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Abstract

The Arctic sea ice has retreated rapidly in the past few decades, which is believed to be
driven by various dynamic and thermodynamic processes in the atmosphere. The newly open
water resulted from sea ice decline in turn exerts large influence on the atmosphere. Therefore,
this study aims to investigate the causality between multiple atmospheric processes and sea ice
variations using three distinct data-driven causality approaches: TCDF, NOTEARS and DAG-
GNN. We find that the static graphs produced by NOTEARS and DAG-GNN are relatively
reasonable. The results from NOTEARS indicate that relative humidity and precipitation dom-
inate sea ice changes among all variables, while the results from DAG-GNN suggest that the
horizontal wind fields are more important for driving sea ice variations. However, both of them
produce some unrealistic edges. In comparison, the temporal graphs generated by the three
methods are not physically meaningful enough. It also turns out that the results are rather
sensitive to the choice of hyperparameters of the three methods. As a pioneer study, this work
paves the way for us to disentangle the complex causal relationships in the Earth system, by
taking the advantage of cutting-edge Artificial Intelligence technologies.

Key words. Causality Discovery, time series, Arctic Sea Ice, TCDF, NOTEARS, DAG-GNN.

1 Introduction

Warming in the Arctic has been much faster than in the rest of the world in both observations and
model simulations, a phenomenon known as the Arctic amplification [25, 57]. Decline in sea ice is
believed to be the major driver of Arctic amplification. Over the last few decades, Arctic summer
sea ice extent has declined by nearly 50% with accelerated retreat in the early 21st century [58].
These dramatic changes in the Arctic sea ice affect a growing community of diverse stakeholders.
Accompanying this growing interest is an urgent demand to increase the pace and scope of the
advancements in physical understanding and predictive capabilities. As one of the most important
components in the Earth System, the atmosphere actively interacts with the sea ice underneath. On
the one hand, the sea ice variations are caused by different dynamic and thermodynamic forcings.
On the other hand, sea ice decline in turn exerts large influence on the atmosphere. This will
further alter the climate patterns in both Arctic and mid-latitudes, which results in more frequent
extreme weather events [14, 64]. These two-way feedbacks are potentially very important in terms
of understanding the Arctic warming in the past and future. Therefore, it is vital to analyze both
the sea ice retreat’s influence on the atmosphere and vice versa.

The traditional way to discover causal relations is to manipulate the value of a variable by using
interventions or real-life experiments. All other influencing factors of the target variable can be

1

hpcf.umbc.edu


held fixed, to test whether a manipulation of a potential cause changes the target variable [44].
Specifically, the typical approach for assessing causal links in climate study is targeted modeling
experiments. Such experiments are often computational expensive, time-consuming, or even im-
possible to carry out. More importantly, the large biases and substantial model spread remain in
the state-of-the-art climate models [65], which further introduce some unrealistic causal relations.
With the current advances in digital sensing and data assimilation, we have entered a period where
earth science tends to be “data rich” in observations [49], allowing us to do data-driven causality
discovery [22, 44, 73]. The data-driven causality approach aids scientists in identifying and extract-
ing signals by analyzing statistical properties of purely observational data, which augments targeted
model studies and has direct ties to forecasting and prediction. Several different frameworks for
observational analysis have been applied to climate science to provide graphical representations
of causal relations [10, 13, 20, 30, 42, 59, 60, 72]. Among them, the most relevant topic is the
connections between Arctic (60◦N northward) and mid-latitude (roughly 30-60◦N) climate pat-
terns [38, 41, 54, 62]. However, neither study investigates the relationship between sea ice retreat
and the atmospheric dynamic and thermodynamic processes in the Arctic only, which is the focus
of this study. It is unclear whether different causality approaches would produce similar results,
or whether a particular technique is best suited for this topic as each study employs a different
approach.

Thus, the overarching goal of this study is to investigate the causality between multiple at-
mospheric processes and sea ice variations using data-driven causality approaches. Instead of
performing multiple climate model simulations, here we focus solely on an observational-type anal-
ysis. Specifically, three distinct data-driven causality approaches, Temporal Causality Discovery
Framework (TCDF) [45], Non-combinatorial Optimization via Trace Exponential and Augmented
lagRangian for Structure learning (NOTEARS) [74] and Directed Acyclic Graph-Graph Neural
Networks (DAG-GNN) [71], will be used and compared to determine whether they are suitable for
the particular climate study.

This report is structured in the following sections. Section 2 summarizes the main conclusions
from previous studies in terms of causal relations between different atmospheric processes and
Arctic sea ice variations; Section 3 lists data sets and data pre-processing methods and steps;
Section 4 introduces three data-driven causality discovery frameworks; Section 5 summarizes the
results generated by each method and compares those results with a causality graph based on
literature review; finally, Section 6 reports the main conclusions and limitations of this study.
The codes and data are available on https://github.com/big-data-lab-umbc/cybertraining/

tree/master/year-3-projects/team-6.

2 Causality Between Atmospheric Processes and Arctic Sea Ice
Variations

Due to the two-way interactions between the atmosphere and sea ice, studying causality between
them is a challenging but important task, which makes it an area of high interest within polar
climate community. The sea ice variations can be caused by different dynamical and thermody-
namical processes. Important dynamical processes include anomalous surface wind [61, 70], regional
atmospheric circulation patterns [48, 53] and abnormal summer storm activities [50]. Cloud [31],
radiation [12, 34] and precipitation [3, 67] are the important thermodynamic factors Arctic sea ice
trends and variability. On the other hand, sea ice decline in turn exerts large influence on the atmo-
sphere, including cloud [34, 43], surface energy budget [4, 5, 56], precipitation [2, 37] and large-scale
circulation [9, 35]. Figure 2.1 depicts the causal relations between key atmospheric variables and
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Figure 2.1: The causality graph between key atmospheric variables and sea ice over the Arctic based
on literature review. Note that the processes a − d are well-known atmospheric processes, which
can be summarized from multiple textbooks. The processes e− i are summarized from recent peer-
reviewed publications and they are ongoing research. The sea ice here represents sea ice coverage
and/or sea ice thickness; GH is the geopotential height; RH is relative humidity; SLP means sea
level pressure; u10m and v10m represents meridional and zonal wind at 10 meters, respectively;
HFLX is the sensible and latent heat flux; Precip is the total precipitation; CW is the total cloud
water path; CC is the total cloud cover; SW and LW represent net shortwave and longwave flux
at the surface, respectively.

sea ice over the Arctic. The sea ice here represents sea ice coverage and/or sea ice thickness. Note
that the processes a− d are well-known atmospheric processes, including cloud microphysics, ther-
modynamics, radiation, climate dynamics, which have been studied over the past few decades. The
processes e − i are summarized from more recent publications, which are still under investigation
by climate scientists. We will explain processes e− i in details in the next paragraph.

The arrow e represents the two-way effect between sea ice and net longwave flux at the surface.
Based on global reanalysis [31], surface [15] and satellite observations [29], as well as model simula-
tions [27, 32], the downwelling longwave radiation at the surface is found to enhance sea ice melt in
spring, as a result of an increase in cloudiness and humidity in the Arctic Basin. Positive anomalies
of longwave flux in spring and early summer initiate an earlier melt onset, hereby triggering several
feedback mechanisms that amplify melt during the succeeding months [28, 32]. The sea ice melt
increases the air temperature and thus increases the longwave flux at the surface. The downwelling
shortwave flux, however, appears only important after melt has started [29, 31]. Once the surface
albedo is significantly reduced due to sea ice melt, the tremendous solar radiation could be absorbed
by ocean, which further accelerates ice melt in late spring and summer [12, 32, 34]. The feedback
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between surface net shortwave flux and sea ice, represented by arrow f in Figure 2.1, has been con-
firmed by both model simulations [32] and satellite observations [12, 34, 47]. The arrows g indicate
the interactions between the sea ice variations and atmospheric dynamical processes. A series of
studies demonstrated that recent loss of Arctic sea ice is triggered by the atmospheric circulation
changes such as a tendency toward a dipole pattern in the mean sea level pressure trend with an
increase over the Arctic Ocean and a decrease over Siberia. The Arctic dipole anomaly in summer
[68], winter [69] and spring [33] produces a strong meridional wind (v-component) anomaly that
drives more sea ice out of the Arctic Ocean. In addition, this dipole anomaly promotes transport
of heat and moisture and thus enhances downwelling longwave radiation and control the melt onset
[28, 33]. A recent study also pointed out that a stronger anticyclonic circulation over Greenland
and the Arctic Ocean in the troposphere may have contributed as much as 60% to the September
sea-ice extent decline since 1979, by warming and moistening the lower atmosphere [18]. On the
other hand, the reduction in Arctic sea ice extent and increase in open water area in late summer
are found to directly contribute to a modification of large-scale circulation patterns in the following
autumn through the additional heat stored in the Arctic Ocean and released to the atmosphere
during the autumn [48]. The increased 1000-500 hPa thickness in autumn produce anomalous
easterley zonal wind component (u-component), especially over the north of Alaska and Canada.
Moreover, a more meridional flow pattern associated with sea ice reduction have an impact on the
mid-latitude weather [48]. These conclusions are mainly drawn from model simulations [53, 69],
reanalysis and observations [33, 48, 68]. In addition to radiation, the sensible and latent heat flux
also plays an important role in the Arctic energy budget. Increases in the downwelling moisture
flux triggers the melting of the sea ice in spring. Earlier melt onset and loss of sea ice in the spring
enhance warming of the ice-free ocean surface, which in turn leads to an increase of evaporation
from the surface into the atmosphere in the autumn. This positive feedback between heat flux
and sea ice, indicated by arrow h, has been confirmed by satellite observations [4, 5] and model
simulations [27] during most months of year. The arrow i represents the influence of precipitation
on Arctic sea ice variations. Specifically, the magnitude of precipitation accumulating over the
sea ice pack largely determines the depth of the snow layer, which modulates the rate of sea ice
growth because of its highly insulating properties [63]. The phase of the precipitation falling on the
sea ice pack is also important. As rain, it can instead melt, compact, and densify the snowpack,
thus reducing the surface albedo and promoting sea ice melt [51]. These conclusions are mainly
drawn from in-situ measurements during field campaign [51, 63] and global reanalysis products
[3, 67]. The higher precipitation and snowfall could result in a thicker snowpack that allows less
heat loss to the atmosphere. More importantly, modeling studies suggest that increases in Arctic
precipitation over the twenty-first century, particularly in late autumn and winter, are due mainly
to strongly intensified local surface evaporation (latent heat flux) [2]. Therefore, we believe that
Arctic precipitation exerts direct influence on sea ice variations (arrow i), while sea ice modulates
precipitation mainly through sensible and latent heat flux (arrows h, b).

Among these studies, very few of them have demonstrated the delayed impact of one variable
on another. Specifically, the net shortwave flux at the surface in early summer (May-July) is found
to enhance sea ice melt with a lag of 1 to 4 months [12]. Moreover, the sea ice condition exhibits the
delayed impacts on itself, which is called sea ice predictability [16, 21, 26]. The sea ice predictability
depends on the predictand (area, extent, volume), region, and the initial and target dates, which
can be varied from a few days to a few years [21]. In general, there is predictability for the sea ice
area in winter but low predictability throughout the rest of the year in peripheral seas. Based on
multiple model simulations, the Labrador Sea stands out among the considered regions, with sea
ice predictability extending up to 1.5 years [16].

Note that most of studies mentioned above determine the changes in one variables happening
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before another one by applying time series analysis and/or composite analysis based on observations,
reanalysis or model output [3, 4, 5, 12, 15, 28, 29, 31, 34, 47, 51, 63, 67, 68]. Among them,
some studies use more advanced statistical analysis such as empirical orthogonal function [48, 69]
and self-organizing map [33, 53]. Other studies assess the causal links through targeted modeling
experiments [2, 16, 18, 27, 32], in order to test whether a manipulation of one variable has an impact
on others. And most of the studies focus on relationships between only one or two atmospheric
processes with changes in Arctic sea ice. Therefore, in this study, we target to provide a more
comprehensive analysis about causality between multiple atmospheric processes and sea ice by
applying different data-driven causality approaches.

3 Data Sets and Data Pre-processing

In this study, the sea ice concentration was obtained from the Nimbus-7 SSMR and DMSP SSM/I-
SSMIS passive microwave data version 1 [8] provided by the National Snow and Ice Data Center
(http://nsidc.org/data/NSIDC-0051). This dataset was generated from brightness temperature
data, and provided daily in the polar stereographic projection with a grid box of 25 km x 25 km
since October 1978. The uncertainty of sea ice concentration over the Arctic is within ±5% during
the winter, when the sea ice is relatively thick and the sea ice concentration is high. During the
summer, the uncertainty increases to ±15% when the melt ponds are present [7]. The sea ice extent
is further filtered as the total area in the Arctic with sea ice concentration greater than 15% at
daily time scale.

The atmospheric variables were obtained from ERA-5 global reanalysis product (https://cds.
climate.copernicus.eu/cdsapp#!/home). ERA-5 was produced using 4D-Var data assimilation
in CY41R2 of European Centre for Medium-Range Weather Forecasts (ECMWF)’s Integrated
Forecast System (IFS), with 137 hybrid sigma/pressure (model) levels in the vertical, with the top
level at 0.01 hPa [6]. The ECMWF global reanalysis product has been evaluated over the Arctic
in the previous studies and it stands out among several global reanalysis products as being more
consistent with independent observations [17, 39]. In this study, the variables used in the causality
discovery algorithms are listed in Table 3.1. The air temperature has been excluded in this study
because it exhibits very high correlation with sea ice concentration. The interactions between air
temperature and sea ice could be dominant over all other atmospheric processes based on our tests.

All monthly gridded data during 1980-2018 has been averaged over the Arctic north of 60◦N
using area-weighted method. Therefore, we created the time series for both sea ice extent and
atmospheric variables. In order to eliminate overall impacts of global warming and seasonality
during this 39-year time period, we applied detrending and deseasonalizing for each time series.
Here we assume the time series is additive and there exist both trend and seasonal components,
that is

Xt = mt + st + Yt, (3.1)

The time series has been detrended by subtracting the line of best fit from the time series, where
the line of best fit was obtained from a linear regression model with the time steps as the predictor.
To deseasonalize the time series, we divided the averaged seasonal index from the time series. The
seasonal index were calculated from moving averages with 12-month seasonal window in this study
[23]. Here, we only kept residual component Yt, which fluctuates zero, i.e.,

E(Yt) = 0 (3.2)
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Then we normalized the Yt using max-min method, therefore

Yt ∈ [0, 1] (3.3)

Table 3.1: The atmospheric and sea ice variables considered in this study.

Abbrev.in Fig.2.1 Variable

GH Geopotential heights averaged from 200 hPa, 500 hPa and 850 hPa

RH Relative humidity averaged from 1000-300 hPa

SLP Sea level pressure

u10m Zonal (u-component) wind at 10 meters

v10m Meridional (v-component) wind at 10 meters

HFLX Sensible and latent heat flux

Precip Total precipitation

CC Total cloud cover

CW Total cloud water path

SW Net shortwave flux at the surface

LW Net longwave flux at the surface

Sea ice Sea ice extent in the Northern Hemisphere

4 Data-Driven Causality Discovery Algorithms

In this work, we apply data-driven causal discovery algorithms aiming to find the major causes
of some underlying process such as the decrease of Arctic Sea Ice. These algorithms typically
assume one process or state, a cause, contributes to the production of another process or state,
an effect. The cause is assumed to be partly responsible for the effect, and the effect is partly
dependent on the cause. As such the cause affects the effect, but not necessarily the effect affects
the cause. Causal discovery aims to discover direct cause-effect relationships for both instantaneous
and delayed causes. Here we will investigate three recently proposed causal discovery algorithms:
TCDF [45], NOTEARS [74], and DAG-GNN [71].

4.1 TCDF

The TCDF algorithm [45] uses a Temporal Causal Discovery Framework (TCDF) that is based on
attention-based CNN. The input to the algorithm are time series data and the output produces
a causality graph structure with time delay (lag). Figure 4.1 illustrates the architecture of the
TCDF method where on the left is the multi-dimensional time-series data and on the right is the
produced causality graph. There are four steps to learn a Temporal Causal Graph from the time-
series data: Time Series Prediction block, Attention Interpretation block, Causal Validation and
Delay Discovery blocks. For multi-dimensional time-series there are n independent attention-based
CNNs, all with the same architecture for each time-series data.

The basic structure of TCDF is for time-series prediction as seen in the first step of the frame-
work in Figure 4.1. After predicting time-series, the output gives attention scores for the attention
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Figure 4.1: Architecture of TCDF [45]

interpretation mechanism: to learn to which time-series a CNN attends to when predicting a time
series. Attention is when we let the model learn what to attend to based on the input data and
what it has learnt so far. The causality validation reads the final result of the attention scores and
applies a permutation importance validation method. The permutation importance is a measure-
ment of how much an error will affect the values of a certain attention score when all scores are
randomly permuted. The idea is that permuting a time-series attention score removes potential
cause and effect relationships and hence the method can detect real verse fake causal relationships.
In parallel the attention scores are feed to the delay discovery to learn potential delay cause and
effect relationships.

Another major advantage of the TCDF is to using a CNN verse a traditional RNN such as
a LSTM for time-series data. The advantage is that RNN typically have a vanishing gradient
problem: long-term information has to sequentially travel through all cells before getting to the
present processing cell, which is greatly amplified when the number of layers becomes deep or very
deep, typically 10 layers or more [55]. Though a CNN structure might have this problem as well, it
is more common in RNN because RNN typically needs much more memory and cells than a CNN
structure. With more cells to process, there is a greater chance of obtaining the vanishing gradient
problem.

4.2 NOTEARS

The NOTEARS algorithm [74] assumes a linear data generating model of the form

Xi =
∑

j:Wji 6=0

WjiXj +Ni, (4.1)

where W is the weighted adjacency matrix of the underlying causality graph G(W ), that is j → i in
G(W ) if and only if Wji 6= 0, and the random variables Ni are independent noise variables. Given
n i.i.d. observations of the variables X1, . . . , Xd, written as matrix X ∈ Rn×d, a standard estimator
for W is the (regularized) least-squares estimator

Ŵ = arg min
W∈Rd×d

1

2n
‖X−XW‖2F + λ‖W‖1 subject to G(W ) is a DAG, (4.2)

where λ ≥ 0 is the regularization parameter. This estimator is theoretically well-studied and
satisfies desirable properties such as consistency [1, 40, 66]. However, due to the non-convex,
combinatorial-like constraint, optimization problems of the form (4.2) are NP-hard to solve [11],
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and hence unless the number of variables d is very small, heuristics such as local search have to be
applied [e.g., 24, 52]. The NOTEARS algorithm builds on the insight that

G(W) is a DAG ⇔ trace(exp(W ◦W ))− d = 0, (4.3)

where exp denotes the matrix exponential and ◦ the element-wise product. The characteriza-
tion (4.3) allows to treat the optimization problem (4.2) as an ordinary continuous constrained
optimization problem and to use any algorithm from the rich literature on continuous optimiza-
tion to find a locally optimal solution to (4.2). Concretely, the NOTEARS algorithm applies the
augmented Lagrangian method [e.g., 46] to search for a locally optimal solution to

arg min
W∈Rd×d

1

2n
‖X−XW‖2F + λ‖W‖1 subject to trace(exp(W ◦W ))− d = 0. (4.4)

After applying the augmented Lagrangian method to (4.4) and obtaining an output W̃ , the final

step of the NOTEARS algorithm is to “round” W̃ and to set all entries of W̃ with absolute value
smaller than some threshold t to zero. This yields the final output Ŵ of the NOTEARS algorithm.

4.3 DAG-GNN

DAG-GNN [71] can be thought of as an extension to the NOTEARS algorithm [74] in that the
proposed method assumes a nonlinear model of the form

X = f2((I −AT )−1f1(Z)) (4.5)

where Z is the encoded latent variable of X. This can be contrasted to the linear model assumed
in NOTEARS

X = (I −AT )−1Z (4.6)

where Equation (4.6) is a restructured form of Equation (4.1). Further, DAG-GNN builds an
inference model to encode Z, given by

Z = f4((I −AT )f3(X)) (4.7)

where f3 and f4 play a conceptually inverse role for f2 and f1 respectively. In particular, this paper
assumes f1, f4 to be identity functions and f2, f3 as Multilayer Perceptrons (MLP). Since MLP is
nonlinear, it should in theory capture any nonlinearities in the data better than NOTEARS which
is a linear model. This is further explained in Figure 4.2 where X̂ is the regenerated form of X and
MLP has one hidden layer of 64 neurons.

Figure 4.2: Architecture of DAG-GNN [71]
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Further, DAG-GNN minimizes the following loss function

min
A,θ

f(A, θ) = −LELBO (4.8)

s.t. h(A) = tr[(I + αA ◦A)m]−m = 0 (4.9)

where the unknowns include the weight matrix A, and parameters θ for Variational Autoencoder
(VAE). Further, ELBO is the Evidence Lower Bound of the VAE adopted from [36] and h(A) is
used to solve the augmented Lagrangian as done in [46].

4.4 Static versus Temporal Model

While TCDF requires time series data as input and explicitly models time delay of causal relations,
NOTEARS and DAG-GNN assume to be provided i.i.d. observations of the variables. Similarly to
other causal discovery studies in climate research [20], we apply the latter two methods in two ways:
in the static model, we treat the observations of the variables summarized in Table 3.1 at different
points in time as i.i.d. observations and directly feed the data into the two methods. Alternatively,
in the temporal model, we first augment the data set by adding lagged versions of each variable, that
is for each variable X we additionally consider variables X1, X2, . . . , X12, where Xk is a version of
the variable X that is measured with a lag of k time units (in our case: months) compared to X. We
then treat the observations of the various variables at different points in time as i.i.d. observations
and run NOTEARS and DAG-GNN, respectively. The graphs produced by these methods, using
the augmented data, are assumed to encode the time delay of causal relations. However, in order
to obtain a causal graph on the variables of Table 3.1 we generate a “reduced” temporal graph
from these “full” temporal graphs by connecting two variables X and Y in the reduced temporal
graph whenever any of the variables X,X1, . . . , X12 is connected to any of Y, Y 1, . . . , Y 12 in the
full temporal graph. The reduced temporal graph is the output of the temporal model.

5 Results

In this section we present some results of the three causal discovery algorithms introduced in
Section 4. We study how the causality graphs produced by the three methods depend on the choice
of hyperparameters and see that the graphs can be quite different for varying hyperparameters.
In Section 5.1, we work with the normalized Hamming distance (ignoring the edge weights in
the graphs produced by NOTEARS or DAG-GNN) and also compare all graphs to the domain
knowledge graph of Figure 2.1. In Section 5.2, we work with the l1-distance, which takes edge
weights into account. Since for unweighted graphs, the normalized Hamming distance and the
l1-distance are equivalent (up to the normalization), we do not consider TCDF, which produces
unweighted graphs, in that section and also do not compare to the domain knowledge graph of
Figure 2.1.

5.1 Comparison of the Results for Different Hyperparameters and to the Do-
main Knowledge Graph with Respect to the Normalized Hamming Distance

In this section, we treat all graphs as unweighted graphs. The normalized Hamming distance is a
widely used metric to compare two unweighted graphs on the same set of vertices [19]. Let A,B ∈
{0, 1}m×m be the adjacency matrices of two unweighted graphs GA, GB on m vertices. The normal-
ized Hamming distance betweenGA andGB is given by distHD(GA, GB) = 1

m2

∑m
i,j=1 1{Aij 6= Bij}.
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Table 5.1: Distance matrix with respect to the normalized Hamming distance for TCDF. ♣ denotes
layer = 0, kernel = 4 are the algorithm’s default hyperparameters. The bottom row compares to
the domain knowledge graph of Figure 2.1 (best values in bold).

Temporal

layer = 0 layer = 0 layer = 0 layer = 1 layer = 1 layer = 1

kernel = 2 kernel = 4♣ kernel = 6 kernel = 2 kernel = 4 kernel = 6

T
em

po
ra

l

layer = 0, kernel = 2 0 0.05 0.01 0.02 0.01 0.01

layer = 0, kernel = 4♣ 0.05 0 0.06 0.07 0.06 0.06

layer = 0, kernel = 6 0.01 0.06 0 0.01 0.01 0.01

layer = 1, kernel = 2 0.02 0.07 0.01 0 0.02 0.02

layer = 1, kernel = 4 0.01 0.06 0.01 0.02 0 0

layer = 1, kernel = 6 0.01 0.06 0.01 0.02 0 0

Domain knowl. 0.35 0.33 0.34 0.34 0.33 0.33

In the following, for each of the three causal discovery algorithms introduced in Section 4 we com-
pute the normalized Hamming distance between the graphs produced by an algorithm for different
values of its hyperparameters. We also compare the graphs to the domain knowledge graph shown
in Figure 2.1 which is generated based on current literature.

5.1.1 TCDF

Table 5.1 shows the values for the normalized Hamming distance for the TCDF method. Two
hyperparameters that were chosen are the kernel size and the number of hidden layers. The number
of hidden layers corresponds to the number of hidden CNN layers in the TCDF algorithm. It seems
that the addition of a hidden layer leads to far worse results and even produces no causality graphs
as is the case for when kernel = 4 and kernel = 6 for layer = 1. The kernel size is related to
how much the TCDF method lags the variables for the causality study. The default setting for the
hyperparameters as shown with ♣ in Table 5.1 produce the best result, but that is nowhere close
to the domain knowledge graph shown in Figure 2.1. It seems that the TCDF method does not
produce good results for our Arctic Sea Ice data.

Comparison to domain knowledge graph. Since the TCDF focuses on the time series, only
the temporal graph that are closest to the domain knowledge graph is shown (Figure 5.1). There
is no cause and effect between sea ice and any atmospheric variables. As for the causality within
the atmosphere, only a few edges are generated by TCDF algorithm. Among them, the feedback
between u10m and v10m, as well as the impact of SW on CW are not consistent with domain
knowledge.
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Table 5.2: Distance matrix with respect to the normalized Hamming distance for NOTEARS.
♣ denotes that λ = 0.1, t = 0.3 are the algorithm’s default hyperparameters. The bottom row
compares to the domain knowledge graph of Figure 2.1 (best values in bold).

Static Temporal

λ = 0 λ = 0 λ = 0.1 λ = 0.1 λ = 0 λ = 0 λ = 0.1 λ = 0.1

t = 0.2 t = 0.3 t = 0.2 t = 0.3♣ t = 0.2 t = 0.3 t = 0.2 t = 0.3♣

S
ta

ti
c

λ = 0, t = 0.2 0.0 0.02 0.15 0.15 0.54 0.36 0.16 0.15

λ = 0, t = 0.3 0.02 0.0 0.15 0.12 0.53 0.35 0.14 0.12

λ = 0.1, t = 0.2 0.15 0.15 0.0 0.02 0.51 0.36 0.09 0.1

λ = 0.1, t = 0.3♣ 0.15 0.12 0.02 0.0 0.52 0.35 0.07 0.08

T
em

po
ra

l λ = 0, t = 0.2 0.54 0.53 0.51 0.52 0.0 0.18 0.48 0.51

λ = 0, t = 0.3 0.36 0.35 0.36 0.35 0.18 0.0 0.33 0.34

λ = 0.1, t = 0.2 0.16 0.14 0.09 0.07 0.48 0.33 0.0 0.03

λ = 0.1, t = 0.3♣ 0.15 0.12 0.1 0.08 0.51 0.34 0.03 0.0

Domain knowl. 0.35 0.33 0.36 0.35 0.54 0.46 0.37 0.35

Figure 5.1: The TCDF graph that is closest to the domain knowledge graph of Figure 2.1. The
temporal graph for layer = 0, kernel = 4.

5.1.2 NOTEARS

The NOTEARS algorithm has two hyperparameters λ ≥ 0 and t ≥ 0 as explained in Section 4.2:
the parameter λ is the regularization parameter (cf. Equation (4.2)) and t is the threshold for
setting edge weights of the preliminary output to zero (cf. end of Section 4.2). There is no default
value for λ, but in the main experiment that comes with the NOTEARS code [74], the authors use
λ = 0.1 and hence we consider that value to be the default value. Furthermore, we observed that
choosing a value larger than 0.1 for λ often results in an empty graph as the output of NOTEARS.
The default value for t is t = 0.3. Indeed, we observed that t = 0.3 yields better results than other
values of t.
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Figure 5.2: The NOTEARS graphs that are closest to the domain knowledge graph of Figure 2.1,
with respect to the normalized Hamming distance as shown in Table 5.2. Left: The static graph
for λ = 0, t = 0.3. Note that in Table 5.2 this graph is treated as an unweighted graph. Right:
The temporal graph for λ = 0.1, t = 0.3.

Table 5.2 shows the normalized Hamming distance between the graphs produced by NOTEARS
for λ ∈ {0, 0.1} and t ∈ {0.2, 0.3}, for both the static and the temporal model. The last row of
the table shows the normalized Hamming distance between the various graphs and the domain
knowledge graph of Figure 2.1. Note that actually none of the graphs considered here is a DAG.
We can see that the distances between the various temporal graphs (middle right part of the table)
are significantly larger than the distances between the various static graphs (upper left part of the
table). We can also see that changing the value of λ from 0 to 0.1 causes a larger difference in
the result than changing the value of t from 0.2 to 0.3 (e.g., the normalized Hamming distance
between the static model with λ = 0, t = 0.2 and the static model with λ = 0, t = 0.3 is only
0.02, while the distance between the static model with λ = 0, t = 0.2 and the static model with
λ = 0.1, t = 0.2 is 0.15).

Comparison to domain knowledge graph. In Figure 5.2, we show both the static and the
temporal graphs that are closest to the domain knowledge graph of Figure 2.1. Generally, while
none of the produced graphs is really close to the domain knowledge graph, the static graph looks
more reasonable.

In the static graph, the RH and precipitation seem to dominate the sea ice changes, with
weights of 0.55 and 0.41, respectively. In the meantime, the sea ice exerts large influence on SW
(weight of 0.79) and CW (weight of 0.31). The causal relations between precipitation, SW and sea
ice in the domain knowledge graph of Figure 2.1 are well captured by the NOTEARS algorithm.
However, RH and CW are believed to be only indirectly connected with sea ice changes (i.e., in
the domain knowledge graph there is no direct connection between RH or CW and sea ice), but in
the static graph produced by the NOTEARS algorithm there are direct connections. The causality
between each two atmospheric variables is generally reasonable based on the domain knowledge
graph, except for the connections between CW and v10m, SW and v10m, and v10m and u10m.

Compared with the static graph, the temporal graph detects only very few edges. It shows
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Table 5.3: Distance matrix with respect to the normalized Hamming distance for DAG-GNN.
♣ denotes the algorithm’s default hyperparameters. The bottom row compares to the domain
knowledge graph of Figure 2.1 (best values in bold).

Static Temporal

τ = 0 τ = 10−7 τ = 0 τ = 10−7

t = 0.2 t = 0.3♣ t = 0.2 t = 0.3 t = 0.2 t = 0.3♣ t = 0.2 t = 0.3

S
ta

ti
c

τ = 0, t = 0.2 0.0 0.06 0.04 0.07 0.1 0.12 0.1 0.12

τ = 0, t = 0.3♣ 0.06 0.0 0.05 0.01 0.08 0.07 0.08 0.07

τ = 10−7, t = 0.2 0.04 0.05 0.0 0.06 0.08 0.1 0.08 0.1

τ = 10−7, t = 0.3 0.07 0.01 0.06 0.0 0.08 0.08 0.08 0.08

T
em

po
ra

l τ = 0, t = 0.2 0.1 0.08 0.08 0.08 0.0 0.03 0.01 0.03

τ = 0, t = 0.3♣ 0.12 0.07 0.1 0.08 0.03 0.0 0.05 0.0

τ = 10−7, t = 0.2 0.1 0.08 0.08 0.08 0.01 0.05 0.0 0.05

τ = 10−7, t = 0.3 0.12 0.07 0.1 0.08 0.03 0.0 0.05 0.0

Domain knowl. 0.33 0.33 0.35 0.32 0.35 0.34 0.36 0.34

that the sea ice, SW and GH have delayed impacts on themselves, demonstrating both sea ice and
atmosphere have a degree of seasonal to year long climate predictability. As in the static graph,
the causality between v10m and u10m is not reasonable.

5.1.3 DAG-GNN

Like the NOTEARS algorithm, DAG-GNN has two hyperparameters: τ ≥ 0 and t ≥ 0, where τ is
similar to λ used in NOTEARS. We noticed that the hyperparameter τ is very sensitive, and show
the outputs for only two values of τ i.e. τ ∈ {0, 10−7}. We vary t similar to NOTEARS, and test
for t ∈ {0.2, 0.3}. Table 5.3 tabulates the normalized Hamming Distance computed between all
the graphs obtained by varying these two hyperparameters. Further, we computed the Normalized
Hamming Distance between all these graphs and the domain knowledge graph of Figure 2.1. In
order to carry out this specific computation, we created unweighted matrices from the weighted
outputs of DAG-GNN with the help of absolute thresholding using the hyperparameter t.

From Table 5.3, we see that the least normalized Hamming Distance with the Domain Knowl-
edge Graph is obtained by τ = 10−7, t = 0.3 for the static model and τ ∈ {0, 10−7}, t = 0.3 for
the temporal model. Both the temporal models of t = 0.3 give the same graphs, which is shown in
Figure 5.3 on the right. For the static model however, these optimum values of τ and t produce a
graph which shows no relation between sea ice and other atmospheric variables. Hence, we reject
it. The second most optimum graph showing a dependence of sea ice with atmospheric variables
is shown in Figure 5.3 on the left. Its hyperparameters are τ = 0 and t = 0.2. Further, we note
that for the temporal model, the best graphs are obtained with t = 0.3, which is one of the default
parameters used and suggested by the authors in [71].

Comparison to domain knowledge graph. The static and the temporal graphs closest with
the domain knowledge graph are shown in Figure 5.3. Compared to NOTEARS, both static and
temporal graphs produced by DAG-GNN are more complicated. The dynamical fields (u10m and
v10m) dominate the sea ice changes, but with relatively small weights 0.21 and −0.25, respectively.
As for the causal relations between multiple atmospheric processes, they are generally reasonable
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Figure 5.3: The DAG-GNN graphs that are closest to the domain knowledge graph of Figure 2.1.
Left: The static graph for τ = 0, t = 0.2. Right: The temporal graph for τ ∈ {0, 10−7}, t = 0.3.

compared to Figure 2.1. Similar as NOTEARS, the connections between u10m and v10m (0.95),
SW and v10m (0.25), CW and v10m (0.32) do not make any physical sense. Note that the increased
CW and CC tend to reflect solar radiation back to the space, leaving less SW reaching at the surface.
This negative relationships between CC, CW and SW are captured by the DAG-GNN, however, the
direction of arrows are not meaningful. The same issue occurs in the temporal graph. In addition,
the sea ice has the delayed impacts on itself, but with no connection with any atmospheric processes
in temporal graph. Similar as static graph, the causality between u10m and v10m as well as CW
and v10m is not realistic.

5.2 Comparison of the Results for Different Hyperparameters with Respect to
the l1-Distance

In case of the static model, the NOTEARS algorithm and the DAG-GNN method output weighted
graphs, where an edge weight represents the strength of a causal effect. In order to also see
how the edge weights change as we change the hyperparameters of NOTEARS and DAG-GNN,
in this section we present analogous results as in Section 5.1, but with the l1-distance instead of
the normalized Hamming distance. If A,B ∈ Rm×m are the adjacency matrices of two weighted
graphs GA, GB on m vertices, the l1-distance between GA and GB is given by distl1(GA, GB) =∑m

i,j=1 |Aij −Bij |.

5.2.1 NOTEARS

Table 5.4 shows the l1-distance between the graphs produced by NOTEARS for λ ∈ {0, 0.1} and
t ∈ {0.2, 0.3}, where the graphs for the static model are weighted graphs and the graphs for the
temporal model are unweighted (cf. Figure 5.2). Since for unweighted graphs, the l1-distance and
the normalized Hamming distance are equivalent up to the normalization factor used in the latter
distance, the bottom right part of Table 5.4 coincides with the middle right part of Table 5.2 up
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to a factor of 1/122 = 1/144. The most interesting part of Table 5.4 is the upper left part, which
compares the various static graphs with each other. As for the normalized Hamming distance,
we can see that changing the value of λ from 0 to 0.1 causes a larger difference in the result
than changing the value of t from 0.2 to 0.3 (e.g., the l1-distance between the static model with
λ = 0, t = 0.2 and the static model with λ = 0, t = 0.3 is only 0.8, while the l1-distance between
the static model with λ = 0, t = 0.2 and the static model with λ = 0.1, t = 0.2 is 12.54).

Table 5.4: Distance matrix with respect to the l1-distance for NOTEARS. ♣ denotes that λ =
0.1, t = 0.3 are the algorithm’s default hyperparameters.

Static Temporal

λ = 0 λ = 0 λ = 0.1 λ = 0.1 λ = 0 λ = 0 λ = 0.1 λ = 0.1

t = 0.2 t = 0.3 t = 0.2 t = 0.3♣ t = 0.2 t = 0.3 t = 0.2 t = 0.3♣

S
ta

ti
c

λ = 0, t = 0.2 0.0 0.8 12.54 12.37 77.58 51.58 16.73 14.2

λ = 0, t = 0.3 0.8 0.0 12.27 11.58 77.36 51.36 15.93 13.41

λ = 0.1, t = 0.2 12.54 12.27 0.0 0.69 77.34 52.46 11.24 9.8

λ = 0.1, t = 0.3♣ 12.37 11.58 0.69 0.0 77.6 52.29 10.55 9.11

T
em

po
ra

l λ = 0, t = 0.2 77.58 77.36 77.34 77.6 0.0 26.0 69.0 73.0

λ = 0, t = 0.3 51.58 51.36 52.46 52.29 26.0 0.0 47.0 49.0

λ = 0.1, t = 0.2 16.73 15.93 11.24 10.55 69.0 47.0 0.0 4.0

λ = 0.1, t = 0.3♣ 14.2 13.41 9.8 9.11 73.0 49.0 4.0 0.0

5.2.2 DAG-GNN

Table 5.5 tabulates the l1 distance between all the static and temporal outputs of DAG-GNN. As
expected, the static graphs are closer to each other (top left section of Table 5.5 has lower values
than the top right section) and temporal graphs are closer amongst themselves (bottom right
section of Table 5.5 has lower values than the bottom left section). Also, comparing to NOTEARS
algorithm, the differences between two graphs generated by different hyperparameters are relatively
small.

Table 5.5: Distance matrix with respect to the l1-distance for DAG-GNN. ♣ denotes the algorithm’s
default hyperparameters.

Static Temporal

τ = 0 τ = 10−7 τ = 0 τ = 10−7

t = 0.2 t = 0.3♣ t = 0.2 t = 0.3 t = 0.2 t = 0.3♣ t = 0.2 t = 0.3

S
ta

ti
c

τ = 0, t = 0.2 0.0 9.0 6.0 10.0 14.0 17.0 14.0 17.0

τ = 0, t = 0.3♣ 9.0 0.0 7.0 1.0 11.0 10.0 11.0 10.0

τ = 10−7, t = 0.2 6.0 7.0 0.0 8.0 12.0 15.0 12.0 15.0

τ = 10−7, t = 0.3 10.0 1.0 8.0 0.0 12.0 11.0 12.0 11.0

T
em

po
ra

l τ = 0, t = 0.2 14.0 11.0 12.0 12.0 0.0 5.0 2.0 5.0

τ = 0, t = 0.3♣ 17.0 10.0 15.0 11.0 5.0 0.0 7.0 0.0

τ = 10−7, t = 0.2 14.0 11.0 12.0 12.0 2.0 7.0 0.0 7.0

τ = 10−7, t = 0.3 17.0 10.0 15.0 11.0 5.0 0.0 7.0 0.0
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6 Conclusions and Discussion

The Arctic has undergone dramatic changes in the past few decades, and sea ice decline is believed
to be a key driver for the Arctic warming. On the one hand, the sea ice is melted by mixed effects
of atmospheric dynamical and thermodynamical processes. These processes, on the other hand,
can be largely affected by sea ice melt. Therefore, this study investigate the causality between
multiple atmospheric processes and sea ice variations using three data-driven causality discovery
approaches (TCDF, NOTEARS and DAG-GNN). As shown in previous sections, one advantage
of utilizing these approaches is they not only generate causal graphs, but also provide quantified
information on causal strength weight or time lag. Another advantage is that these approaches
can take all relevant variable into consideration to find potential important causal relationship,
which is different from most related studies that only analyze pair-wise causality between two
variables. Instead of performing computationally expensive climate model simulations, here we
focus solely on an observational-type analysis. Specifically, we examine the sensitivity of causality
graphs produced by three methods to different hyperparameters and then compare those graphs
with domain knowledge graph.

We found that the outputs of the three algorithms are rather sensitive to the choice of hyper-
parameters. For example, choosing an only slightly too large regularization parameter can result
in NOTEARS or DAG-GNN producing empty graphs, that is not discovering any causal relation-
ships at all. Also the values of the other parameters turned out to be important and outputs for
different choices of the hyperparameters can be quite different. Hence, some care must be taken
when applying data-driven causality discovery approaches and domain knowledge is indispensable
for assessing whether their produced outputs are reasonable.

Compared to domain knowledge graph, the static graphs produced by NOTEARS and DAG-
GNN are relatively reasonable. The results from NOTEARS suggest that RH and precipitation
dominate sea ice changes among all variables. In the meantime, the sea ice has a large impact on
SW and CW. The graph generated by DAG-GNN, however, indicate that the zonal (u10m) and
meridional (v10m) wind fields are more important for driving sea ice variations than other variables.
And there are no atmospheric variables being affected by the sea ice. Note that the edges between
u10m and v10m, SW and v10m, CW and v10m are not realistic, even though they are produced
by both NOTEARS and DAG-GNN. As for the temporal graphs, very few edges can be found in
TCDF and NOTEARS. In comparison, the DAG-GNN is able to produce more complicated and
meaningful results. The sea ice is found to have a delayed impact on itself, but with no causal
relationship with any atmospheric processes.

Based on our analysis, it is still very challenging to directly apply these state-of-the-art data-
driven causality discovery approaches to this specific climate topic. However, there are several
limitations with current study, which potentially has a large influence on our results. (1) There
are large uncertainties in the domain knowledge graph and thus cannot be considered as ground
truth. The climate scientists strives to investigate the complex feedbacks between atmosphere and
sea ice, but our knowledge in this field is still very limited. (2) We average the atmospheric and sea
ice variables within the pan-Arctic domain (north of 60◦N) and our analysis is only based on the
time series. However, the causal relationships between atmosphere and sea ice could be regionally
dependent. (3) We use the full monthly atmosphere and sea ice records during 1980-2018. The
feedbacks between atmosphere and sea ice are highly variable with season, and may occur at shorter
time scales (e.g. daily). (4) The weights among different atmospheric variables are much higher
than those between atmosphere and sea ice. Thus, the edges in the latter category could have been
filtered out.

Nevertheless, this is a pioneer study in the application of data-drive causality discovery ap-

16



proaches in the interactions between atmosphere and sea ice. This study will pave the way for us
to disentangle the complicated causal relationships in the earth system, by taking the advantage
of cutting-edge data science and Artificial Intelligence technologies. It also provides a good oppor-
tunity for climate scientists, data scientists and computer scientists to work together to solve the
puzzle in the nature, which will eventually advance our understanding of polar climate system and
global climate change.
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