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Abstract

A daily precipitation generator based on hidden Markov models (HMM) using satel-
lite precipitation estimates is studied for the Potomac river basin in Eastern USA over
the wet season months of July to September. GPM-IMERG data between 2001–2018
is used for the study, which at a 0.1◦× 0.1◦ spatial resolution results in 387 grid points
across the basin. A 4-state model has been considered for the state process, and the
semi-continuous emission distribution for precipitation at each location is modeled us-
ing a mixture comprising a delta function at 0 and two Gamma distributions. The
underestimation of the observed spatial correlations between the grid points based on
this model is noted, and the HMM is extended using Gaussian copulas to generate
spatially correlated precipitation amounts. Performance of this model is examined in
terms of dry and wet day stretches, spatial correlations between grid points, and ex-
treme precipitation events. The HMM with Gaussian copulas (HMM-GC) is shown
to outperform the classical HMM formulation for precipitation generation when using
remote sensing data in the Potomac river basin.

Key words. Spatiotemporal modeling, Hidden Markov models, Precipitation genera-
tion, Stochastic simulations

1 Introduction

The modeling and forecasting of precipitation play a significant role in determining water
allocation and resource management for regions that are dependent on precipitation as a
primary water source. Simulations from these models can be used as input for agricultural,
hydrological and ecological modeling. It is important to model both the seasonal and inter-
annual variations of precipitation, and one method of achieving this is through precipitation
generators. Using a dynamical or statistical model created from historical precipitation
data, these generators can produce time series of synthetic data representative of the general
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rainfall patterns of the region. Stochastic weather generators aim to replicate key statistical
properties of the historical data, including sequences of dry and wet days, pairwise spatial
correlations and extreme weather events. These models are used at different spatial and
temporal resolutions, and our interest lies in modeling multi-site daily precipitation.

We use a hidden Markov model (HMM) to simulate daily precipitation data for the
Potomac river basin. Located by the East Coast of the USA, the basin is the primary source
of water for the region and receives large portions of its water supply from rainfall. HMMs
have been widely used for simulating daily rainfall based on observed weather station data,
and they factor the joint distribution of daily rainfall to depend on a small set of underlying
discrete rainfall states [9, 18]. The state process is assumed to be a Markov chain, and
conditional on the state, the emission process (also known as the observation process) is
modeled at each location using a mixture of a delta function at zero and Exponential or
Gamma distributions for positive precipitation. The Integrated Multi-satellitE Retrievals
for Global Precipitation Measurement (GPM-IMERG) dataset [8] is used to develop the
model for the months of July to September using data from 2001–2018.

For the Potomac river basin, we fit a 4-state Markov process to estimate the weather
states, and use a mixture of two Gamma distributions to model the precipitation amounts
at each grid point. We note that while the model is able to replicate the temporal patterns, it
underestimates spatial correlation of precipitation between grid points. We extend the model
by adding Gaussian copulas to generate correlated precipitation amounts, and verify that the
resulting hidden Markov model with Gaussian copulas (HMM-GC) provides an improvement
in the spatial correlations of the synthetic data over the existing HMM formulation.

The rest of this report is organized as follows. Section 2 describes the Potomac river
basin and the IMERG dataset in detail. Section 3 goes into the theoretical formulation of
the HMM and initial hyper-parameter tuning to fit the model, and discusses the need to
explicitly specify a spatial correlation structure. The addition of copulas to improve spatial
correlation and the resulting HMM-GC is discussed in Section 4. Estimation of the HMM-
GC and the properties of the estimated hidden states are further described in Section 5,
along with the hardware and software used for computations. Section 6 discusses simulation
results from the HMM-GC, and compares model performance against historical data and
the synthetic data from the HMM without copulas. The report ends with conclusions and
future work on the HMM implementation as well as deep learning approaches in Section 7.

2 Study Area and Precipitation Dataset

We use daily precipitation data for the Potomac river basin located on the East Coast
of the USA across West Virginia, Virginia, Pennsylvania, Maryland, and the District of
Columbia. Figure 2.1 from NASA’s “Blue Marble”1 provides a sketch of the basin’s extent.
The watershed is one of the main sources of water for the area; in addition to increasing
demand on water, climate variability plays an important role in the region’s water supply.
In particular precipitation, the main source of water in the Potomac basin, varies inter-

1Sourced using the Basemap package in Python from https://visibleearth.nasa.gov/
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Figure 2.1: Extent of the Potomac river basin on the East Coast of the USA indicated by
the gray shape; rivers are represented by blue lines. The Potomac originates at two separate
sources in West Virginia and Virginia, and drains into the Chesapeake Bay which connects
to the Atlantic ocean on the Eastern side of the map.

annually and makes it challenging to plan for water allocation within the basin. Therefore,
understanding seasonal to inter-annual variations in water availability within the basin due
to climate variability is important for planning water resources management [14].

The months of April to September constitute the rainy season for the basin, and we have
chosen the 92 day period beginning July 1 for the years 2001–2018 for our study. Daily data
is used since features of interest like dry and wet spells as well as extreme precipitation events
can only be observed in daily data, even though a lot of statistics are eventually presented
in monthly and seasonal scales. In comparison, monthly data is often smoothed and are also
smaller datasets. July to September overlap with the peak rainy season for the Potomac
basin and is part of the same seasonal cycle. Satellite precipitation estimates (SPE) from
the GPM-IMERG Level 3 daily dataset [8] is used for the study. The data is available at a
0.1◦× 0.1◦ resolution, which translates to approximately a 10 km× 10 km grid with 387 grid
points spread across the basin. Our observed data, therefore, constitutes a 387 dimensional
multivariate time series of length 1656 days.
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3 The Hidden Markov Model for Daily Synthetic Pre-

cipitation Generation

3.1 Model Formulation

Figure 3.1: Graphical representation of a hidden Markov model

Our hidden Markov model for precipitation generation is based on the work of Robertson
et al. [18] and Hughes and Guttorp [9]. Let R1:T = {R1, . . . ,Rt, . . . ,RT}, where R

′

t =
(R1

t , . . . , R
M
t ) be the M×T matrix of precipitation amounts for a network of M grid points

over T days. Let S1:T = {S1, . . . , St, . . . , ST} be the set of hidden (unobserved) weather
states, where St ∈ {1, . . . , J}. At each location,

p[Rm
t = r|St = j] =

{
pjm0 if r = 0∑C

c=1 pjmcf(r|αjmc, βjmc) if r > 0
(3.1)

with pjmc ≥ 0 and
∑C

c=0 pjmc = 1 for all m = 1, . . . ,M and j = 1, . . . , J ; f(·|α, β) is the
density function of a Gamma distribution with parameters α > 0, β > 0. The states arise
from a stationary, first-order Markov process, i.e.

p(S1, . . . , ST ) = p(S1)
T∏
t=2

p(St|St−1) (3.2)

where p(St|St−1) are given by a J × J stochastic matrix of state transition probabilities
Π = ((πij)), 1 ≤ i ≤ J, 1 ≤ j ≤ J , and p(S1) is the initial distribution. Daily rainfall Rt

depends only on the state St on day t, i.e.

p(R1:T |S1:T ) =
T∏
t=1

p(Rt|St), and (3.3)

p(R1:T , S1:T ) =

{
p(S1)

T∏
t=2

p(St|St−1)

}{ T∏
T=1

p(Rt|St)

}
(3.4)

Spatial dependence is captured implicitly by the Markov chain {St}, and the M location
components of Rt are independent of each other given St, i.e.

p(Rt|St) =
M∏

m=1

p(Rm
t |St) (3.5)
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The model parameters are estimated using the Baum-Welch algorithm [16], a variant
of the Expectation Maximization (EM) algorithm. Estimation of the most likely sequence
of states using the Viterbi algorithm is discussed in Section 5, which can then be used for
simulating data.

3.2 Optimum parameter configuration

There are three aspects to the parameter selection for our study. The first is the number
of hidden states that we want in our model. Hidden Markov models have usually used 4-
6 states in previous studies, and it has been noted that large number of states are good
for simulation whereas a smaller number allows easier physical interpretation of the states
[20]. Secondly, the amounts process has conventionally been modeled using a mixture of
exponential distributions, though Gamma distributions are also used [1, 15]. Finally, the
models usually use a mixture of Exponentials or a single Gamma distribution, but we have
considered a mixture of Gamma distributions as well. Model goodness of fit is reported in
terms of the Bayesian Information Criterion (BIC) scores of the models, with a lower BIC
score indicating a better model fit. However, it has been demonstrated before [2] that the
theoretical grounds for the most common likelihood based techniques like BIC fail to hold in
the order selection context, and should not be used as the only criterion for model selection.

Table 3.1 lists the BIC scores for different number of states, number of mixture compo-
nents where the first component is always a delta function at zero, and the mixture distri-
bution for positive precipitation (Gamma and Exponential). We noticed that the Gamma
distribution models had consistently better BIC scores (lower is better) compared to their
Exponential distribution counterparts. While a 6-state model with 2 components (i.e. a sin-
gle Gamma distribution) has the lowest BIC, we chose to go with the 4-state, 3 component
model with Gamma amounts. This allows for easier interpretations for the states. Using
two instead of a single Gamma distribution is also made in the hopes of capturing the tail
of the distribution, corresponding to extreme weather events, better.

Table 3.1: BIC Scores for hidden Markov models with 2–6 states, Gamma and Exponential
distributions, and with 2 and 3 mixture components

Number of Gamma distribution Exponential distribution
hidden states (J) C = 2 C = 3 C = 2 C = 3

2 2.194e+06 2.193e+06 2.388e+06 2.221e+06
3 2.058e+06 2.056e+06 2.188e+06 2.073e+06
4 1.991e+06 1.994e+06 2.102e+06 2.006e+06
5 1.964e+06 1.969e+06 2.055e+06 1.973e+06
6 1.931e+06 1.943e+06 2.013e+06 1.946e+06
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3.3 From weather stations to SPEs

Robertson et al. [17] considered a network of 10 weather stations in NE Brazil and daily data
from the February–April wet season between 1975–2002 for their study, and reported the
mean of observed Pearson correlation coefficients between stations as 0.248. If we use the
same model for the 2001–2018 IMERG data from July to September for the Potomac river
basin, the mean and maximum of observed Pearson correlation between grid points are 0.642
and 0.986 respectively. Further, Table 3.2 shows the average absolute difference in pairwise
correlations between the IMERG data and the HMM based on Section 3.1, where the first 16
years of data was used for training, and the last 2 years used for the out-of-sample estimates.
We note that the original model formulation underestimates the observed correlations by
0.253 for a 4-state model. We can attribute this to the higher spatial resolution of our data.

Most studies that we have come across [6, 9, 18] are based on observed data for a small
number of weather stations located irregularly over a large area for their analysis. The
largest study we could find was Holsclaw et al. [7] with 52 stations. HMMs adequately
capture spatial correlations in these situations through the shared daily state, but that is
not necessarily the case with satellite precipitation estimates. For example, IMERG data for
the Potomac basin comprises 387 grid points at 0.1◦ × 0.1◦ resolution. Thus there is a need
to explicitly capture the spatial correlation in the data.

An intuitive way to achieve this would involve extending to a multivariate state process
where different states at different locations are generated based upon a correlation structure.
Alternatively, we could generate correlated precipitation amounts once the daily state has
been specified. For a larger area of study, we can justify different weather regimes at different
locations, and therefore consider a multivariate hidden state process. However, for the Po-
tomac basin, it is reasonable for all locations to have a common daily state, and therefore we
concentrate on generating correlated precipitation amounts by means of a Gaussian copula.

Table 3.2: In-sample and out-of-sample average absolute difference in spatial correlations
between pairs of grid points for historical and synthetic data

In-sample average Out-of-sample average
Number of absolute difference in absolute difference in

hidden states (J) spatial correlation spatial correlation
2 0.476 0.378
3 0.348 0.261
4 0.253 0.195
5 0.255 0.194
6 0.214 0.171
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4 A Hidden Markov Model with Gaussian Copulas

(HMM–GC) for Spatial Correlation

For a grid of M locations, there are M(M-1)/2 pairwise location combinations. Further, for
each state, the locations have different distributions for precipitation amounts. Therefore,
for state j, it is possible to construct an M-variate copula (Z1

j , . . . , Z
M
j ) and generate daily

correlated precipitation amounts (R1
j , . . . , R

M
j ) using the correlation structure of Zj. Follow-

ing the work of Mhanna and Bauwens [15], we use the estimated Spearman rank correlation
ρ̂j(k, l) of the observed data for state j between locations k and l to capture the corre-

sponding Pearson correlation ζ̂j(k, l) using the following relationship for a bivariate Normal
distribution [13]:

ζ(k, l) = 2 sin

[
π
ρ(k, l)
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]
(4.1)

This works since ρ(k, l) is invariant under monotone transforms, and we use a CDF and an
inverse CDF transform to transform the observed correlations into copula correlation.

Based on this idea, precipitation over the basin is generated using the following algorithm.

Algorithm 1: Algorithm for multi-site daily precipitation generation

for For day t from 1:T do
Generate a random number u∗ from a Uniform(0,1) distribution; using the
algorithm proposed in Serfozo (2009) [19], generate the state j ∈ {1, . . . , J};

Generate the vector zj = (z1j , . . . , z
M
j ) from the corresponding multivariate

Normal distribution Zj with mean 0 and covariance matrix Σj;
Transform the vector element-wise to uj = (u1j , . . . , u

M
j ) = Φ(zj), where Φ() is

the CDF of Zj;
for For location m in 1:M do

Generate a random number um from a Uniform(0,1) distribution;
Compare um against the mixing probabilities (pjm1, pjm2, pjm3) as per 3.1 for
location m to ascertain whether there will be no rainfall, rainfall from the
first Gamma component, or rainfall from the second Gamma component;

if um < pjm1 then
set rainfall for location m as zero;

end
else

Generate rainfall rmj as rmj = Γ−1(umj ) for m = 1, . . .M , where Γ−1() is

the inverse CDF for the Gamma distribution;

end

end

end
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Figure 5.1: Most likely sequence of states for the historical IMERG data from 2001–2018
estimated by the Viterbi algorithm based on a 4 state HMM with 2 Gamma components.

5 Generating Synthetic Precipitation using HMM–GC

5.1 Estimation of parameters

The most probable daily sequence of the 4 states over the 18 year period is estimated using the
Viterbi algorithm. The estimates correspond to the maximum a posteriori (MAP) estimates
of the states from the data.

Table 5.1 lists the daily and monthly precipitation statistics corresponding to the 4 states
over all grid points within the Potomac river basin and the percentage of days that each state
appears during the season. We see that state 4 corresponds to heavy precipitation as well as
to extreme precipitation events, while state 3 is the driest state. Based on Figure 5.1, state
3 also repeats the most often, allowing the simulation of dry day stretches. States 1 and 2
model intermediate rainfall patterns. Further, the incidence of state 4 reduces from July to
September as the rainy season winds down, while the incidence of state 3 correspondingly
goes up.

This is further validated by Table 5.2 where we see that the highest transition probability

Table 5.1: Precipitation statistics for the 4 HMM states over all 387 locations within the
Potomac river basin

Daily mean Daily maximum % days % days % days % days
State precipitation (mm) precipitation (mm) in total in Jul in Aug in Sep

1 0.72 9.82 26.69 27.60 27.60 24.82
2 3.38 11.82 24.52 27.60 27.60 18.15
3 0.03 1.12 30.98 25.45 27.24 40.56
4 14.53 65.6 17.84 19.36 17.56 16.48
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Table 5.2: Estimated transition probability matrix for the four-state HMM
To state

1 2 3 4
From state

1 0.326 0.237 0.285 0.152
2 0.250 0.314 0.188 0.248
3 0.259 0.160 0.524 0.057
4 0.211 0.317 0.143 0.328

in the table is for state 3 to transition back onto itself. Finally, we also note that states 3
and 4 have very low transition probabilities between them, and we usually see states 1 and
2 appear as we transition from heavy rainfall stretches to dry stretches and vice versa.

The Baum-Welch algorithm provides estimates of the mixture probabilties (pjm1, pjm2, pjm3),
as well the Gamma parameters (αjm1, βjm1), (αjm2, βjm2) at each location for each state. The
MAP state sequence is estimated using the Viterbi algorithm. The following procedure is
then used to construct the Gaussian copula for each state.

Algorithm 2: Algorithm to calculate Gaussian copula for each state

for states j in 1:4 do
Subset the days corresponding to state j ;
Calculate the M(M-1)/2 values of ρj(k, l) as discussed in section 4;
Calculate each binormal correlations for the copula using equation 4.1;
Plug the value in as the (k,l) element of the Normal correlation matrix;
Set diagonal elements of the correlation matrix to be 1;
Ensure that the resulting matrix is positive definite;

end

Note that the correlation matrix of the copula is also the covariance matrix since we
set all diagonal elements to 1. Positive definiteness is ensured by diagonalizing the matrix
and replacing all negative eigenvalues with a small positive number, and recalculating the
matrix to ensure positive-definiteness is achieved. A more detailed discussion with further
references can be found in Mhanna and Bauwens [15].

5.2 Hardware and Software

The hardware used in the computational studies is part of the UMBC High Performance
Computing Facility (hpcf.umbc.edu). The study used CPU nodes with two 18-core Intel
Xeon Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache, 6 memory channels)
and 384 GB memory. The nodes are connected by a network of four 36-port EDR (Enhanced
Data Rate) InfiniBand switches with 100 Gb/s bandwidth and 90 ns latency.

The precipitation data has been preprocessed using Python scripts developed by Kel
Markert for the NASA SERVIR training on hydrologic modeling using VIC. The code is avail-
able at https://github.com/KMarkert/servir-vic-training and was run using Python
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2.7.x on taki. The software used for the majority of the hidden Markov model computations
is the MVNHMM toolbox [11] developed by Sergey Kirshner and Padhraic Smyth and avail-
able at http://www.sergeykirshner.com/software/mvnhmm. The toolbox was developed
for Linux and was installed and used on taki. Ancillary scripts written in Python 3.6.x

and R 3.6.x were used extensively in the analysis. More details are presented in Section
5.3. All the code written for the project has been uploaded to GitHub at https://github.
com/big-data-lab-umbc/cybertraining/tree/master/year-3-projects/team-1.

5.3 Implementation of the code

Within the MVNHMM toolbox, the main functions used in this study were the Baum-Welch
algorithm for estimation, the Viterbi algorithm for the generation of most likely estimated
states, and the simulation algorithm. Calling any of these actions requires a specialized
parameter file. We wrote scripts with Python 3.6.4 for automating the generation of pa-
rameter files and running the models with relative ease using batch jobs, and also used the
mpi4py library to parallelize the tasks of grid-search for optimum parameters and model
estimation and simulation for different locations in parallel. Parallelization allows for the
creation and execution of multiple parameter files simultaneously, leading to overall time
reductions when running a study consisting of parameter variations. The number of desired
parameter files can be requested via the batch scripts used to run the code.

The bulk of the statistical analysis and data generation based on the Gaussian copula was
carried out in R 3.6.3. The MVNHMM toolbox was still used to run the Baum-Welch and
Viterbi algorithms, since it is the only available software which can fit a mixture emission
distribution. A script was written in Python to extract information from the generated
parameter files, which was then imported into R for the remaining part of the study. This
was necessary since the toolbox does not have a mechanism to simulate correlated emissions
or states. All plots were generated using the ggplot2 library in R.

6 Results from the Comparison of Synthetic Data from

HMM and HMM-GC with Historical Data

6.1 Spatial correlation in the synthetic data

Figure 6.1 shows box plots of the daily average precipitation amount for the HMM, HMM-
GC, and the IMERG data. The low median and interquartile range of HMM and HMM-GC
compared to IMERG suggest that both models struggle with capturing spatial correlation
to different degrees. We see that the classical HMM for precipitation tends to severely
underestimate the correlations between precipitation amounts. There are also negative values
which are artifacts of trying to estimate zero correlation in the simulated data. The HMM-
GC does a significantly better job of estimating the spatial correlations. As the amount of
rainfall decreases from July to September, however, the estimated correlations fall. This can
be attributed to the fact that our copula is constructed to capture the correlation between
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Figure 6.1: Pairwise spatial correlation between grid points for historical IMERG compared
with synthetic data from HMM and HMM-GC models based on 18 years of data

positive rainfall amounts, and therefore does not fare as well when trying to capture the
correlation of no-precipitation events across the basin.

Figure 6.2 shows the total basin rainfall for the wet season averaged over 18 years of data
at the 387 grid points. A visual inspection suggests that the HMM-GC does a better job of
simulating spatial patterns within the basin. We believe that larger training sets and longer
simulation chains would result in smoother gradients in both plots. We found another issue
with extreme values in the regular HMM; 5 of the simulated values were greater than 500
mm, with the largest being over 1500 mm. They have been left out of the plot in the interest
of legibility, and are denoted by 5 white grid points within the plot. These values are far
higher than the historical data, and probably caused due to the underestimated correlation
for the HMM. The HMM-GC is not affected by this problem.

Figure 6.2: Spatial patterns in the total rainfall over the basin from July to September
averaged over 18 years of data
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6.2 Temporal distribution of the synthetic data

Figures 6.3 and 6.4 display the daily total precipitation amounts over the basin from July
to September of 2018. In both plots, the green line shows the same IMERG data. These
are compared to the red lines corresponding to the HMM in Figure 6.3 and the HMM-GC
in Figure 6.4. The IMERG data in both figures simulates low precipitation events around
5000 mm and extreme precipitation events of up to 15000 mm. When comparing the HMM
and HMM-GC data, we see that the HMM-GC can replicate the high precipitation events
with daily rainfall values above 10000 mm, much better than the 5000 mm maximum simu-
lated in the HMM data. The failure to simulate extreme precipitation events in the classical
HMM formulation may potentially be due to the underestimation of spatial correlations.

Figure 6.3: Time series of total daily rainfall over the basin in July to September 2018,
compared against a single realization from the HMM

Figure 6.4: Time series of total daily rainfall over the basin in July to September 2018,
compared against a single realization from the HMM-GC model
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Figure 6.5: Scatterplot of the proportion of dry days per month at each grid point based on
historical IMERG data (2001–2018) compared with 100 years of synthetic HMM-GC data

Figure 6.6: Scatterplot of the mean precipitation per month at each grid point based on
historical IMERG data (2001–2018) compared with 100 years of synthetic HMM-GC data

While the HMM-GC performs much better at capturing a wider range of daily precipita-
tions, both methods perform generally well in simulating low precipitation events. This
conclusion is determined by the similarities in the troughs and peaks of both graphs.

Figures 6.5 and 6.6 represent a comparison of the simulated monthly proportion of dry
days and the simulated monthly mean at each location in the basin with the corresponding
historical IMERG data. The synthetic data is based on 100 years of simulations from the
HMM-GC. A linear relationship between the historical data and the synthetic data can be
seen in the plots. The RMSE for the monthly proportions is 0.06, and the RMSE for the
monthly means is 6.32 mm, and signifies that the HMM-GC can simulate this three month
period well. However, we also note some systemic patterns in the synthetic data, where
for some months the model parameters are underestimated and for other months they are
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Figure 6.7: Distribution of the maximum daily basin precipitation for historical data from
2001–2018 compared against 18 years of HMM and HMM-GC simulated data

Figure 6.8: Distribution of the average daily basin precipitation for historical data from
2001–2018 compared against 18 years of HMM and HMM-GC simulated data

overestimated. This suggests that the HMM-GC fails to capture at least some features of
the data which vary from month to month.

6.3 Extreme precipitation events in the synthetic data

Figures 6.7 and 6.8 plot the distributions of daily maximum and mean basin precipitation
for IMERG, HMM and HMM-GC data. We notice in Figure 6.7 that the classical HMM
tends to overestimate the daily maximum precipitation, as shown through the long upper
tail. However, the short upper tail for the HMM in Figure 6.8 shows that the HMM also
underestimates the daily mean precipitation. This can be attributed to the lack of spatial
correlation, where some locations simulated very high values, but since they were being
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generated independently of the other locations, there was no way to simulate basin-wide
consistent behaviour. This has largely been mitigated by the HMM-GC approach; the ob-
servation is based on the relative similarities between the HMM-GC and IMERG plots in
both Figures 6.7 and 6.8. The daily mean is however still slightly underestimated, suggest-
ing the presence of local extreme weather events within the basin influenced by factors not
currently captured by our states.

7 Conclusions and Future Work

7.1 Conclusions

In this paper, we applied a hidden Markov model to remote sensing data from GPM-IMERG
over the Potomac river basin and examined how the synthetic data produced by the model
compares to historical data described in Section 2. Initial studies based on the original
formulation (Section 3) suggested the model falls short in adequately capturing the spatial
correlations of the gridded historical data. To address this issue, we extended the original
HMM by adding Gaussian copulas to the emissions process, and the corresponding simulation
and estimation process for this HMM-GC formulation is discussed in Sections 4 and 5.

For spatiotemporal models of multi-site daily precipitation like the HMMs in this paper,
there are three major data features we want to capture and replicate in synthetic data:
spatial correlation between locations in the region, rainfall amounts and occurrences for long
periods of time, and the extreme weather events of the region. In Section 6, we discussed
model performance for the HMM and HMM-GC based on these metrics.

Figures 6.1 and 6.2 demonstrate that the addition of the Gaussian copulas in the HMM
(HMM-GC) results in more realistic spatial correlations compared to the HMM, though the
HMM-GC still underestimates it. Figures 6.3 and 6.4 show that both the HMM and HMM-
GC adequately model low precipitation events, which is captured largely through the hidden
states common to both models, discussed in section 5. A key difference lies in how each
model can replicate extreme precipitation events, where the HMM-GC does a superior job
as the high spatial correlations allow simultaneous basin-wide simulation of extreme weather
events better than the HMM. This is further displayed in Figure 6.8, where the HMM-GC
has more variability and a longer upper tail than the HMM, even though Figure 6.7 shows
that the HMM actually overestimates the maxima.

These results suggest that the HMM-GC improves the default HMM’s ability to capture
spatial correlations between locations in the region, the rainfall amounts and occurrences for
long periods of time, and the extreme weather events of the region. However, there is still
room for improvement in several aspects of the HMM-GC. Figures 6.5 and 6.6 demonstrated
that despite low RMSE values when simulating the July-September time period as a whole,
the direction of estimation errors depends on the month. This signifies information in the
historical data we have failed to capture. Furthermore, significant improvements to the
spatial correlation can still be made as shown in Figures 6.1 and 6.2. The results suggest
that improvements in the spatial correlation could influence model performance as a whole.
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7.2 Future work

Our immediate next step is documenting our code as well as publishing it on GitHub2 so that
any researcher working in this field can take advantage of it. While the code is currently in
a mix of Python and R, we plan to convert the entire code to Python because it has a much
wider user base. We realized the need for this while working on the project, since other than
the MNVHMM toolbox there are not a lot of software resources for precipitation modeling
using HMMs. We consider our work to be an extension to the existing toolkit that allows
more flexibility in modeling as well as takes advantage of MPI if there is a need to scale.

There are also aspects of the current study that can be explored in more detail. The
HMM-GC can itself be fine tuned further; since one of our goals was to compare with
the current HMM, we preferred a selection of parameters close to what is suggested in
existing work. We believe that model performance can be further improved by exploring the
parameterization suggested by the BIC scores. The copula approach becomes untenable if
we use larger basins for our study, where the parameters might not be estimable due to the
size of the dataset, since IMERG data only dates back to 2000 for now. For larger areas,
the underlying idea of there being a shared state also becomes difficult to justify; we believe
we are already seeing signs of this in our study, where some parameters are not estimated
well enough for some months since different parts of the basin have slightly different weather
patterns. Expanding out from the shared state paradigm is thus an avenue we want to
explore. There is also a need to do a similar study for the drier periods of the year and check
the model performance and draw inference on times of the year this sort of a model is most
suited for, and the duration of time it can simulate within its framework.

Finally, there is scope for comparing this model with the Wilks approach [15, 21], which
is another method where copulas are used to explicitly specify spatial correlations. While
the underlying model formulation is quite different, we believe both models can benefit from
a comparison study of their strengths and weaknesses. A preliminary study comparing of
the two methods for the same IMERG data can be found in [12]. Deep Learning approaches
should also be explored for the problem of synthetic precipitation generation, and we close
out with an overview of future research directions based on deep learning literature.

One way to leverage deep learning techniques is by using a Neural network to simulate
wet/dry sequences instead of simulating rainfall directly as shown in [3]. This works by using
a non-parametric approach which is implemented by a multi-layer perceptron (MLP) neural
network architecture, wherein the model fits two curves which are the cumulative distribution
functions (CDF) of dry and wet sequences. This neural network consists of an input layer
containing one input neuron and output neuron. However, the neurons in the hidden layer
are optimized by the model. In the training phase, an MLP is optimized for each month
at each station. During this phase, the MLP is made to smoothly fit the CDF curve by
interpolating the curves and approximating the distribution. By using a Bayesian approach,
the MLP is being penalized with a bigger architecture to avoid over-fitting. In order to
simulate wet/dry sequences at each station, the model generates a random number between
0 and 1 and inserts into the input layer, with the output being the length of the wet/dry

2https://github.com/big-data-lab-umbc/cybertraining/tree/master/year-3-projects/team-1
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spell. Generating rainfall is simulated the same way wet/dry sequences are instead only using
the wet spell. After the random number is generated and entered into the neural network,
the model produces an output which is the amount of daily rainfall. This formulation has
an inherent shortcoming in that it has to model months separately and is thus not very
good at simulating long chains even though they are modeling wet/dry stretches. A larger
problem, however, is that it considers locations to be unconditionally independent of each
other, which we have seen to be inadequate for gridded remote sensing data. This calls for
a deep learning approach which can accommodate a spatial structure as well.

As discussed in [4], Recurrent Neural Networks (RNNs) are neural networks specifically
designed to deal with time series data. Given time series data, an RNN can make accurate
predictions and classification using the technical ordering of the provided data. However,
traditional RNNs are not designed to look at spatially relevant details like a convolution
neural network might [10]. In some applications the spatial properties are entirely removed
in order for the LSTM to be used. Recent research into convolutional RNNs has created a
neural network type which is capable of using both temporal and spatial properties to make
accurate predictions [10]. Such a neural network would be able to use and learn all of the
complex features present in our data. This would give us the basis for a network which can
handle our data but we would still need additional techniques to produce a network capable of
robust data generation. We could take the proposed ConvRNN and use a similar adversarial
model proposed in [5] to create generative adversarial networks (GANs). Both the generator
and the discriminator would be variations comprised of ConvRNNs. The trained generator
would create new time series data given a noise vector whereas the trained discriminator
would be capable of determining whether provided time series data is natural occurring or
artificially generated. All of these concepts together allow us to create a generator which is
capable of producing robust spatially relevant time series data.
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