (0.5022) 4.6152e+01 (0.5068)
128× 128× 512 3.0898e+01 (0.5761) 3.0903e+01 (0.5781) 3.0905e+01 (0.5786)

(c) 1st order FVM with ω = 0.01
t = 2 t = 3 t = 4

16× 16× 64 7.6299e+01 8.5218e+01 8.8596e+01
32× 32× 128 6.4101e+01 (0.2513) 6.5198e+01 (0.3863) 6.5426e+01 (0.4374)
64× 64× 256 4.6010e+01 (0.4784) 4.6080e+01 (0.5007) 4.6097e+01 (0.5052)
128× 128× 512 3.0881e+01 (0.5752) 3.0886e+01 (0.5772) 3.0887e+01 (0.5777)

(d) 1st order FVM with ω = 0.1
t = 2 t = 3 t = 4

16× 16× 64 7.4977e+01 8.2850e+01 8.5714e+01
32× 32× 128 6.2953e+01 (0.2522) 6.3918e+01 (0.3743) 6.4105e+01 (0.4191)
64× 64× 256 4.5538e+01 (0.4672) 4.5596e+01 (0.4873) 4.5609e+01 (0.4911)
128× 128× 512 3.0725e+01 (0.5676) 3.0729e+01 (0.5693) 3.0730e+01 (0.5697)

(e) 1st order FVM with ω = 1
t = 2 t = 3 t = 4

16× 16× 64 6.5199e+01 6.7564e+01 6.8367e+01
32× 32× 128 5.4115e+01 (0.2688) 5.4522e+01 (0.3094) 5.4708e+01 (0.3216)
64× 64× 256 4.1512e+01 (0.3825) 4.1587e+01 (0.3907) 4.1646e+01 (0.3936)
128× 128× 512 2.9290e+01 (0.5031) 2.9304e+01 (0.5050) 2.9316e+01 (0.5065)
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Table 6: L2-error against reference solution (and estimated convergence order qest) for scalar test
problem with smooth source term in 2-D using a second-order advection discretization in the finite
volume method.

(a) FEM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 1.5341e–01 1.4291e–01 1.3300e–01
32× 32× 128 3.7920e–02 (2.0164) 3.5316e–02 (2.0167) 3.2857e–02 (2.0172)
64× 64× 256 8.9647e–03 (2.0806) 8.3605e–03 (2.0787) 7.7914e–03 (2.0762)
128× 128× 512 1.8359e–03 (2.2878) 1.7270e–03 (2.2753) 1.6268e–03 (2.2598)

(b) 2nd order FVM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 1.3268e–01 1.2941e–01 1.2582e–01
32× 32× 128 3.4128e–02 (1.9589) 3.3101e–02 (1.9671) 3.2096e–02 (1.9709)
64× 64× 256 8.5443e–03 (1.9979) 8.2794e–03 (1.9993) 8.0214e–03 (2.0005)
128× 128× 512 2.2398e–03 (1.9316) 2.1654e–03 (1.9349) 2.0924e–03 (1.9387)

(c) 2nd order FVM with ω = 0.01
t = 2 t = 3 t = 4

16× 16× 64 1.3264e–01 1.2937e–01 1.2576e–01
32× 32× 128 3.4126e–02 (1.9586) 3.3097e–02 (1.9667) 3.2088e–02 (1.9706)
64× 64× 256 8.5434e–03 (1.9980) 8.2774e–03 (1.9994) 8.0183e–03 (2.0007)
128× 128× 512 2.2395e–03 (1.9317) 2.1649e–03 (1.9349) 2.0916e–03 (1.9387)

(d) 2nd order FVM with ω = 0.1
t = 2 t = 3 t = 4

16× 16× 64 1.3246e–01 1.2917e–01 1.2559e–01
32× 32× 128 3.4144e–02 (1.9558) 3.3128e–02 (1.9632) 3.2125e–02 (1.9670)
64× 64× 256 8.5449e–03 (1.9985) 8.2783e–03 (2.0006) 8.0182e–03 (2.0023)
128× 128× 512 2.2385e–03 (1.9326) 2.1635e–03 (1.9360) 2.0900e–03 (1.9398)

(e) 2nd order FVM with ω = 1
t = 2 t = 3 t = 4

16× 16× 64 1.4105e–01 1.4700e–01 1.5385e–01
32× 32× 128 3.7675e–02 (1.9046) 3.9556e–02 (1.8938) 4.1453e–02 (1.8920)
64× 64× 256 9.4614e–03 (1.9935) 9.8093e–03 (2.0117) 1.0087e–02 (2.0390)
128× 128× 512 2.3737e–03 (1.9949) 2.3841e–03 (2.0407) 2.4068e–03 (2.0673)
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Table 7: L2-error against reference solution (and estimated convergence order qest) for scalar test
problem with non-smooth source term in 2-D using a second-order advection discretization in the
finite volume method.

(a) FEM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 6.4814e+01 5.6294e+01 5.4132e+01
32× 32× 128 3.2145e+01 (1.0117) 3.1586e+01 (0.8337) 3.1433e+01 (0.7842)
64× 64× 256 1.9717e+01 (0.7051) 1.9524e+01 (0.6941) 1.9461e+01 (0.6917)
128× 128× 512 9.4765e+00 (1.0570) 9.4550e+00 (1.0461) 9.4477e+00 (1.0425)

(b) 2nd order FVM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 5.2421e+01 6.5340e+01 7.1232e+01
32× 32× 128 3.7185e+01 (0.4954) 3.9076e+01 (0.7417) 3.9606e+01 (0.8468)
64× 64× 256 1.9847e+01 (0.9058) 2.0017e+01 (0.9650) 2.0073e+01 (0.9805)
128× 128× 512 9.6699e+00 (1.0373) 9.6869e+00 (1.0471) 9.6926e+00 (1.0503)

(c) 2nd order FVM with ω = 0.01
t = 2 t = 3 t = 4

16× 16× 64 5.2229e+01 6.4951e+01 7.0739e+01
32× 32× 128 3.7048e+01 (0.4955) 3.8925e+01 (0.7387) 3.9452e+01 (0.8424)
64× 64× 256 1.9808e+01 (0.9033) 1.9978e+01 (0.9623) 2.0033e+01 (0.9777)
128× 128× 512 9.6608e+00 (1.0358) 9.6779e+00 (1.0456) 9.6835e+00 (1.0488)

(d) 2nd order FVM with ω = 0.1
t = 2 t = 3 t = 4

16× 16× 64 5.0582e+01 6.1664e+01 6.6600e+01
32× 32× 128 3.5859e+01 (0.4963) 3.7610e+01 (0.7133) 3.8115e+01 (0.8052)
64× 64× 256 1.9462e+01 (0.8817) 1.9630e+01 (0.9381) 1.9685e+01 (0.9533)
128× 128× 512 9.5802e+00 (1.0225) 9.5973e+00 (1.0324) 9.6029e+00 (1.0355)

(e) 2nd order FVM with ω = 1
t = 2 t = 3 t = 4

16× 16× 64 4.0331e+01 4.3925e+01 4.5555e+01
32× 32× 128 2.7520e+01 (0.5514) 2.8498e+01 (0.6242) 2.8846e+01 (0.6592)
64× 64× 256 1.6563e+01 (0.7326) 1.6710e+01 (0.7702) 1.6760e+01 (0.7834)
128× 128× 512 8.8417e+00 (0.9055) 8.8579e+00 (0.9156) 8.8632e+00 (0.9191)
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Table 8: L2-error against reference solution (and estimated convergence order qest) for scalar test
problem with smooth source term in 2-D using a first-order advection discretization in the finite
volume method.

(a) FEM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 1.5341e–01 1.4291e–01 1.3300e–01
32× 32× 128 3.7920e–02 (2.0164) 3.5316e–02 (2.0167) 3.2857e–02 (2.0172)
64× 64× 256 8.9647e–03 (2.0806) 8.3605e–03 (2.0787) 7.7914e–03 (2.0762)
128× 128× 512 1.8359e–03 (2.2878) 1.7270e–03 (2.2753) 1.6268e–03 (2.2598)

(b) 1st order FVM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 1.3268e–01 1.2941e–01 1.2582e–01
32× 32× 128 3.4128e–02 (1.9589) 3.3101e–02 (1.9671) 3.2096e–02 (1.9709)
64× 64× 256 8.5443e–03 (1.9979) 8.2794e–03 (1.9993) 8.0214e–03 (2.0005)
128× 128× 512 2.2398e–03 (1.9316) 2.1654e–03 (1.9349) 2.0924e–03 (1.9387)

(c) 1st order FVM with ω = 0.01
t = 2 t = 3 t = 4

16× 16× 64 1.3216e–01 1.2864e–01 1.2481e–01
32× 32× 128 3.3906e–02 (1.9626) 3.2769e–02 (1.9729) 3.1656e–02 (1.9792)
64× 64× 256 8.4566e–03 (2.0034) 8.1492e–03 (2.0076) 7.8502e–03 (2.0117)
128× 128× 512 2.2192e–03 (1.9300) 2.1353e–03 (1.9322) 2.0539e–03 (1.9344)

(d) 1st order FVM with ω = 0.1
t = 2 t = 3 t = 4

16× 16× 64 1.2828e–01 1.2350e–01 1.1877e–01
32× 32× 128 3.2633e–02 (1.9749) 3.1378e–02 (1.9767) 3.0445e–02 (1.9638)
64× 64× 256 8.2180e–03 (1.9895) 8.1770e–03 (1.9401) 8.3483e–03 (1.8667)
128× 128× 512 2.2688e–03 (1.8569) 2.3632e–03 (1.7908) 2.5289e–03 (1.7229)

(e) 1st order FVM with ω = 1
t = 2 t = 3 t = 4

16× 16× 64 1.6987e–01 2.1957e–01 2.7156e–01
32× 32× 128 7.1933e–02 (1.2397) 1.0169e–01 (1.1105) 1.3014e–01 (1.0612)
64× 64× 256 3.0802e–02 (1.2236) 4.4549e–02 (1.1908) 5.7368e–02 (1.1817)
128× 128× 512 1.0502e–02 (1.5523) 1.5167e–02 (1.5544) 1.9505e–02 (1.5564)
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Table 9: L2-error against reference solution (and estimated convergence order qest) for scalar test
problem with non-smooth source term in 2-D using a first-order advection discretization in the
finite volume method.

(a) FEM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 6.4814e+01 5.6294e+01 5.4132e+01
32× 32× 128 3.2145e+01 (1.0117) 3.1586e+01 (0.8337) 3.1433e+01 (0.7842)
64× 64× 256 1.9717e+01 (0.7051) 1.9524e+01 (0.6941) 1.9461e+01 (0.6917)
128× 128× 512 9.4765e+00 (1.0570) 9.4550e+00 (1.0461) 9.4477e+00 (1.0425)

(b) 1st order FVM with ω = 0
t = 2 t = 3 t = 4

16× 16× 64 5.2421e+01 6.5340e+01 7.1232e+01
32× 32× 128 3.7185e+01 (0.4954) 3.9076e+01 (0.7417) 3.9606e+01 (0.8468)
64× 64× 256 1.9847e+01 (0.9058) 2.0017e+01 (0.9650) 2.0073e+01 (0.9805)
128× 128× 512 9.6699e+00 (1.0373) 9.6869e+00 (1.0471) 9.6926e+00 (1.0503)

(c) 1st order FVM with ω = 0.01
t = 2 t = 3 t = 4

16× 16× 64 5.2269e+01 6.5038e+01 7.0839e+01
32× 32× 128 3.7075e+01 (0.4955) 3.8942e+01 (0.7400) 3.9460e+01 (0.8441)
64× 64× 256 1.9811e+01 (0.9041) 1.9979e+01 (0.9628) 2.0032e+01 (0.9781)
128× 128× 512 9.6619e+00 (1.0360) 9.6785e+00 (1.0456) 9.6839e+00 (1.0487)

(d) 1st order FVM with ω = 0.1
t = 2 t = 3 t = 4

16× 16× 64 5.0941e+01 6.2423e+01 6.7459e+01
32× 32× 128 3.6108e+01 (0.4965) 3.7769e+01 (0.7249) 3.8200e+01 (0.8204)
64× 64× 256 1.9500e+01 (0.8888) 1.9641e+01 (0.9433) 1.9682e+01 (0.9567)
128× 128× 512 9.5911e+00 (1.0237) 9.6047e+00 (1.0321) 9.6088e+00 (1.0344)

(e) 1st order FVM with ω = 1
t = 2 t = 3 t = 4

16× 16× 64 4.0855e+01 4.5125e+01 4.7064e+01
32× 32× 128 2.8669e+01 (0.5110) 2.9562e+01 (0.6102) 3.0137e+01 (0.6431)
64× 64× 256 1.6990e+01 (0.7548) 1.7220e+01 (0.7797) 1.7454e+01 (0.7880)
128× 128× 512 8.9959e+00 (0.9173) 9.0551e+00 (0.9273) 9.1155e+00 (0.9371)
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Table 10: Observed convergence orders for test problem with smooth source term.

Smooth source 1st order FVM 2nd order FVM
2-D 3-D 2-D 3-D

Table 8 Table 6 Table 4 Table 2

FEM without advection (ω = 0) 2.27 2.25 2.27 2.25
FVM without advection (ω = 0) 1.94 1.95 1.94 1.95
FVM with advection weight ω = 0.01 1.93 1.95 1.94 1.95
FVM with advection weight ω = 0.1 1.79 1.78 1.94 1.95
FVM with advection weight ω = 1 1.55 1.55 2.03 2.04

Table 11: Observed convergence orders for test problem with non-smooth source term.

Non-smooth source 1st order FVM 2nd order FVM
2-D 3-D 2-D 3-D

Table 9 Table 7 Table 5 Table 3

FEM without advection (ω = 0) 1.05 0.71 1.05 0.71
FVM without advection (ω = 0) 1.04 0.58 1.04 0.58
FVM with advection weight ω = 0.01 1.04 0.58 1.04 0.58
FVM with advection weight ω = 0.1 1.03 0.57 1.03 0.57
FVM with advection weight ω = 1 0.93 0.50 0.91 0.50

Tables 10 and 11 summarize observed convergence orders for smooth and non-smooth source
terms, respectively, with both 1st order and 2nd order advection discretization. The convergence
orders are averages from the previous tables, as noted in each column of Tables 10 and 11, of
convergence rate at t = 2, 3, 4 on the finest mesh. First, we notice that using the finite volume
method without advection, the convergence orders are consistent with those using the finite element
method, in 2-D and 3-D. Second, we notice that for the problem with smooth source term in
Table 10, the convergence order drops when increasing the weight of advection, if using FVM
with first-order discritization. This is clearly expected and is overcome by using the second-order
accurate advection discretization, which gives the optimal convergence order of 2 in all cases in
Table 10. Third, in Table 11 for the problem with non-smooth source term, the spatial dimension
determines the convergence orders of q = 1 for 2-D and q = 0.5 for 3-D, independent of discretization
order and strength of advection. Therefore, we gain no benefit by using second-order advection
discretization in the presense of non-smooth sources terms such as point sources.

Our recommendations based on observations above: (i) For smooth source term, use FVM with
2nd order advection discretization, since it remains most accurate despite increasingly dominant
advection. (ii) For non-smooth source term, use FVM with 1st order advection discretization, since
2nd order advection discretization has no advantage and 1st order advection discretization requires
less MPI communication.
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6 PARALLEL PERFORMANCE STUDIES

In this section we demonstrate the weak scalability of the method. Parallel computing using MPI
offers one key advantage: For efficient implementations of appropriate algorithms, problems can
be solved significantly faster by pooling the processing power of several compute nodes. We have
observed in [10] that the code demonstrates good strong scalability. That is, for a fixed problem
size, as we double the number of processes, the wall clock time required for the simulation is nearly
halved. However we also observe that the speedup and efficiency dropped significantly as we use
large number of nodes. One of the reasons is that increasing the number of processes increases
the cost of MPI communication among them. Another reason is, by splitting the fixed problem
across more processes, each process has less computations to perform. The ratio of wall clock
time on computation over wall clock time on MPI communication is smaller. Hence we lose the
strong scalability as we reach certain large number of nodes. Moreover, the strong scability study
failed to demonstrate how efficient the implementation is as we increase problem size. Another
key advantage of parallel computing is, problems with larger scale can be solved within comparable
time by pooling the processing power and memory of more compute nodes. A weak scalibility study
is designed to show this, the basic idea is to fix the workload per node while doubling the number
of nodes. Since in Section 5 we have demonstrated first-order finite volume method is preferable
for CICR problem, we will use that for the remaining studies of this paper.

6.1 Weak Scalability Study Design

In order to maintain the workload for each node, while doubling the number of nodes, we first
double the domain size along the z-direction. Then, for each resolution, we preserve the mesh
resolution in x- and y-directions, and double the mesh resolution in z-direction.

We test the scalar test problem with smooth source term in Section 2.2 first, since it is much
easier to control the workload per timestep for this basic problem. Then we move on to three-
species application such as the CICR problem where the actual physiology is more complicated. In
addition to doubling the domain and mesh on the z-direction, we also double the distance between
the CRUs. This ensures that the total number of CRUs does not change. This increased space
between CRUs is not physiologically realisitc, but is necessary to fix the sequence of opening and
closing CRUs manually for all runs, allowing each run to have a stable and comparable workload
per node.

Table 12 and Table 13 outline calculated number of degrees of freedom and estimated total mem-
ory usage for the scalar test problem and the CICR problem respectively. As shown in Tables 12 (a)
and 13 (a), the number of degrees of freedom depends on the mesh resolution, ranging from tens of
thousands all the way to 819 million for the CICR problem and 2 billion for the linear test problem.
It also depends on the number of nodes used, since we attempt to fix the workload per node. Be-
cause each node has 8 parallel processes, we define Nz = (4Nx)(p/8). When p = 8, only one node is
used, and Nz = 4Nx is the mesh setting we normally use to solve the CICR problem in Section 2.1.
When the number of nodes doubles, the mesh resolution in z-direction doubles as well. For mesh
resolution Nx×Ny×Nz, the number of control volumes M = MxMyMz = (Nx+1)(Ny+1)(Nz+1).
Hence the number of degrees of freedom DOF = nsM = ns(Nx+1)(Ny+1)(Nz+1). Our approach
requires using 17 large arrays of length nsM , therefore the memory estimation eqation is given by:
Total memory = 17nsM8/(10243) GB. Here 8 represents 8 bytes of memory storage for one double
precision number. Tables 12 (b) and 13 (b) show the estimated memory usage in total based on
the degrees of freedom. It demonstrates that the workload per node is expected to grow with the
number of nodes used, and we will compare them to the observed memory usage in Table 14 and
Table 15. The reason the finest mesh in Table 13 (b) is not as fine as in Table 12 (b) is because it
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would exceed the 24 GB memory per node.
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Table 12: Calculated degrees of freedom and estimated total memory for weak scalability study of
the scalar test problem with smooth source term. The mesh size in z-direction Nz = (4Nx)(p/8)
doubles as the number of processes doubles.

(a) Total number of degrees of freedom for the scalar test problem
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 18,785 37,570 75,140 150,280 300,560 601,120
32 × 32 140,481 280,962 561,924 1,123,848 2,247,696 4,495,392
64 × 64 1,085,825 2,171,650 4,343,300 8,686,600 17,373,200 34,746,400
128 × 128 8,536,833 17,073,666 34,147,332 68294664 136,589,328 273,178,656
256 × 256 67,700,225 135,400,450 270,800,900 541,601,800 1,083,203,600 2,166,407,200

(b) Estimated memory usage based on the degrees of freedom (GB)
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 0.00 0.00 0.01 0.02 0.04 0.08
32 × 32 0.02 0.04 0.07 0.14 0.28 0.57
64 × 64 0.14 0.28 0.55 1.10 2.20 4.40
128 × 128 1.08 2.16 4.33 8.65 17.30 34.60
256 × 256 8.57 17.15 34.30 68.60 137.20 274.40

Table 13: Calculated degrees of freedom and estimated total memory for weak scalability study
of the CICR problem. The mesh size in z-direction Nz = (4Nx)(p/8) doubles as the number of
processes doubles.

(a) Total number of degrees of freedom for the calcium problem
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 56,355 112,710 225,420 45,0840 901,680 1,803,360
32 × 32 421,443 842,886 1,685,772 3,371,544 6,743,088 13,486,176
64 × 64 3,257,475 6,514,950 13,029,900 26,059,800 52,119,600 104,239,200
128 × 128 25,610,499 51,220,998 102,441,996 204,883,992 409,767,984 819,535,968

(b) Estimated memory usage based on the degrees of freedom (GB)
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 0.01 0.01 0.03 0.06 0.11 0.23
32 × 32 0.05 0.11 0.21 0.43 0.85 1.71
64 × 64 0.41 0.83 1.65 3.30 6.60 13.20
128 × 128 3.24 6.49 12.98 25.95 51.90 103.80
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6.2 Weak Scalability Study Results

We present two weak scalability studies to estimate the parallel performance of the matrix-free
method. Table 14 is based on the scalar test problem with smooth source term from Section 2.2
to final time tfin = 1,000. Table 14 (a) reports the observed wall clock time in HH:MM:SS for
each simulation. We observe that the wall clock times only increase slightly as the problem sizes
increase in each row. This demonstrates weak scalability of our implementation. Table 14 (b)
shows the number of time steps for the linear problem does not vary too much, even though we
increase mesh resolution as well as the number of nodes. Table 14 (c) shows calculated wall clock
time per time step based on data from the previous two subtables. In this case we see the same
slight increase in each row as Table 14 (a). But this subtable is designed to give more insight when
wall clock time and time steps differ. We also include observed memory usage per node as a relative
indicator for the workload per node in Table 14 (d). In the mean time, Table 14 (e) reports the
observed total memory usage. The numbers are very close to estimated numbers in Table 12 (b).
These subtables demonstate we have indeed increased the workload both in terms of calculation
and memory consumption. And if we increase the computing resources in the same pace, then we
can expect the same wall clock time.

Table 15 shows a weak performance study for the CICR problem from Section 2.1 to final time
tfin = 100. It also has 5 subtables like Table 14. We want to bring about the same idea of doubling
work load per time step while double the number of nodes used. One additional set up to ensure we
get the same physiological outcome is to use an input file that specifies the open CRUs at each time
step, forcing every simulation to reproduce the same CRU sequence. The input file is originally
generated by a typical simulation as in Section 4. From Table 15 (a), we observe that the wall
clock times in each row decrease slightly. Also, the number of time steps also decrease slightly as
we increase the number of nodes used in Table 15 (b). These are different from what we observe
from Table 14, where we see weak scalability but wall clock times increase slightly. This is due
to the fact that we have the same number of CRUs as a typical CICR simulation, but since we
increase the distances between CRUs on the z-direction, the effect of diffusion on that direction is
less and the ODE problem is smoother. In Table 15 (c) We observe that the wall clock time per
time step did not vary too much and memory usage per node stays the same in Table 15 (d). Hence
we conclude the implementation demonstrates weak scalability, also for the CICR problem.

The hardware used for the performance studies presented in this section is part of the UMBC
High Performance Computing Facility (www.umbc.edu/hpcf). The machine is a 86-node distri-
buted-memory cluster with two quad-core Intel Nehalem X5550 processors (2.66 GHz, 8 MB cache)
and 24 GB per node. All nodes and the 160 TB central storage are connected by an InfiniBand
(QDR) interconnect network.
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Table 14: Performance study for the scalar test problem with smooth source term, solved with
first-order finite volume method to tfin = 1,000 ms. The mesh size in z-direction Nz = (4Nx)(p/8)
doubles as the number of processes doubles.

(a) Wall clock time Tp in HH:MM:SS
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 00:00:21 00:00:20 00:00:21 00:00:22 00:00:25 00:00:29
32 × 32 00:00:39 00:00:40 00:00:39 00:00:41 00:00:45 00:00:55
64 × 64 00:04:02 00:04:07 00:04:16 00:04:31 00:04:58 00:05:45
128 × 128 00:45:34 00:46:11 00:46:56 00:49:11 00:52:52 00:59:21
256 × 256 10:13:48 10:17:59 10:28:33 10:41:11 11:09:21 12:09:12

(b) Time steps
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 2015 2015 2015 2015 2015 2015
32 × 32 2018 2018 2018 2018 2018 2018
64 × 64 2020 2021 2020 2020 2020 2020
128 × 128 2019 2019 2019 2019 2019 2019
256 × 256 2014 2014 2014 2014 2014 2014

(c) Wall clock time per time step in seconds
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 0.01 0.01 0.01 0.01 0.01 0.01
32 × 32 0.02 0.02 0.02 0.02 0.02 0.03
64 × 64 0.12 0.12 0.13 0.13 0.15 0.17
128 × 128 1.35 1.37 1.39 1.46 1.57 1.76
256 × 256 18.29 18.41 18.73 19.10 19.94 21.72

(d) Observed memory usage per node (GB)
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 0.10 0.12 0.12 0.13 0.10 0.10
32 × 32 0.12 0.14 0.14 0.15 0.12 0.11
64 × 64 0.26 0.27 0.27 0.28 0.25 0.25
128 × 128 1.34 1.34 1.34 1.35 1.31 1.31
256 × 256 9.73 9.73 9.73 9.73 9.70 9.70

(e) Observed total memory usage (GB)
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 0.10 0.24 0.49 1.04 1.61 3.05
32 × 32 0.12 0.27 0.55 1.18 1.90 3.61
64 × 64 0.26 0.55 1.10 2.26 4.05 7.91
128 × 128 1.34 2.68 5.36 10.76 21.04 41.86
256 × 256 9.73 19.47 38.91 77.85 155.22 310.25
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Table 15: Performance study for the calcium problem, solved with first-order finite volume method
to tfin = 100 ms. The mesh size in z-direction Nz = (4Nx)(p/8) doubles as the number of processes
doubles.

(a) Wall clock time Tp in HH:MM:SS
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 00:00:15 00:00:14 00:00:13 00:00:13 00:00:14 00:00:14
32 × 32 00:02:26 00:02:21 00:02:14 00:02:06 00:02:01 00:01:56
64 × 64 00:27:18 00:26:35 00:25:08 00:23:50 00:22:54 00:21:35
128 × 128 05:03:11 04:50:14 04:38:24 04:34:29 04:20:49 04:17:25

(b) Time steps
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 2558 2401 2254 2126 1999 1893
32 × 32 3277 3158 2960 2738 2589 2424
64 × 64 4089 3913 3694 3458 3227 3030
128 × 128 4955 4724 4422 4153 3908 3679

(c) Wall clock time per time step in seconds
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 0.01 0.01 0.01 0.01 0.01 0.01
32 × 32 0.04 0.04 0.05 0.05 0.05 0.05
64 × 64 0.40 0.41 0.41 0.41 0.43 0.43
128 × 128 3.67 3.69 3.78 3.97 4.00 4.20

(d) Observed memory usage per node (GB)
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 0.11 0.13 0.13 0.13 0.11 0.10
32 × 32 0.16 0.18 0.18 0.19 0.16 0.15
64 × 64 0.57 0.58 0.58 0.59 0.56 0.55
128 × 128 3.74 3.75 3.75 3.76 3.73 3.72

(e) Total memory usage (GB)
Nx ×Ny p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

16 × 16 0.11 0.25 0.50 1.07 1.71 3.23
32 × 32 0.16 0.35 0.71 1.49 2.54 4.89
64 × 64 0.57 1.16 2.32 4.71 8.96 17.72
128 × 128 3.74 7.50 14.99 30.06 59.63 119.06
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7 CONCLUSIONS

We considered the solution of advection-diffusion-reaction equations with non-linear as well as
non-smooth reaction terms by a matrix-free implementation of a finite volume method. Our im-
plementation demonstrates an effective solution of the calcium induced calcium release problem for
long-time simulation in the presence of strong advection.

We give numerical evidence of convergence for test problems with smooth as well as non-
smooth source terms in two-dimensional and three-dimensional settings. In the case of solving a
three-dimensional problem with non-smooth source term, like the CICR model, we recommend
using first-order discretization for the advection term, as opposed to second-order reconstruction.
Because the latter requires MPI communication of more data among neighboring processes, but
gain no benefit in terms of convergence order.

The scheme uses the implicit numerical differentiation formulas (NDF) for time integration.
The matrix-vector product required in the Krylov subspace method is hardcoded without any
approximations. A parallel implementation using MPI allows for efficient computations with a long
simulation time. Weak scalability was introduced for the scalar test as well as CICR problem,
demonstrating the ability to solve larger problem on finer mesh without significantly sacrificing
efficiency.

ACKNOWLEDGMENTS

The hardware used in the computational studies is part of the UMBC High Performance Computing
Facility (HPCF). The facility is supported by the U.S. National Science Foundation through the
MRI program (grant nos. CNS–0821258 and CNS–1228778) and the SCREMS program (grant
no. DMS–0821311), with additional substantial support from the University of Maryland, Baltimore
County (UMBC). See www.umbc.edu/hpcf for more information on HPCF and the projects using
its resources. Xuan Huang acknowledges support from HPCF and UMBC. Furthermore, the work
of the authors Kopecz, Birken, Gobbert, and Meister was supported by the German Research
Foundation as part of the SFB/TRR TR 30.

48

www.umbc.edu/hpcf


REFERENCES

[1] L. M. Blayney and F. A. Lai. Ryanodine receptor-mediated arrhythmias and sudden cardiac
death. Pharmacology & Therapeutics, 123(2):151–177, 2009.

[2] Z. A. Coulibaly, B. E. Peercy, and M. K. Gobbert. Insight into spontaneous recurrent calcium
waves in a 3-D cardiac cell based on analysis of a 1-D deterministic model. Int. J. Comp.
Math., 92(3):591–607, 2015.

[3] M. K. Gobbert. Long-time simulations on high resolution meshes to model calcium waves in
a heart cell. SIAM J. Sci. Comput., 30(6):2922–2947, 2008.

[4] A. L. Hanhart, M. K. Gobbert, and L. T. Izu. A memory-efficient finite element method for
systems of reaction-diffusion equations with non-smooth forcing. J. Comput. Appl. Math.,
169(2):431–458, 2004.

[5] L. T. Izu, J. R. H. Mauban, C. W. Balke, and W. G. Wier. Large currents generate cardiac
Ca2+ sparks. Biophys. J., 80:88–102, 2001.

[6] L. T. Izu, S. A. Means, J. N. Shadid, Y. Chen-Izu, and C. W. Balke. Interplay of ryanodine
receptor distribution and calcium dynamics. Biophys. J., 91:95–112, 2006.

[7] L. T. Izu, W. G. Wier, and C. W. Balke. Evolution of cardiac calcium waves from stochastic
calcium sparks. Biophys. J., 80:103–120, 2001.

[8] H.-G. Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for Singularly Perturbed
Differential Equations, volume 24 of Springer Series in Computational Mathematics. Springer-
Verlag, 2nd edition, 2008.

[9] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, second edition, 2003.
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