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Abstract

Satellite observations provide good opportunities to evaluate global cloud system,
but the 3D effects induced by the horizontal inhomogeneity of the medium also cause
possible uncertainties in the cloud products. In this work, we evaluated the MODIS
cloud observations and generated the surrogate cloud using the inverse 2D Fourier
transform of synthetic matrices. Both the 3D and 1D radiative transfer simulation
studies are conducted in order to understand the impacts of the 3D effects. We retrieve
the cloud optical thickness(COT) and cloud effective radius(CER) from the simulated
reflectance at 0.86µm and 2.1µm bands and compare between the retrieval and true
values. The impacts in the cloud liquid water path retrieval are further studied and
we find that the bias in the COT and CER will cause the over estimation of the liquid
water path(LWP) estimations for both the illuminating and shadowy pixels.

1 Introduction

Satellites have revolutionized human being’s ability to observe the earth and its climate
system. Besides offering a global perspective, satellite remote sensors can provide higher
spatial and temporal coverage that otherwise would not be possible. Satellite observations
also provide a rich variety of atmospheric data records, due to its ability to collect data
across a wide range of wavebands of the electromagnetic spectrum, including those beyond
the visible lights.

To generate useful data for quantitative analysis, proper retrieval model and algorithm
need to be developed to process the products of different sensors. In most atmospheric re-
search, the current radiative transfer models and remote sensing algorithm are based on the
one-dimensional (1D) plane-parallel atmosphere model [7, 8]. In this model, the medium
is assumed to be horizontally homogeneous and as a results there is no net horizontal pho-
ton transport. The 1D radiative transfer model is a reasonable approximation when the
horizontal variability of the medium is small. However, some medium, such as cloud fields,
have significant horizontal variability. For example, cumulus cloud fields with a wide range
of horizontal variability are shown in figure 1.1 (from [12]). These four cloud scenes have
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Figure 1.1: Figure from [12]. The figure shows the rich variety of shallow cumulus clouds
and its complex two dimensional structure.

vastly different impacts on radiative transfer. Closed cells (panel (a)) reflect most of the
sun’s radiation, while shallow cumulus (panel (d)) reflect almost none. Pockets of open cells
(panel (b)) and open cells (panel (c)) will have a variable effect depending on the different
length scales associated with them.

As a result, the 1D radiative theory may cause bias in interpreting the satellite mea-
surement. Applying 1D radiative transfer theory in such cases without any correction could
lead to substantial error in satellite retrievals for certain solar and viewing geometries. For
example, at the low solar zenith angle the so-called illuminating and shadowing effects can
significantly bias the 1D radiative transfer based cloud property retrievals.

The problem has attracted considerable interest among researchers. Várnai and Marshak
[13] proposed a method combining visible (0.86 µm) and thermal infrared (11 µm) images to
see whether 3D radiative effects make clouds appear asymmetric. Based on the analysis of
optical thickness retrievals for real cloud scenes (granules), they found out that 3D cloud het-
erogeneities have a complicated impact on the retrievals of cloud properties and 3D radiative
effects occur quite frequently. Marshak et al. [6] investigated the effects of horizontal inho-
mogeneity on the retrievals of cloud droplet sizes. They found that the droplet sizes could
be underestimated or overestimated, depending on the pixel scale. Seethala and Horváth [1]
compared Advanced Microwave Scanning RadiometerEOS (AMSRE), Wentz, and Moderate
Resolution Imaging Spectroradiometer (MODIS) cloud liquid water path estimates in warm
marine clouds. They found that MODIS showed strong overestimations at high latitudes
and the cloud type also affects the bias. Grosvenor and Wood [4] used observation data
to investigate MODIS satellite retrieval biases of the cloud optical thickness and the cloud
top effective radiums that occur at high solar zenith angles and how they affect retrievals of
cloud droplet concentration. A simulation study was also used to investigate the effects of
drizzle and cloud horizontal inhomogeneity on cloud effective radius retrievals from MODIS.
Using synthetic cloud fields from a large-eddy simulation (LES) model as input to drive 3D
radiative transfer models to simulate satellite observations, Zhang et al. [15] compared the
retrieved cloud property with the original simulated cloud field to identify the influence of
various factors on passive cloud property retrievals.

This project is concerned with the simulation study of the 3D radiative transfer effects
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Figure 2.1: Central region of the granule MOD06 L2.A2000306.2325.006.2014297154828.hdf

on cloud radiative properties. Section 2 describes how cloud statistics of observation data
were retrieved from MODIS data. Section 3 describes how the power spectral density (Sec-
tion 3.1) is used to generate the cloud models in one spatial dimension (Section 3.2) and two
spatial dimensions (Section 3.3). For the 2D model, the PSD of MODIS data is fed into a
surrogate cloud model to generate cloud fields with similar features. Section 4 describes the
Spherical Harmonics Discrete Ordinate Method (SHDOM) and how it was used to simulate
the radiative transfer model. The COT, CER, and LWP were retrieved and compared for the
illuminated and shadowy pixels in Section 5. The conclusions are summarized in Section 6.

2 Statistics of MODIS

MODIS offers unique opportunities to retrieve features of the cloud files because of its ex-
cellent radiometric performance (Várnai and Marshak, 2002). Figure 2.1 shows the central
region of a granule on March 6, 2000 from the Terra satellite. When we retrieve the COT
and CER, we selected the granules which are over the ocean. Each pixel of the granule file
represents a 1km by 1km region. As in Várnai and Marshak (2002) [13], we investigated the
cloud scenes of size 50km by 50km. Due to various technical reasons, many COT and CER
values are missing. We surveyed the 50km×50km regions on the selected granule file, and
only kept the regions without any missing values.

Cloud top height is added to the MODIS data using the method described in Section 3.3.1.
This gives MODIS derived data for COT, CER, and cloud top height.
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3 Cloud Field Models

In this section, cloud field models are defined and developed for both one and two horizontally
spatial variables. That is, the cloud optical thickness (COT) τ , is defined at every point in
one spatial dimension τ(x) (here referred to as 1D) and two spatial dimensions, τ(x, y) (here
referred to as 2D).

3.1 Power Spectral Density

The statistic that we study is the power spectral density. The power spectral density is
defined as the square of the magnitude of the Fourier coefficients of the signal. For example,
if the cloud optical thickness τ(x), is defined at points xi for i = 0, 1, 2, ..., N − 1, then the
discrete Fourier transform (DFT) is defined as

τ̂(k) =
N−1∑
i=0

e−2πîik/Nτ(xi), (3.1)

where î is the complex number. The inverse DFT is defined as

τ(xi) =
1

2π

N−1∑
k=0

e2πîik/N τ̂(k). (3.2)

Thus the power spectral density, Pτ (k) is defined as

Pτ (k) = |τ̂(k)|2. (3.3)

The power spectral density shows which wave lengths have the most energy. Note that if we
define

Total Energy =
N−1∑
i=0

|τ(xi)|2, (3.4)

then by Parseval’s theorem

Total Energy =
N−1∑
i=0

|τ(xi)|2 =
N−1∑
k=0

|τ̂(k)|2 =
N−1∑
k=0

Pτ (k). (3.5)

Hence the name, power spectral density.
The above definitions hold in two dimensions by taking the Fourier transform in x and

then y. That is,

τ̂(kx, ky) =
N−1∑
i=0

M−1∑
j=0

τ(xi, yj)e
2πî(ikx/N+jky/M). (3.6)
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Furthermore, the power spectral density gives information about the correlation lengths
of τ . This follows from the DFT, that is,

Pτ (k) =|τ̂(k)|2 =

(
N−1∑
i=0

e−2πîik/Nτ(xi)

)(
N−1∑
i=0

e−2πîik/Nτ(xi)

)∗
(3.7)

=
N−1∑
i=0

N−1∑
j=0

τ(xi)e
2πîik/Nτ(xj)

∗e−2πjk/N (3.8)

=
N−1∑
i=0

N−1∑
j=0

τ(xi)τ(xj)e
2πkî(i−j)/N . (3.9)

This expression is similar to the DFT of τ(x)τ(x′)∗. Thus, for a domain of L with resolution
L/N , k = ±1 is the sine wave corresponding to a wavelength L, k = ±2 is corresponding to
wavelength L/2, k = ±3 to L/3,..., k = ±N/2 corresponding to a wavelength of L/(N/2).

The variance COT in the cloud scene is contained in the kx = ky = 0 wave number,

1

NxNy

∑
i

∑
j

τ(xi, yj)
2 = τ̂(0, 0).

3.2 1D Synthetic Cloud Generator

In this section, a 1D synthetic cloud generator developed in [2] is studied. The model is
called a bounded cascade model. The model will generate the cloud optical thickness τ(xi)
for points, x0 = 0, x1 = xN2−N , 2xN2−N , ..., 2NxN2−N = xN . Figure 3.1 describes the
procedure for the model pictorially.

The assumptions for the model are as follows.

(a) The cloud is plane-parallel with a fixed thickness in the z-direction, and infinite in the
y-direction.

(b) The transfer of moisture occurs in a random direction

The model is as follows:

1. Input parameters initial optical thickness τinit, fraction f , order xorder.

2. Start with a slab of uniform thickness and distance d km.

3. initialize with a cloud optical thickness of τinit.

4. Divide the slabs, for the nth iteration

(a) For the ith slab, cut it in half to form two new slabs.

(b) For each new slab, choose a direction (right/left) at random.
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Figure 3.1: Figure from [2]. The figure shows the methodology for generating the 1D fractal
cloud optical thickness.
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Figure 3.2: Examples of realizations of the fractal cloud model of [2] for for τinit = 12 and
xorder = 12 and fraction parameters (a) f = 0.01, (b) f = 0.5, and (c) f = 0.99.

(c) Transfer a fraction fn = f
2n/3 of τ in that direction.

5. Repeat step 4 for n = xorder times.

Some examples of this one dimensional fractal cloud model are shown in figure 3.2. The
three panels all have τinit = 12 and xorder = 12. However, they differ in their fraction
parameters f . In panel (a) only a small fraction of τ is transfered (f = 0.01) where as in
panel (b) half of the τ is transfered (f = 0.5) and in panel (c) almost all of the τ is transfered
f = 0.99.

Can generalizations of the statistics of the model depending on f be extracted from
figure 3.2? From inspection, it could be hypothesized that for small f (panel (a)) the model
produces small scale fluctuations across the cloud. For large f (panel (c)) the τ is mostly
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Figure 3.3: The log of the power spectral density of the 1D fractal cloud model for f = 0.5,
xorder = 12, and d = 1 km. The solid orange line is a theoretical power law relation ship of
Pτ (k) = k−5/3.

located at one position and then decays quickly. For f = 0.5 (panel (b)) we see both effects.
To quantify this, the power spectral density is computed.

In figure 3.3 the power spectral density is plotted for a realization of the fractal cloud
model for f = 0.5, xorder = 12, and d = 1 km. The power spectral density follows a power
law of −5/3. This is a feature of the model due to the fraction being transfered at each
iteration of fn = f/2n/3 where f = 0.5. It has been shown that observed cloud fields have a
similar power law relationship [3].

To extract the dependence of the model on the inputs xorder and f , many realizations
of the model are simulated and an average of the power spectral density is taken. The
parameter d = 1 km is held fixed as it only controls the resolution of the PSD. That is,
ki+1 − ki = 1/d.

The results of the sensitivity study are plotted in figure 3.4. In panel (a), the log of the
power spectral density is plotted for xorder = 8, resulting in a 3 m resolution, and variable
f . In panel (a) we see that increasing f leads to more power at all frequencies. Thus for
larger f , the fractal cloud will have larger features at the longest wavelengths. Within these
long wavelengths, there will also be small fluctuations within. For small f , there is slightly
larger power at larger wavelengths but it decays quickly. Thus the result should look similar
to white noise (constant along all frequencies). In panel (b), the results for f = 0.2 and
variable xorder (resolution) are plotted. Here the discrepancies aren’t as large as panel (a).
Note that larger xorder leads to larger frequencies being sampled. Furthermore, there is
slightly larger power for all frequencies. This implies that for smaller resolutions there is
more variance for the cloud model.

3.3 2D Surrogate Cloud Generator

The 1D fractal cloud model described above leads to fast simulations and theoretical results
for the power spectrum. However, clouds display a rich variety of complex two dimensional
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Figure 3.4: The log of power spectral density of the 1D fractal cloud model with d = 1 km,
and variable f and xorder = 8 (panel (a)), and f = 0.2 and variable xorder (panel (b)).
Note that the resolution is 2−xorder km.

structures (see figure 1.1). Thus a model which captures the two dimension structures of
real cloud fields is developed here. This will lead to a testbed of cloud fields, for radiative
transfer simulations, which all have the same spatial characteristics as one cloud field. For
example, a particular cloud scene, such as panel a) of figure 1.1, can be used to generate
many cloud scenes with similar closed cell structures.

The method used here is derived from the paper of [5]. There, the authors describe a
Fourier Cloud Field as follows:

“Cloud fields were generated by calculating the inverse 2D Fourier transform of synthetic
matrices containing wave amplitudes consistent with energy at the various scales indicated
by the one dimensional spectrum.”

From this paragraph, the following algorithm was used to generate surrogate cloud fields
from one observed cloud scene:

1. Remove mean cloud optical thickness τ and store it.

2. Input: Observed Power spectral density (PSD) of τ .

3. Calculate the Fourier coefficients (
√
PSD)

4. Create a random phase shift to generate different cloud fields.

5. Satisfy symmetric condition of the Fourier Transform for real values. For example, in
one-dimension, the symmetric condition is

τ̂(−k) = τ̂(k)∗.

6. Take the inverse discrete Fourier transform and add the stored mean.
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The algorithm above generates an arbitrary number of different surrogate cloud scenes
based on one observed cloud scene. These generated surrogate clouds share similar properties
with the original observed cloud scene. Because of the properties of the power spectral density
(see Section 3.1) each surrogate cloud field will have the same mean and variance of τ as the
original. Further more, the 2D spatial structure in the form of correlations, is preserved.

This method is similar to iterative methods described in [10, 11]. The main difference
between those methods and the one described here is the distributions of the surrogate
clouds. In [10, 11], the method starts with generating surrogate clouds with linear Gaussian
statistics. That is, the probability distribution for the cloud is known exactly. Next the
surrogate is changed iteratively, in a way to preserve the distribution, until the statistics are
close enough to the original cloud scene. The method described here has no control over the
distribution of the cloud scene. Thus, after generating many surrogate clouds for a MODIS
cloud scene, the resulting distribution of COT will not be Gaussian. Future work will explore
the differences of these methods in more detail.

Three examples of this algorithm are shown in figure 3.5 in columns (a), (b), and (c).
The top row are three different cloud scenes from MODIS of the cloud optical thickness τ .
The domain of the three scenes are 50km by 50km in the latitude and longitude directions.
The three cloud scenes are vastly different in their structures. The cloud scene from (a) has
a periodic structure with wavenumber five for y = 25 − 50km, where (b) has a large cloud
structures in both directions, and (c) has a periodic structure with much larger wavelength
and orientated at an oblique angle to the xy axes.

The structures of the MODIS cloud scenes (top row) are captured in the power spectral
density plots (PSD) in the middle row of figure 3.5. The PSD shows which length scales
are more prominent. The plots are all symmetric about the origin. This is because an
oval shaped cloud with its major axis oriented North-East is the same as its major axis
oriented South-West. The PSD for cloud scene (a) shows a large amount of power for ky = 0
and kx = −5,−4, ..., 4, 5. This corresponds to the large cloud for all x and y = 0 − 25
km (kx = ±1,±2,±3), and the periodic structure in y = 25 − 50 km (kx = ±4,±5). For
cloud scene (b), the PSD is roughly radially symmetric for small kx, ky. For moderate wave
numbers (kx, ky = ±10 − 15) there is a slight oval shape. This is due to the North-East
orientation of the clouds. For cloud scene (c), the PSD is strongly oval with a very small
semi-minor axis radius. The majority of the power is at wavenumbers kx = ±10. This is
seen in the MODIS plot with a North-East tilt and periodic structure with roughly 10 peaks.

The algorithm presented above was used to produce the surrogate cloud scenes shown in
the bottom row of figure 3.5. All the surrogate clouds have the same PSD as the MODIS
clouds (middle row).

3.3.1 Adding cloud thickness and cloud effective radius

The above algorithm generates surrogate clouds given one atmospheric quantity, here that
is cloud optical thickness (COT) τ . However, COT, cloud top height (h), and cloud effec-
tive radius (CER, re) are need to generate statistics from the radiative transfer model (see
Section 4). To do so, we use atmospheric relations to derive a crude estimate of cloud top
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Figure 3.5: The columns (a), (b), and (c) show three examples of clouds scenes with different
two dimensional structures. The top row are observed cloud optical thickness, the middle
row is the power spectral density of the top row, and the bottom row is the surrogate cloud
scene by using the algorithm described in Section 3.3

height and CER [14].
We assume that the liquid water content qL(z) increases linearly with height z above the

cloud base. That is,
qL(z) = fadΓadz (3.10)

where 0 ≤ fad ≤ 1 is a dimensionless constant which is the degree of adiabaticity, Γad is the
adiabitic rate of increase of liquid water content with respect to height (in g/(m3·km). The
liquid water path is defined as

LWP =

∫ h

0

qL(z)dz =
1

2
fadΓadh

2 (3.11)

where h is the cloud top height. The cloud optical thickness (dimensionless) is related to
the LWP by

τ =

∫ h

0

3qL(z)

2ρwre
dz, (3.12)
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where ρw is the density of water and re is the effective radius of the cloud droplets.
In order to integrate, the vertically varying CER must be expressed in terms of qL. To

do so, we assume that the mean volume radius rvol is defined as

rvol =

(
3qL

4πρw
Nd

)1/3

, (3.13)

where Nd is the droplet concentration. Further more, the fraction of mean volume radius
and CER is a constant k. That is,

k =

(
rvol
re

)3

. (3.14)

Substituting equation (3.13) in for rvol above and solving for re. Gives,

re(z) =

(
3qL(z)

4πρwNdk

)1/3

. (3.15)

Substituting re in equation (3.12), integrating, and solving for h yields

h =

(
2501/3τρ

2/3
w

2431/3π1/3Γ
2/3
effN

1/3
eff

)3/5

, (3.16)

where Γeff = fadΓad, and Neff = kNd.
To obtain an estimate of CER, we use equation (3.15) and evaluate z = h. This gives a

value of clout top effective radius.
An example of a cloud scene with cloud effective radius (CER) at cloud top height and

cloud top height is shown in figure 3.6. The relations in equations (3.15) and (3.16) for CER
and cloud top height to COT respectively were used with the following constants:

ρw = 997
kg

m3
, re = 12 · 10−6m, fad = 1, Γad = 2.0

g

m3 · km
, k = 0.8, Neff = 200m−3

The top row is MODIS retrieved cloud optical thickness (COT) (a) and CER at cloud top
height (b). The cloud top height (c) was derived from relation (3.16). The bottom row is
from the surrogate model using the power spectral density of MODIS COT. The surrogate
COT (a) was generated using the algorithm described above. The CER at cloud top height
(b) was generated from COT by using equation (3.15). The cloud top height was generated
from COT by using equation (3.16). Note that CER at cloud top height is much smaller for
the surrogate model than for MODIS retrieval. This may be due to assumptions made for
the relation (3.15).

4 3D Radiative Transfer Models

Satellite observations measures the radiance reflectance of the cloud field where all the 3D
effects are observed especially for large solar zenith angle. The cloud properties such as COT,
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(a) (b) (c)

Figure 3.6: A figure of MODIS retrievals (top row) and the surrogate cloud model (bottom
row) of cloud optical thickness τ (column (a)), cloud effective radius at cloud top re(h)
(column (b)), and cloud top height h (column (c)). For the model, equations (3.15) and (3.16)
were used to compute CER and cloud top height, respectively, from COT.

and are usually retrieved from a lookup table based on the Nakajima-King Approach [7, 8]
and 1D plane parallel atmospheric system is usually assumed. Through comparing 3D and
1D radiative transfer simulations, we can evaluate the reflectance variation with different
cloud structures, and quantify the impact in the COT, CER and LWP retrieval. In order
to evaluate such possible impact of the 3D effects, accurate radiative transfer simulations
are required. In this study, both the 3D and 1D radiative transfer simulation are conducted
using the the Spherical Harmonic Discrete Ordinate Method (SHDOM) developed by Robert
Pincus and K. Franklin Evans at University of Colorado, which is widely used and well
validated [9].

For the SHDOM simulation, both the cloud geometry and physical properties need to be
specified in a 3D grid system and formatted according to the SHDOM input file requirement.
The 3D cloud field is generated using the COT, CER and CTH information as discussed in
Section 2 and Section 3 on a horizontal domain of 50km by 50km. The grid numbers in x,
y, and z are denoted as Nx, Ny and Nz. The choice of the number grids is to balance both
good accuracy and minimize the resources.

For each grid point, water droplet size distribution is specified by CER with an assumed
variance of 0.1. The single scattering properties includ the phase function and the single
scattering albedo are computed using the Lorenz-Mie algorithm through the utility provided
by the SHDOM package. Fig 4.2 shows a typical phase function for a cloud droplet size

12



0 10 20 30 40 50
x(km)

0
10
20
30
40
50

z(
20

m
)

3D grids for SHDOM

Figure 4.1: Vertical cross section of the computational grids for the 3D SHDOM simulation.

distribution with effective radius of 10µm and variance 0.1 at wavelength 0.75µm. The major
features in the phase function including a strong forward scattering peak, an observable
backscattering peak, and a prominent rainbow peak around the scattering angle of 140◦. To
construct the input file, We need to pre-compute the Legendre Polynomial coefficients for the
phase function expansion, extinction coefficient, and single scattering albedo. Specifically,
the extinction coefficient are determined from the COT and grid spacing. The height of the
system zt is choose as 1km, therefore the grid size is ∆z = zt/nz km. Assuming the height of
the cloud is CTH (in our study it is less than 1km), the number of grids contains the cloud
would be approximately nk = [CTH/zt × nz] round as an integer number. The extinction
coefficient would be

ce =
COT

nk∆z
(4.1)

=
COT

[CTH/zt × nz]zt/nz
(4.2)

=
COT × nz

[CTH/zt × nz]zt
(4.3)

Note that all the length units are taken as km. A sample vertical cross section of the
computational grids is provided in Figure 4.1.

The 3D radiative transfer simulation can be expensive in both the memory and run time
cost. SHDOM is a good choice to achieve a reasonable good efficiency when the system is not
too large. In order to choose a proper spatial resolution, we valuated the simulation time and
memory cost for various grid resolution as summarized in the Tables 4.1 and 4.2. We choose
grid size of 50x50x50 to balance both efficiency and accuracy with an approximated radiance
accuracy of 2%. Internal adaptive grids are automatically implemented in this study.

Following the Nakajima-King approach as mentioned previously, we generated the COT-
CER look up table for different solar zenith angle at two wavelength of 0.86µm and 2.1µm.
The COT and CER are then retrieved from the lookup table for both 1D and 3D radiative
transfer simulation. We computed the radiance for 7 CER and 15 COT with around 100
cases. The parameters used for the COT and CER retrieval lookup table are summarized
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Figure 4.2: Phase function for a cloud droplet size distribution with effective radius of 10um
and effective variance 0.1 at wavelength 0.75µm.

Table 4.1: Memory and simulation time cost for 1D SHDOM simulation, with horizontal
grids 50 by 50 and various vertical grid number(nz)

nz 16 32 50 100
Memory(MB) 86 170 270 529
Time(s/min) 30s 55s 95s 3min

Table 4.2: Memory and simulation time cost for 3D SHDOM simulation, with horizontal
grids 50 by 50 and various vertical grid number(nz):

nz 16 32 50 100
Memory(MB) 160 320 502 1006
Time(min) 2min 3min 6min 19min

as follows: CER Grids (µm): 5, 10, 15, 20, 25, 30, and 35 ; COT Grids: 0.1, 0.5, 1.0, 1.3,
1.7, 2.2, 3, 4, 5, 7, 10, 15, 20, 25, and 30. The lookup table for three different solar zenith
angle are shown in Fig. 4.3. With the measured or the simulated reflectance at the two
wavelength, the corresponding COT and CER can be retrieved.

5 Results and Discussions

Following the studies on the cloud optical thickness (COT), cloud effective radius(CER)
and cloud top height (CTH) from the MODIS observations as shown in the top panel of
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Figure 4.3: COT and CER lookup table for different solar zenith angle of 0◦, 30◦ and 60◦.
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Figure 5.1: The reflectance from the 1D and 3D radiative transfer simulation, and their
difference at wavelength of 0.86µm.

Fig 3.6. We construct a 3D cloud model for the SHDOM radiative transfer simulation. The
reflectance for both the 1D and 3D simulation are obtained at the two wavelengths of 0.86µm
and 2.1µm for a solar zenith angle of 60◦ as compared in the Figure 5.1 and Figure 5.2. Two
types of pixels can be classified in order to understand the 3D effects: the illuminating pixels
appears brighter and usually facing toward the sun, and the shadowy pixels appears darker
and usually facing away from the sun.

The observed difference in the 1D and 3D radiative transfer simulation results may impact
on the COT and CER retrievals and therefore cause bias in the cloud property evaluation.
Figures 5.3 and 5.4 shows the comparison of the retrieved COT and CER and the true COT
and CER for both 1D and 3D radiative transfer simulation. Since the COT/CER lookup
table is constructed from 1D radiative transfer simulation, Figure 5.3 shows good correlation
between the retrieved and the true COT and CER. There are still uncertainties in the CER
retrieval possibly due to the coarse grids in the lookup table which can improved by using
a higher resolution lookup table. However, for the 3D results, Figure 5.4 shows obvious
slope difference in the scatter plots, the retrieved COT are different with the true value with
both significant over and under estimations. CER retrieval also shows prominent different
comparing with the true values.
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Figure 5.2: The reflectance from the 1D and 3D radiative transfer simulation, and their
difference at wavelength of 2.1µm.

Figure 5.3: The COT and CER retrieval from 1D simulated reflectance. Left panel: the
reflectance at the 0.86µm and 2.1µm chanels on the COT CER lookup table plot; Middle
panel: the comparison of the true and retrieved COT; Right panel: the comparison of the
true and retrieved CER.

In order to understand impact of 3D effects, we separate the retrieval results for the
illuminating and shadowy pixels respectively. Furthermore, if the reflectance for both the
0.86µm and 2.1µm have larger 3D simulated reflectance than 1D reflectance, we classified it
as the illuminating pixels; if both channels have less reflectance comparing the 3D and 1D
reflectance, the pixels are classified as shadowy ones.

For the illuminating pixels, the reflectance from the 3D simulation is larger than the 1D
simulation and the retrieved results tend to have larger COT to achieve larger reflectance;
while for the shadowy pixels, the retrieved COT tends to be smaller as shown in Figure
5.5. However, the retrieved CER tends to be smaller for the illuminating pixels due to the
larger backscattering of a smaller particle size; the retrieved CER tends to be smaller for the
shadowy pixels as shown in Figure 5.6.

As discussed by Seethala et al [1], the liquid water path is an important property of the
cloud and it is related with the COT and CER as LWP = 4ρw/(3Qe)COT×CER. Therefore
the estimated LWP from the satellite observations would directly rely on the accuracy of
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Figure 5.4: The COT and CER retrieval from 3D simulated reflectance. Left panel: the
reflectance at the 0.86µm and 2.1µm chanels on the COT CER lookup table plot; Middle
panel: the comparison of the true and retrieved COT; Right panel: the comparison of the
true and retrieved CER.
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Figure 5.5: The comparison of retireved COT and true values for the illuminating and
shadowy pixels.

the retrieved COT and CER. As we have demonstrated for the illuminating pixels, the COT
is over estimated while the CER is under estimated, and vice versa for the shadowy pixels.
Therefore the effects of COT and CER are compensating each other, and the net effects is
the source of the bias in the LWP estimation. In order to evaluate the combined effects of
COT and CER, their product are plotted in the Figure 5.7. The retrieved CER*COT are
over estimated than the true value for the most illuminating pixels. For the shadowy pixels a
majority data points shows over estimation of the CER*COT between the retrieved and the
true ones. Therefore in average LWP is over estimated for both shadowy and illuminating
pixels.
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Figure 5.6: The comparison of retireved CER and true values for the illuminating and
shadowy pixels.

Figure 5.7: The comparison of retireved CER multiple by COT and true values for the
illuminating and shadowy pixels.

To understand how the retrieval bias in CER and COT contribute the net effects in
CER*COT and eventually the LWP estimation, we calculated the difference of the retrieved
value and the true value for both COT and CER, and evaluate their contribution to the
different of the COT*CER in the first order approximation:

∆LWP ∼ ∆COT × CER + ∆CER× COT (5.1)

Figure 5.8 compares the ∆CER×COT and ∆COT×CER for the illuminating and shadowy
pixels For Illuminating pixel, ∆COT effects is stronger than ∆CER effects; for shadowy
pixel, ∆CER effects is stronger than ∆COT effects. This explains the reason why LWP is
frequently over estimated for both the illuminating and shadowy pixels. For the pixels which
have large reflectance values, we may need to evaluate the second order contribution to the
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Figure 5.8: The comparison of ∆CER×COT and ∆COT ×CER for the illuminating and
shadowy pixels.

changes of the LWP.

6 Conclusions

In this work, we have evaluated the MODIS observations on the low level stratocumulus
cloud and studied the fundamental cloud properties including COT and CER. Based on the
satellite observations, we generated the surrogate cloud with the same power spectra but
different geometric structures using statistical methods. From the studied cloud field, we
constructed the cloud structures for both the 3D and 1D radiative transfer simulations and
calculated the reflectance at the 0.86µm and 2.1µm bands. The COT and CER are retrieved
from the simulated reflectance and compared with the true values. We further evaluated the
impact in the retrieval of cloud liquid water path, and find that the bias in the COT and CER
will not completely compensate each other but will cause the over estimation of the LWP.
Moreover, two different mechanisms are identified for the illuminating and shadowy pixels
which shows different changes in the COT and CER but all will cause the over estimation
the cloud liquid water path. This work will be beneficial for the correction of the 3D effects
in the future satellite product in order to improve the cloud properties retrieval accuracy
and global cloud physics studies.

6.1 Future work

This work has many different possible avenues for exploration in the future.
Due to the complexity of the problem that the effects of various factors affecting the

radiative transfer intertwine, there is no existing MODIS retrieval method that takes into
account the horizontal heterogeneities of the medium. In this regard, existing MODIS atmo-
sphere products are more or less distorted. The previous research on 3D radiative transfer
effects based on the MODIS atmosphere products focused on detecting the 3D effects. How
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to process the Level 1 product of the MODIS observation data and produce reliable atmo-
sphere products remains an open question.
One line of research can combine the analysis of the retrieval data of MODIS and the simula-
tion study, i.e., use the simulation study to develop methods to eliminate the 3D effects in the
retried atmosphere product in the simulated cloud, and then in turn verify the effectiveness
by applying them to the retrieval method for processing the Level 1 products MODIS.

Currently, the method to generate 2D surrogate clouds has no known distribution. This
could lead to rare event cloud scenes which are not seen in nature. In the future, iterative
methods such as [10, 11] could be used to generate surrogate cloud scenes with a Gaussian
distribution. A future project would be to study the distribution of the current method and
compare it to the distributions of the iterative method and MODIS cloud scenes with similar
power spectral densities.

From the cloud scenes in figure 1.1 there are various cloud structures on vastly different
scales. In panel (d) of figure 1.1, there are many cloud scenes at the smallest resolution of
the MODIS satellite (1km × 1km). One question to explore is how robust are the results
presented here on the resolution of the cloud scene? Before this question can be answered,
we must generate surrogate cloud scenes with finer resolution than MODIS.

How do we extend the power spectral density of MODIS to smaller resolutions than
MODIS? Two possible methods are discussed here. In figure 6.1, the power spectral density
(PSD) of cloud optical thickness (COT) is plotted in panel (a) of a MODIS cloud scene with
domain size 50 km by 50 km and resolution of 1 km by 1km. This PSD is then extended to
wave numbers of smaller scales (¡1 km, kx = ky = 26...50) in two different ways. The original
PSD is used for scales greater than 1 km, i.e. kx = ky = 0, 1, 2, ..., 25. For smaller scales,
first the PSD is set to zero (panel (b)). This is a quick way to generate surrogate clouds with
finer resolutions. However, no additional information is gleaned from these smaller scales.
This method is equivalent to taking a 1 km x 1 km pixel and splitting it up into 4, 500 m
by 500 m pixels with the same COT value. This method preserves the mean and variance
COT of the original scene. Another way of extending the power spectrum is shown in panel
(c). Here, the original PSD is used for the larger scales. For the smaller scales, a linear
best fit is used on the original power spectrum for wave numbers

√
k2x + k2y = 4, 5, 6, .., 20.

This captures the general decay of power in a radially symmetric way. The best fit line is
used to generate a radially symmetric power spectrum at the smaller scales. This allows
for surrogate clouds with finer resolutions which have variations of COT at smaller scales.
This results in a cloud scene with the same mean but strictly larger variance of COT as the
original.

Further evaluation of the accuracy of the 3D radiative transfer simulation with various
spatial resolution in the simulation domain and also evaluate the scale effects by using
surrogate cloud with finner structure information beyond 1km resolution used in the current
study.

Since we have already generated surrogate cloud with different geometric configurations,
we would like to compute the 3D radiative transfer reflectance and evaluate the reflectance
difference between different geometries and understand the impacts of the cloud structure
in the LWP estimations.
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(a) (b) (c)

Figure 6.1: The power spectral density (PSD) for COT for a 50 km by 50 km MODIS cloud
scene with (a) 1 km by 1 km resolution. The PSD is extended to a 500 m by 500 m resolution
by (b) zeroing out the wave numbers smaller than 1 km, and by (c) doing a linear best fit
for wave numbers smaller than 1 km.
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