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Abstract
 

Numerous studies have indicated that El Niño and the Southern Oscillation (ENSO) 
could have determinant impacts on remote weather and climate using the 
conventional correlation-based methods, which however cannot identify the 
cause-and-effect of such linkage and ultimately determine a direction of causality. 
This study employs the Vector Auto-Regressive (VAR) model estimation method 
with the long-term observational sea surface temperature (SST) data and the 
NCEP/NCAR reanalysis data to demonstrate the Granger causality between ENSO 
and other climate attributes. Results showed that ENSO as the modulating factor 
can result in abnormal surface temperature, pressure, precipitation and wind 
circulation remotely, not vice versa. We also carry out the global climate model 
sensitivity simulations using the parallel computing techniques to double confirm 
the causality relations between ENSO and abnormal events in remote regions. Our 
statistical and climate model-based analyses may enrich our current 
understanding on the occurrences of extreme events worldwide caused by different 
ENSO strengths through teleconnections. 



 

1 Introduction 
El Niño and the Southern Oscillation (ENSO) is a local phenomenon of the variation in 

sea surface temperature (SST) and air pressure across the equatorial eastern Pacific Ocean. 
ENSO is strongly linked to remote weather and climate far away over other parts of the 
world through the atmospheric “teleconnection”. There are different observation attributes 
that reflect abnormal extreme weather/climate events, such as flooding, drought, extreme 
heat or cold, severe storms, etc.  The relation between climate factors such as ENSO and the 
above-mentioned extreme events taking place somewhere else in the world is not easy to 
understand comprehensively.   

Over the past several decades, ENSO has been found as one of the most dominating 
climate factors that impacts remote weather and climate through the atmospheric 
“teleconnection” using the conventional correlation-based methods [1, 2, 3]. These methods 
are useful to establish how they are linked or correlated in the spatio-temporal pattern, but 
cannot identify the cause-and-effect of such linkage and ultimately determine a direction of 
causality.  Lagged linear regression is frequently used to infer causality between climate 
variables [4, 5, 6]. This method may lead to non-accurate results when one or more of the 
variables have high memory or autocorrelation [7, 8].  

Granger causality method [9], which consists of a lagged autoregression and a lagged 
multiple linear regression, is suitable to determine the causality relations with high memory 
data [10, 11]. Recently, Granger causality has been applied to analyze the causality 
relationships between climate variables, such as between SST and hurricane strength [12], 
and between ENSO and Indian monsoon [13]. In this paper, we use the Vector Auto-
Regressive (VAR) model estimation method to explore the Granger causality relations 
between ENSO and some climate variables (surface air temperature, sea level pressure 
(SLP), precipitation and wind). We also use the climate model simulation to double confirm 
the causality relations between ENSO and climate variables from the observation-based 
analyses. 

In this study, we aim to determine the spatio-temporal causality relationships between 
ENSO and abnormal events in remote regions, and provide some valuable insights for the 
prediction of several extreme weather/climate events under different ENSO backgrounds. 
We hypothesize that ENSO is one of the modulating factors of the extreme weather and 



 

climate events, and the causality can be statistically demonstrated using observational 
datasets and can be consistently simulated using climate models.    

The report is structured in the following sections. Section 2 lists the datasets used for 
the study. Section 3 introduces the Granger causality methods and global climate model 
simulations. Section 4 reports the main findings from our study, followed by Section 5 that 
discusses and concludes the study.  

 

2 Data  
2.1 Sea surface temperature data  

For this study, we use the Hadley Centre Sea Ice and Sea Surface Temperature data 
(HadiSST).  The HadISST data utilize both in situ SST from ships and buoys, and bias-
adjusted SST from the satellite-borne advanced very high-resolution radiometer (AVHRR). 
But the satellite SST only started in late 1981 after AVHRR was launched. The data include 
monthly mean SST and sea ice extent from 1870 to the present with 1° x 1° latitude-
longitude resolution [14].  

Same as the ENSO indices defined by National Oceanic and Atmospheric 
Administration (NOAA), we use the SST in the Niño 3.4 region (5°S-5°N, 170°W-120°W) to 
derive the ENSO index (Figure 1).  A full-fledged El Niño or La Niña will be classified when 
the anomalies exceed +0.5C or -0.5C for at least five consecutive months.  

 

 
Figure 1. The running 3-month mean SST anomaly for the Niño 3.4 region from 1950 to 2017 with the 1950-

2000 as the base period. Unit of SST anomaly is degree Celsius.  
 



 

2.2 Meteorology reanalysis data  
The NCEP/NCAR reanalysis I data are employed in this study. This reanalysis data is 

produced using a state-of-the-art analysis/forecast system that performs data assimilation 
using past observational data from 1948 to the present. The data span from 1948 to present 
at the 2.5° x 2.5° latitude-longitude resolution with 17 vertical levels [15].  To investigate the 
relation between climate variables and ENSO, we use NCEP/NCAR monthly mean surface 
air temperature, sea level pressure (SLP), and wind data for any identification of extreme 
heat or cold events, anomalies in large-scale atmospheric circulation etc.  
 

2.3 Precipitation data 
For flooding and drought extreme events, we use the Global Precipitation Climate 

Project Precipitation (GPCP) version 2.3 data from 1979 to the present at the 2.5° x 2.5° 
latitude-longitude resolution [16]. The GPCP monthly product provides a consistent 
analysis of global precipitation from an integration of various satellite datasets over land 
and ocean, and a gauge analysis over land. Observational data from rain gauge stations, 
satellite and sounding observations are merged to estimate monthly rainfall. 
 

3 Methods and Model 
      In this study, we use two statistic methods (Granger causality method and Maximum lag 
correlation) and a global climate model (Community Atmospheric Model) to investigate the 
global impacts of ENSO on the climate variables.  
 

3.1 Granger causality method  
Granger causality method was first introduced by Granger [9] to predict economics. It 

defines a causal relationship from one time series x to another time series y.  Given two 
time series x and y, we first perform the autoregression (Eq. (1)) to find the proper lagged 
value 𝑘 of y, then we perform the multiple linear regression (Eq. (2)).  

𝑦 𝑡 = 𝑐&+𝑐(×𝑦 𝑡 − 1 +⋯+ 𝑐-×𝑦 𝑡 − 𝑘 + 𝜀/		                                                                      (1) 

𝑦 𝑡 = 𝑎&+𝑎(×𝑦 𝑡 − 1 +⋯+ 𝑎-×𝑦 𝑡 − 𝑘 +𝑏3×𝑥 𝑡 − 𝑙 + ⋯+ 𝑏6×𝑥 𝑡 − 𝑛 + 𝜀/  (2) 

 



 

The lagged values 𝑙 and	𝑛 of x depend on the significancy of the statistical test. If no 

lagged values of x are retained in (Eq. (2)) (i.e. all the coefficients of the 𝑥 terms are 0), we 

can conclude that y is not Granger caused by x. Granger causality could be calculated using 
different approaches such as vector autoregressive model (VAR), Graphical Lasso and SIN 
methods [17]. In this study, we use the VAR to determine the causality relation between 
ENSO and climate variables.  

 

3.1.1 Vector autoregressive model 
      An autoregressive model is usually used to measure the dependency of a variable on its 
own previous values. 
      Using AR(s) to denote an autoregressive model of order s, then the AR(s) on a series 𝒙 𝑡  

is defined as 
	𝑥 𝑡 = ∅& + ∅(×𝑥 𝑡 − 1 + ∅:×𝑥 𝑡 − 2 +⋯+ ∅<×𝑥 𝑡 − 𝑠 + 𝜀/	                                     (3) 

       The vector autoregressive model is a particular case of the autoregressive model: VAR 
is used when we have more than one variable. Therefore, we will have the autoregressive 
model (Eq. (3)) on a vector. Given two time series x and y, VAR(p) on x and y is defined as 
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        The VAR can be applied to test the Granger causality of x and y: if at least one of the 

elements 𝑑:(		J , 𝑖 = 1⋯𝑝 in (Eq. (4)) are nonzero, then y is Granger caused by x. 
 

3.1.2 Implementation of the vector autoregressive model 
        In this study, we use the VAR package in Python to implement the vector autoregressive 
model. 
        The lag order 𝑝 is selected by an information criteria-based order selection. We choose 

the maximum number of lags to be 12 since there are 12 months per year. Then, the 
Schwarz’s criterion (Bayesian information criterion) [18] is used to select the "optimal" lag 

based on the data. Therefore, for different data set, the 𝑝 value varies. 

         The F-test is used to check the statistical significance. When we test the Granger 
causality of x and y, the null hypothesis is: y is not Granger caused by x (this is equivalent 
to all of the coefficients of x in the regression relation are 0). When we apply the F-test in 
the VAR, we perform two regression models: an unrestricted model (Eq. (2)) and a 



 

restricted model (Eq. (1)). The F-test will give us two values: test statistic and critical value. 
The test statistic is also called F-statistic, giving by: 

𝑓 = (OPDFOQD)/S
OPD/(TFU)

                                                                                                                                         (5) 

In (Eq. (5)), 𝑅: is the coefficient of determination which measures the strength of the linear 

relationship in the regression. 𝑅W: is the 𝑅: value from the unrestricted regression model (Eq. 

(2)); 𝑅X: is the 𝑅: value from the restricted regression model (Eq. (1)). 𝛾 is the number of 

restrictions that depends on the lag order. 𝜃 is the number of observations and 𝛿  is the 

number of explanatory variables in the unrestricted model. In the F-test, this test statistic 𝑓 
will follow the F-distribution under the null hypothesis. The critical value can be obtained 
from the F distribution table. We compare the two values: if the test statistic is greater than 
the critical value, we reject the null hypothesis. When the test statistic is greater than the 
critical value, the unrestricted regression model (Eq. (2)) is more statistically significant 
than the restricted regression model (Eq. (1)). Therefore, we can use this procedure to 
determine the significance of Granger causality. 

     Another way to use the F-test is to compare two values: the significance level a and the 

p-value 𝑝. The significance level is the probability of the study rejecting the null hypothesis; 

the p-value is the probability of obtaining a result at least as extreme, giving the null 
hypothesis were true. When we have 𝑝 < a , we can conclude the result is statistically 

significant. In most cases, we choose the significance level to be 0.05. Therefore, if the p-
value we get from the F-test is smaller than 0.05, we reject the null hypothesis which leads 
to the conclusion that y is Granger caused by x. In fact, when we have the test statistic is 
greater than the critical value, we will also have the p-value less than a. Therefore, the two 

approaches match with each other. 

 
3.2 Maximum lag correlation 

To compare with and to complement the Granger causality model, we also calculate the 
maximum lag correlation (i.e., cross correlation) between ENSO index and climate variables. 
It provides the maximum correlation coefficients between ENSO and climate variable and 
the corresponding lag time. The lag correlation coefficient between two series x(n) and y(n) 
is defined by Eq. (6), in which τ   is the lag time, x  and σ`  are the mean and standard 



 

deviation of the series x respectively, and y and σb are the mean and standard deviation of 

the series y respectively. 
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3.3 Global climate model 

Based on physical hypothesis and sophisticated schemes, climate model is frequently 
used to find out the impact of a causing factor as effects on other parameters. For this study, 
series of sensitivity simulations are carried out with the global climate model forced by 
different simulated ENSO-like SST patterns to see the corresponding responses of 
atmospheric fields. The climate model we use in this study is the Community Atmospheric 
Model (version 5.3, CAM5.3) with the CAM5 standard parameterization schemes [19].  The 
CAM5.3 uses the finite volume dynamical core at 1.9° latitude × 2.5° longitude resolution 
with 30 vertical levels and 1800-s time step. Simulations for three ENSO scenarios are 
carried out: 1) the control run forced with climatological SST; 2) the p2K run forced with 
climatological SST + 2°C at the Nino3.4 region and climatological SST + 1°C at the central 
Pacific (10°S-10°N, 160°E-90°W); and 3) the n2K run forced with climatological SST – 2°C 
at the Nino3.4 region and climatological SST + 1°C at the central Pacific (10°S-10°N, 160°E-
90°W). The global distribution of SST forcing used in three simulations are shown in Figure 
2. The three simulations are run using MPI with 32 processors at UMBC Maya cluster [20]. 
Each simulation is integrated for 36 months, and the last 24-month simulation outputs are 
used for analysis. We compare the changes in wind, SLP, cloud, precipitation and 
temperature fields from three simulations to our observation-based results using the 
statistical methods (i.e., Granger causality method and maximum lag correlation method) 
for consistency and discrepancy identifications.   

 
 



 

 
 

  
 

Figure 2. Global distribution of annual mean SST used in the control run (upper panel).  The SST anomaly 
used in the +2K run with respect to the control run (left lower panel).   The SST anomaly used in the -2K run 

with respect to the control run (right lower panel).  Unit of SST is degree Celsius.  
 

 

4 Results 
4.1 ENSO vs. Surface Air Temperature (SAT) 

First, we determine the cause-and-effect relation between ENSO and SAT on the global 
scale using the VAR method for Granger causality model. As the significant differences 
between Figure 3(a) and 3(b) are found, the changes in ENSO index clearly leads the 
changes in SAT in Figure 3(a), but not vice versa in Figure 3(b). This indicates SAT changes 
are granger caused by ENSO, and ENSO is attributable for SAT anomalies, such as extreme 
heat or cold events, in remote regions such as South America, northwest North America, 
equatorial South Africa, and northern Australia. But ENSO variation is not caused by 
surface temperature over land. This result is consistent with the study of McGraw and 
Barnes [11]. The global distribution of the maximum lag correlation between ENSO index 
and surface temperature (Figure 4) shows that ENSO has strong positive relationship with 
surface temperature in South America and equatorial South Africa, which indicates that El 
Niño events (i.e., ENSO warm phase) are most likely accompanied with higher surface 
temperature over these lands. Results of the climate model sensitivity simulations (Figure 
5) are consistent with the observational-based analyses. In the ENSO warm-phase events, 



 

there are positive anomalies in surface temperature over South America, northwest North 
America while in the ENSO cold-phase events there are negative anomalies in surface 
temperature over these regions.  

 

 

 

 

 

 

 
4.2 ENSO vs. Sea Level Pressure (SLP) 

In this study, we also investigate the causality relation between ENSO and SLP on the 
global scale for their spatio-temporal patterns. Comparing Figure 6(a) to 6(b), we clearly 
observe that ENSO changes is leading the SLP changes and causing the SLP anomalies in 
the local and remote regions such as Pacific Ocean, Indian Ocean, and central Atlantic 
Ocean in Figure 6(a); while ENSO changes are only caused by SLP over eastern Indian 
Ocean, tropical northern Pacific Ocean and southeastern Pacific Ocean, but at a much less 



 

significant level in Figure 6(b). This is another indication that ENSO is the modulating 
factor in the cause-and-effect analysis with SLP, not vice versa.  

 

 

 

 

 

 
 

The global distribution of the maximum lag correlation between ENSO index and SLP 
(Figure 7) shows that ENSO has strong positive relationship with SLP in the Tropical 
Western Pacific Ocean and strong negative relationship with SLP in the Eastern Pacific 
Ocean, which implies that El Niño events (i.e., ENSO warm phase) are most likely 
accompanied with higher SLP over the Tropical Western Pacific Ocean and lower SLP over 
the Eastern Pacific Ocean. Results of the climate model sensitivity simulations (Figure 8) 
are consistent with the observational-based analyses. In the ENSO warm-phase events, 
there are negative anomalies in SLP over Eastern Pacific Ocean while in the ENSO cold-
phase events there are positive anomalies in SLP over Eastern Pacific Ocean and negative 



 

anomalies in SLP over Tropical Western Pacific Ocean and Indian Ocean. Such consistency 
between observational evidence and model simulations give us more confidence that ENSO 
is modulating SLP remotely as the causing factor, thus the spatio-temporal patterns with 
ENSO leading SLP can be more readily explained as ENSO causing anomalies in SLP over 
other parts of the world. 
 
4.3 ENSO vs. Precipitation 

To explore the relationship between extreme flooding and drought with ENSO, we 
analyze the causality relation between ENSO and surface precipitation on the global scale. 
As the comparison between Figure 9(a) and 9(b) shows, ENSO changes is leading the 
changes in surface precipitation anomalies in many regions such as tropical Ocean and 
tropical land, with significant granger causality correlation over broad area in Figure 9(b), 
but not vice versa in Figure 9(b). The global distribution of the maximum lag correlation 
between ENSO index and surface precipitation (Figure 10) shows that ENSO has strong 
negative relationship with surface precipitation in Tropical Western Pacific and tropical 
South American, indicating ENSO’s remote impact on extreme drought events. Figure 10 
also shows ENSO has strong positive relationship with surface precipitation in Tropical 
Central and Eastern Pacific, which means ENSO may potentially result in extreme flooding 
events over these regions. Similarly, the climate model sensitivity simulations (Figure 11) 
indicate that in the ENSO warm-phase events, there are positive anomalies (floods) in 
surface precipitation over Tropical Central and Eastern Pacific, and negative anomalies 
(droughts) in surface precipitation over Tropical Western Pacific, consistent to what we 
found from the observations.  The patterns of precipitation anomalies in the ENSO cold-
phase events are clearly different from those in the ENSO warm-phase events.   

 



 

 

 

 

 

 
4.4 ENSO vs. Circulation 

Occurrence of different climate events strongly depends on the large-scale atmospheric 
circulation. Mid-tropospheric (500hPa) vertical pressure velocity is widely used as a proxy 
for the large-scale tropical circulation [21]. Lastly for this study, we explored the causality 
relation between ENSO and 500hPa vertical pressure velocity using the same VAR method 
for granger causality. As shown in Figure 12 with 12(a) versus 12(b), ENSO seems to cause 
500hPa vertical velocity anomalies significantly over very broad areas in most Tropical 
Pacific Ocean in Figure 12(a), but not vice versa in Figure 12(b). The global distribution of 
the maximum lag correlation between ENSO index and 500hPa vertical velocity (Figure 13) 
is almost same as that for surface precipitation (Figure 10) but with opposite signs, i.e., 
ENSO has strong positive relationship with 500hPa vertical velocity in Tropical Western 
Pacific and tropical South American, an indication of ENSO warm phase suppresses deep 



 

convection and cold phase invigorates deep convection instead. At the same time, ENSO 
has strong negative relationship with vertical wind over Tropical Central and Eastern Pacific, 
which means ENSO warm phase potentially invigorates deep convection over these areas 
and cold phase suppresses deep convection instead. Results of the climate model sensitivity 
simulations (Figure 14) are considerably similar to those of the observational-based 
analyses in Figures 12 and 13. In the ENSO warm-phase events, there are positive anomalies 
in 500hPa vertical velocity over the Tropical Western Pacific and negative anomalies in 
500hPa vertical velocity over the Tropical Central and Eastern Pacific. Putting the results 
in the context of Pacific atmospheric circulation, ENSO warm phase weakens Pacific walker 
circulation but ENSO cold phase enhances Pacific walker circulation, consistent to what is 
reported in Yeh et al. [22].  

 

 

 

 

 

 



 

5 Conclusions 
In this study, we use statistical methods, namely the VAR method for Granger Causality 

model, and global climate model simulations to investigate ENSO causality as one of the 
modulating climate factors that cause the anomalies in surface air temperature, 
precipitation, surface pressure and vertical wind over remote regions through 
teleconnection with lagged temporal variability. We analyzed different observational data, 
reanalysis data and model data to comprehensively investigate the global impacts of ENSO. 
The Granger causality analysis was able to clearly show ENSO as a cause instead of an effect 
to influence the remote climate variables and thus cause extreme weather events such as 
flooding, drought, extreme heat and cold, etc.  Our model simulations using the CAM5.3 
also successfully simulated ENSO’s remote impacts on other weather variables, consistent 
to the findings from observational evidence.  Besides, all the source codes used in this study 
can be found on Github [23]. 

For future work, we will compare the granger causality on multiple variables for 
intercomparison, and we will add analysis on the impact of ENSO on clouds and aerosol 
using NASA satellite remote sensing data. We plan to use the Granger causality methods to 
predict climate variations and other interesting economic factors, such as crop yield and 
wheat stock price, under different ENSO backgrounds. At the same time, we plan to explore 
more efficient use of high performance parallel computing in the studies that use much 
broader big data of satellite observations with higher spatial and temporal resolutions.   
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