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Abstract

Identification of causal networks in atmospheric teleconnection patterns has applications in
many climate studies. We evaluate and compare three data-driven causal discovery methods
in locating and linking causation of well-known climatic oscillations. Four climate variables
in the ERA-Interim reanalysis data (1979-2018) were examined in the study. We first employ
dimension reduction to derive the the time-series for selected climate variables. Then time-
series of dominant modes were processed using three different causal discovery methods:
Granger causality discovery, Convergent cross-mapping (CCM), and PCMCI. Discovered
causal links were different for different methods as well as for different variables. How-
ever, slightly similar causal links were observed between the Granger causality and CCM
methods. Comparison of these three methods is discussed based on the El Niño-Southern
Oscillation (ENSO) and its connection with other oscillations. Causal discovery methods
were able to capture the linkage between the ENSO, North Atlantic Oscillation (NAO), and
Pacific Decadal Oscillation (PDO), for some of the variables. Overall, this study identifies
the usage of these statistical models in locating the direct and indirect causal links among
the oscillations. Application of these data-driven causal discovery methods, both in terms of
mediation and direct relationships between the observed teleconnection patterns, suggests
that the data-driven statistical methods are efficient in locating the regimes of climate pat-
terns and their 12 observed real connections to some extent. We present and provide our
explanation of the evaluation results for each of the three causal discovery methods.
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1 Introduction

The study of causality has recently emerged as a primary research tool in many areas of
science [13]. The challenge is to reconstruct causal links along with their time lags using
complex dynamical systems and connect them to the physical processes represented. Re-
constructed causal graphs provide a new tool for identifying teleconnection patterns from
spatio-temporal climate data [5]. In addition, many previous works suggest that temporal
changes in the network’s architecture and its graphical representations are widely used to
identify signatures of global change due to the El Niño activity [8]. Here we introduce the
basic ideas of causal connection, as well as some applications of statistical causality models
to the climate system. We observed that the statistical causal discovery algorithms described
in this paper are easy to implement.

Atmospheric teleconnection patterns influence the global climate through the atmospheric
circulation [11]. Especially, the El Niño–Southern Oscillation (ENSO) has a significant effect
on humanity’s economic, social, and physical well-being. Many studies have been devoted to
predict the extreme weather conditions of different regions of the globe in association with
the ENSO [2, 6]. Unique and prominent circulation patterns occur in the atmosphere due
to large scale ENSO variability [23], although mediation of other atmospheric teleconnection
patterns and their causal connections are not well explained. Applying the graphical causal
discovery model to the climate patterns could potentially discover the causal pathways that
are responsible for extreme climate events of specific regions [21]. Dimension reduction is
one important component in causal discovery in the case of large climate data sets [26].

In general, global climate model data reveals large spatial and temporal patterns that are
relevant to multiple climate events. It is essential to isolate well-known climate patterns to
study the specific climate events associated with them. The empirical orthogonal function
decomposition (EOF), also called Principal Component Analysis, separates the data based
on the orthogonal basis function computed from the climate data. The EOF method pro-
duces spatial modes in addition to the temporal patterns. Especially, the rotated empirical
orthogonal function (REOF) approach is considered to be the most useful technique in cap-
turing the spatial variabilities of the complex dynamical system that are more clear, well
defined, and amenable to straightforward interpretation [11].

The purpose of this study is to explain how the climate system exhibits aspects of causal
networks, with dominant modes corresponding to major teleconnection patterns. This study
focused on identifying causal links between sea surface temperature (SST), 2-meter temper-
ature (T2M), 10-meter wind speed (SI10), and mean sea level pressure (MSL). The time
series of well-separated patterns associated with these variables were used as our primary
data for the causal discovery algorithms. We will discuss the results from the perspective
of causal discovery methods and their ability to capture the variabilities related to those
variables. We mainly intend to explain the causal connection between the ENSO mode and
other prominent climate variabilities using the Granger causality [9], Convergent cross Map-
ping (CCM) [27], and PCMCI [22] approaches. Reliability and limitation in the individual
techniques should be addressed to some extent in the future, but are out of scope of this
study.
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2 Data and Methods

2.1 ERA-Interim Reanalysis

In this study, we use ERA-Interim global atmospheric reanalysis data [4] from 1979-2018.
The 1.5 ERA-Interim modeling system includes 4-dimensional variational analysis (4D-Var)
with a running Integrated Forecast System (IFS) model cycle of 31R2. The horizontal
resolution of the data is T255 spectral (equivalent to about 80 km horizontal resolution) on
60 vertical levels. We obtained SST, MSL, SI10 and T2m from the monthly means of daily
means �elds from [10]. The analysis was focused on the monthly data spanning 40 years.
For the causality study we use monthly time series that best represent dominant modes of
larger variances, calculated for all years.

2.2 Empirical Orthogonal Function (EOF)

We preprocessed climate data variables to retain the patterns that are inherent to the large
scale variabilities and remove the patterns corresponding to regional climate change. The
�rst step in preprocessing is to remove the annual cycles from the monthly data. The second
step is to detrend the data at every grid cell. The empirical orthogonal functions have
been calculated for preprocessed monthly anomalies. In this study, we perform a varimax
rotation of calculated EOFs using the �rst 30 modes [18]. The conventional EOF analysis
produces spatial patterns (EOFs) and time series (PCs) that are both orthogonal. The
Kaiser varimax rotation criterion [12] is being applied on each spatial mode to derive a
simple structure, which contains a localized center with maximized variability. The rotated
EOFs are orthonormal [19]. We chose six EOFs out of the 30 rotated EOFs based on their
percentage of variance as well as their meteorological signi�cance. These six selected EOFs
and their associated principal components were used in further causal discovery analyses.

3 Granger Causality Method

3.1 Description of Method

Granger causality [9] was proposed by Nobel Laureate Clive W. Granger in 1969 and devel-
oped as a predictive model in economics. Granger causality is de�ned as follows: given two
time series variablesx and y, we say thatx Granger causesy if the regression fory based on
past values of bothx and y is a statistically signi�cant improvement on the regression ofy
only based on past values ofy. Let the set of lagged variables ofx be written xP

t for t from
1 to P, the maximum time lag. Similarly, let the lagged variables ofy be notated yP

t . To
evaluate Granger causality we generate the following regressions:

yt = A1 � yP + "1 (3.1)

yt = A2 � yP + B2 � xP + "2 (3.2)
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and consider whether or not the regression function in Equation 3.1 is better than Equation
3.2 in predicting y. A statistical hypothesis test method such asF -test or Chi-squared (� 2)
test is used to decide which regression is better by getting a p-value of the test and checking
to see if this value is low enough to indicate statistical signi�cance.

The F -test is applied in regression problems to decide whether a model �ts the data
signi�cantly better than a naive model. In the case of Granger causality, model 3.1 is the
naive model, model 1, and model 3.2 is model 2. We write the residual sums of squaresRSS1

and RSS2 and the number of parametersp1 and p2, respectively. Letn be the number of
total data samples. The null hypothesis is that model 2 does not �t data better than model
1. We calculate theF statistics of these two regression models via

F =
RSS1 � RSS2

p2 � p1

RSS2
n� p2

(3.3)

Then we look up theF statistics in F -distribution with its corresponding degree of freedom
to get the p-value of the null hypothesis and reject the null hypothesis if appropriate: The
null hypothesis is rejected only if the p-value is smaller than the given signi�cance level. For
instance, if we set the level of signi�cance of p-value as 0.05, and get a p-value fromF -test
as 0.01, it means that the probability of the statement \model 2 does not �t data better
than model 1" being true is only 1%. Since 1% is less than 5%, we believe that model 2 is
better, which indicates that x Granger causesy.

In conclusion, the Granger causality test includes two important parts: the regression
models and the hypothesis test. The �rst regression model is a naive model that assumes
the time series is only predicted by its own lagged variables, and the second regression model
considers lagged variables of other time series as well. Hypothesis testing is used to compare
the two models to decide which is better. To support causality discovery among multiple
variables, the original model was extended to a graph model so that it could measure whether
and how one variable is caused by multiple other variables [28, 1].

3.2 Implementation

The statsmodelsmodule [15] is a Python [17] module that provides classes and functions for
the estimation of many di�erent statistical models. The Vector Autoregressionstsa.vectorar
package [16] fromstatsmodels 0.9.0was our primary software for our Granger causality
approach.

The input data of the Granger causality model is the EOF modes of our time-series data.
The most signi�cant modes are chosen to generate the causality plots. Based on the team's
understanding of atmospheric science, the maximum time lag in the Granger causality model
is set to be 3 months.

The pairwise regression models are �tted and their RSSs are used to generate theF -test.
We use a p-value signi�cance level of 0.05 for theF -test. The p-value threshold of 0.05
ensures that our tests reject the null hypothesis at 95% probability. By applying this p-value
threshold, the causality relationship pairs number is still large, making human interpretation
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di�cult or impossible. So we set another threshold that only includes the 20 causal links
with lowest p-values, since these are the most signi�cant ones.

4 Convergent Cross Mapping Method

4.1 Description of Method

Convergent cross mapping (CCM) is a causality analysis method designed for weakly or
moderately coupled dynamic systems. It was introduced in [24] and extended in [27]. The
fundamental theory for this method is phase space reconstruction for a dynamic system and
Takens' Theorem [25]. The evolution of a dynamic system can be represented by a certain
phase orbit in the phase space, and any two nearby phase points will remain close to each
other for at least a short amount of time before diverging. The de�nition of causality in
CCM and the complete algorithm is described below.

The phase space of the dynamic system can be reconstructed from discrete observations
using the time delay embedding method. Assume there is a regular time series for the
variable y: yt0, yt0+1 , yt0+2 , ... If this system can be described by a set ofn-th order ordinary
di�erential equations, then a vector Y = ( y; dy

dt ; d2y
dt2 ; :::; dn y

dtn ) will contain all the information
of the system at each moment followingdY

dt = f (Y), where f is a given function. We
can approximate derivatives using consecutive observations, i.e., (yt ;

dy
dt j t ;

d2y
dt2 j t ; :::; dn y

dtn j t ) �
A(yt ; yt � � ; yt � 2� ; :::; yt � n� ), where A is a constant matrix. Thus, the phase space can be
reconstructed as the vector space forYt = ( yt ; yt � � ; yt � 2� ; :::; yt � n� ).

If Y is only inuenced by one external variablex, i.e. dY
dt = f (x; Y ), then neighboring

phase points ofY are also associated with similarx. Therefore, we can estimate the historic
values ofx by averagingx over a group of known neighboring phase points ofY. The causal
e�ect from x to y is de�ned and measured by the capability of estimating historicx from Y
using this cross mapping method.

Here are the steps of extended CCM [24, 27]:
(1) Reconstruct the phase space forY with speci�ed parametersn and � : Yt = ( yt ; yt � � ;

yt � 2� ; :::; yt � n� ).
(2) For each timet, we will �nd n + 1 nearest neighbors ofYt in the reconstructed phase

space at timet1, t2, ..., tn+1 , and their correspondingx at the same time or earlier.
(3) The historic x at time t is estimated as a weighted average ofx at time t1, t2, ..., tn+1 .

The weight is an exponentially decaying function of the Euclidean distance in theY space.
(4) The skill of cross mapping is measured by the correlation coe�cient between truex

at time t and the estimates. For a better comparison with the other two causality methods,
we also compute the p-values for the correlation coe�cient assuming the residuals from a
linear model follow independent and identical normal distributions.

(5) Becausex does not have to be concurrent withY, the steps above can be repeated for
di�erent lags betweenx and Y to determine the optimal time lag of the causal relationship.
Particularly, a causality is unreal if the optimal time lag requiresx to occur later than the
time t. If the optimal time lag is 0, then it meansx and Y are synchronized and it is hard
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to tell the true causal direction between these two variables [24]. We choose to dispose these
uncertain causal relations in our study, but we are aware that this conservative approach may
miss some quick processes and cause a decrease in the number of identi�ed causal relations.

4.2 Implementation

Following the detailed description of the algorithm in [24, 27], we independently developed a
Python [17] program to compute the CCM causality for pairs of time series. In our analysis,
we setn = 3 and � = 1, consistent with the other two methods. In order to make most
use of the relatively short data set, the neighboring points ofYt are selected from all time
steps exceptt. In addition to the causal relations with a non-positive optimal time lag, those
relations with a p-value above 0.05 are also disposed.

5 PCMCI Causality Method

5.1 Description of Method

PCMCI is a causal discovery method described in [22] which identi�es relevant variables for
conditioning and estimates causal networks from time series data. The method makes use of
a \time series graph" made of nodes representing the state variables at di�erent time-lags.
If the time lag is denoted by� , a causal link is notatedX i

t � � �! X j
t , and this link exists if

X i
t � � is not conditionally independent ofX j

t given the past of all variables. Assuming the
causal structure does not change over time, the same links are present at each time step.

The parentsP(X ) of a variable X are de�ned as the set of all nodes with a link towards
X . For example, in Figure 5.1, the parents of the variablesX 1 at t � 1 and variableX 3 at
time t are shown with the red boxes and blue boxes respectively. However, estimating these
parents directly by testing for conditional independence on the whole past is problematic
due to high-dimensionality and because conditioning on irrelevant variables leads to biases.

PCMCI estimates causal links by a two-step procedure [22]:
1. Condition-selection : For each variableX j , estimate a superset of parents~P(X j

t )
with an iterative Markov discovery algorithm [7] such asPC1 algorithm.

2. Momentary conditional independence : To test whether X i
t � � �! X j

t with MCI,
we evaluate

X i
t � � ? X j

t j ~P(X j
t ); ~P(X i

t � � ) (5.1)

The condition-selection step reduces the dimensionality and avoids conditioning on irrelevant
variables. The second step checks momentary conditional independence (MCI) conditions
betweenX i

t � � and X j
t , and checks whether or notX i

t � � and X j
t are not conditionally inde-

pendent given ~P(X j
t ) and ~P(X i

t � � ).
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Figure 5.1: Time series graph,representing the time-lagged causal dependency structure
underlying the data [20].

5.2 Implementation

Tigramite [20] is a Python [17] package implementing the above causal time series analysis.
It helps to e�ciently reconstruct causal graphs from high-dimensional time series data sets,
the meteorological variables in our case, and model the obtained causal dependencies for
causal mediation and prediction analyses. Causal discovery is based on linear as well as
non-parametric conditional independence tests applicable to discrete or continuously-valued
time series [22].

Our implementation of the PCMCI causality method mirrors that found in the basic
tutorial documentation for the Tigramite Package in [20]. We have modi�ed the code to
read data from our data �les, rather than generating a random sequence, to suppress visual
output when desired, to store the images separately, and to store the connection information
in output �les for postprocessing. We can then run separate scripts on these data �les to
prepare them for visualization, sorting and �ltering by connection strength.

We note that connection strength is reported in two ways, by p-values and by MCI partial
correlations. We must be careful in using these values, since MCI partial correlations is more
faithful to the PCMCI method, but is not easily compared to the other methods described
in this document. However, p-values are quite ubiquitous and can be easily considered in
light of the CCM and Grange Causality methods, although they do not contain as much
information about the results of the PCMCI algorithm.
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6 Identi�cation of Causal Links between Atmospheric
Oscillations using Statistical Models

6.1 Granger Causality

Figure 6.1: Causal links discovered between dominant REOF modes of mean sea level pres-
sure (top left), sea surface temperature (top right), 10m wind speed (bottom left), and 2m-
temperature (bottom right) using the Granger causality method. Some of the well-known
modes shown here are North Atlantic Oscillation (NAO), Paci�c Decadal Oscillation (PDO),
El Ni~no-Southern Oscillation (ENSO). The directionality of causal modes are shown using
the arrow directions, and the corresponding time lags are printed near the middle of each
arrow.

Fig. 6.1 shows the identi�ed causal links from the Granger causality approach, based on
dimensionally reduced time series of mean sea level pressure, sea surface temperature, 10m
wind speed, and 2m temperature. In mean sea level pressure, NAO mediates all the other
observed teleconnection patterns. However, the linkage of ENSO has not been identi�ed.
The e�ect of ENSO on other atmospheric teleconnection patterns is explained via the SST
variable. The observed change in the eastern Paci�c (ENSO) with one or two months lag
time is most likely to a�ect the PDO oscillation. Likewise, the 10m wind speed captured
the ENSO variability; however, the identi�cation of the Northern Hemispheric wind patterns
and their relation to ENSO has not been found. The 2 meter temperature could not capture
the ENSO, PDO or NAO but did discover the causal connection between the Arctic and
Antarctic oscillations, both directly and indirectly through Siberia, North America, and
Greenland. The calculated time lag for any variables suggests that one-month e�ective
change may be enough to drive the change in other linked patterns.
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