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Abstract

Mineral dust, defined as aerosol originating from the soil, can have various harmful
effects to the environment and human health. The detection of dust, and particu-
larly incoming dust storms, may help prevent some of these negative impacts. We
investigated both physical and machine learning algorithms of dust aerosols detection
over the Atlantic Ocean using satellite observations from Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation Observation (CALIPSO). We found that the machine learning al-
gorithms achieved a higher accuracy rate compared to those of the physical algorithms.
Through combining a logistic regression algorithm with our physical understanding of
dust aerosols, we were able to reach the highest detection accuracy.

1 Introduction

In arid and dry regions with high velocity winds, soil particles are lifted into the atmosphere,
becoming mineral dust. It is one of the most abundant types of aerosol in the atmosphere
with the Saharan desert as the largest contributor. Mineral dust aerosols affect the Earth’s
energy budget through several ways. It has a direct radioactive effect by scattering and
absorbing solar radiation. By acting as cloud nucleation nuclei, mineral dust can indirectly
impact the global radiation balance. High levels of mineral dust results a significant decrease
in the air quality, negatively affecting our health. Inhalation of large quantities of mineral
dust can lead to lung fibrotic diseases (where damage occurs to the lung tissue) as well as
an increase in hospital admissions due to aggravated asthma, chronic bronchitis, and other
respiratory illnesses [12]. Unfortunately, the amount of dust in the atmosphere and its direct
impact is unknown largely due to errors in the methods of retrieval.

Many of the methods for dust detection rely upon the usage of satellite data. The more
accurate data has been from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation Observation (CALIPSO). While CALIPSO is more accurate at dust detection,
it has multiple drawbacks like only gathering data from a smaller swath of the Earth’s
surface. Researchers have shifted towards using data from Moderate Resolution Imaging
Spectroradiometer (MODIS), which is a passive sensor. However, MODIS is unable to di-
rectly detect mineral dust. Thus various algorithms have been developed combining physical
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knowledge of mineral dust and the data captured by MODIS to calculate the probability of
dust [3,5,6,8,15].

Unfortunately, many of these algorithms have a lower detection rate or accuracy rate
than desired. As we have access to a large collection of satellite data, we combined big data
and machine learning techniques with a physics background to develop an algorithm with
around 90% accuracy rate.

In Section 2, we discuss the data sets utilized in our study, delving a little deeper into
the differences between MODIS and CALIPSO data. Sections 3 focuses on the algorithms
investigated, from a few simple physical algorithms to the combined machine learning and
physics algorithm. The results of our tested algorithms are outlined in Section 4, along with
a comparison table. Lastly, we conclude in Section 5 with some ideas for future work.

2 Satellite Data

MODIS is a passive sensor onboard the Terra satellite since 1999 and the Aqua satellite
since 2002. With a viewing swath of 2,330 km, it images the entirety of the earth at most
every two days. It measures data in 36 spectral bands, ranging from 0.045 to 14.385 pum,
at three different spatial resolutions, 250m, 500m, and 1km. The data can be accessed at
various levels, depending on the information requested. In this study, we use MODIS level-1
data, which is the least processed. The information is stored in HDF files, with a data point
for every 5-minute measurement, called a granule. We wanted to be able to validate our
results from the MODIS data using observations from CALIPSO. As both CALIPSO and
Aqua are among the international satellites along the same orbital track called the A-Train,
we decided to use MODIS data from Aqua.

The CALIPSO satellite, which is a joint venture between NASA and its French counter-
part CNES, has been recording data as a part of the A-train as of 2006. Among its three
instruments, it has a lidar sensor, called Cloud-Aerosol Lidar with Orthogonal Polarization.
As an active sensor, it measures the reflection, refraction, and scattering of its own trans-
mitted signals by the Earth’s surface and atmosphere. Through this use of depolarization,
it is able to better detect clouds and dust aerosols. However, it requires more energy than
a passive sensor and as seen in Figure 2.1, it covers much less area than MODIS, which is
why we would like to use MODIS data to detect aerosol.

In the first stages of our work, we used MODIS and CALIPSO collocated data. With the
MODIS data, we were able to predict dust, which was then compared against the results from
CALIPSO. We were fortunate to have access to already collocated data for MODIS Level-2
and CALIPSO. This allowed us to determine the correct MODIS Level-1 files corresponding
to the CALIPSO data. An important difference between the two data sets was the spatial
resolution; CALIPSO has dust detection for every 5 km while the data utilized from MODIS
was over 1 km. We decided to average over 5 pixels (each 1 km) for the MODIS data so that
the data sets would correspond.
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Figure 2.1: Comparison of MODIS granule and CALIPSO track

3 Methods

3.1 Physical Algorithm

For this part of study, we use MODIS and CALIPSO collocated data to develop an algorithm
for dust aerosol detection. In the collocated data, CALIPSO provides robust information of
dust identification, MODIS provides radiances or emittance for up to 36 spectral bands. By
using those pixels with both MODIS and CALIPSO observations and based on the knowledge
of physical properties of mineral dust aerosols and previous studies on dust detection, we
tried several methods to separate MODIS pixels with and without dust aerosols.

3.1.1 Color Ratio Algorithm over Ocean

Considering clear sky over ocean is much darker than dust and clouds, the reflectance at
visible wavelengths for clear sky should be much smaller than the other two cases. Moreover,
we know that dust aerosols are yellowish and clouds are usually white in color. Therefore, we
expect that the color ratio defined as Ry50 nm/Rggo nm may be different among clear, dusty
and cloudy sky. To determine the ratios corresponding to each case, we plotted the color
ratio as a function of its reflectance at 860 nm. As seen in Figure 3.1, strict classifications
were not found. Thus, we were unable to proceed with the use of the color ratio in dust
detection.

3.1.2 Reflectance and Emittance Ratio Algorithm over Ocean

Clouds are usually more reflective than yellowish dust aerosols and dark ocean at visible
wavelengths. In contrast, in the thermal infrared such as 11um, ocean surface emits more
than dust aerosols and clouds due to the higher temperature of ocean surface. Therefore, we
investigated the relation among reflectance at 859nm, emittance at 11 pum and Rgsg nm/FEqq
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Figure 3.1: The color ratio Rys0 nm/Rggo nm as it depends on the reflectance at 860 nm,
classified into the four cases: Cloud without Dust, No Dust of Cloud, Dust and Cloud, and
Dust without Cloud.

pm, which is shown in Figure 3.2. We can see that dust aerosols are not able to be separated
from other cases by using Rgsg nm and FEj; pm. Hence, we decided to investigate other
methods for a physical algorithm.
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Figure 3.2: The emissivity at 11 pum (left) and the ratio of the reflectance at 859 nm to
emissivity at 11 pm (right) as a function of the reflectance at 859 nm, classified by the 4
different possible outcome.



3.1.3 Infrared Algorithm

Through observation and modeling studies, Ackerman [1] showed that brightness tempera-
ture difference (BTD), defined as the difference between the brightness temperature at 11
pm and 12 pm, of dust is smaller than that of clouds. In this algorithm, we first find a
BTD threshold distinguishing between the dust and cloud cases. If BTD is smaller than
the threshold, the pixel is classified as dust. In order to determine the BTD threshold, we
first applied different thresholds for MODIS data along CALIPSO track and then calculated
detection accuracy for different BTD threshold using CALIPSO dust detection as reference.
We achieved the highest accuracy between 60% and 70% with the BTD threshold at 0.8.
Using this threshold, we wrote an algorithm to detect dust aerosols over the entire MODIS
granule.

3.2 Machine Learning Methods

Machine learning has been widely used in science and engineering fields, such as medical
image analysis and it also has been proved to be very useful for remote sensing data including
crop disease detection, new product creation etc [7]. The most commonly used data mining
methods include artificial neural networks (ANN), support vector machines (SVM), decision
trees, also some ensemble methods, such as random forests trees. For this study, we have
explored different machine learning methods for our dust detection.

3.2.1 Logistic Regression

Logistic regression is one simple but powerful method, especially for binary outcome. One
key component is the logistic function, which could convert the multi variate input into the
probability of the outcome between 0 and 1. Among all the machine learning algorithms,
logistic regression has multiple advantages. Firstly, no assumption is made regarding the
dependent variables following a normal distribution. There is also no assumption about a
linear relationship between outcome and covariates. Most importantly however, it is easy to
understand and interpret the results [4,13] . In our logistic regression model, we used the
glm in R with stepwise selection function for variable optimization.

3.2.2 Artificial Neural Network (ANN)

There has been considerable applications of ANN in remote sensing data. The basic structure
of the ANN includes input layer, output layer and some hidden layer. The input layer is
composed of input variables, the output layer is the number of outcomes. The hidden layers
could be 1 or multiple layers. With 0 hidden layers, we can consider the neural network
as one simple logistic regression model. There are multiple advantages of ANN. Through
controlling the number of hidden layers and number of nodes within each layer, ANN could
be built for non-linear and complex relationships, which is important for dealing with real
life problem. Like logistic regression, it also does not need any distribution assumption for
the input variables, output variable. Another important advantage for ANN is that ANN
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could infer new relationships on unseen data, and thus make the model more generalized
for new unknown data [4,13]. Neuralnet package in R was used for our ANN analysis. In
the formula, we used 1 hidden layer with 5 nodes. The input layer includes all variables.
We also tried 2 5 layers with varied nodes (5-100) using SparkR, strangely which took long
time to converge with our high performance facility and without significant improvement.
We finally decided to use R as our final analysis tool.

3.2.3 Support Vector Machine (SVM)

SVM is another popular machine learning algorithm based on statistical learning theory. The
SVM algorithm is to find a decision boundary which could maximize the distance between the
two closest classes. The biggest advantages for SVM is that it could model non-linear decision
boundary; it has multiple kernel functions and it is pretty robust against over fitting [9,11].
However one drawback to this algorithm is that SVM is very memory intensive and may not
scale well to large datasets. SVM was run using R package "el071” with a similar formula
to logistic regression.

3.2.4 Random forests

Random forests are considered as one of the most accurate machine learning methods, which
are an ensemble classifier and proved to be the top winner in several data competitions.
Random forests consist of many decision trees and combine the result from the individual
trees. The attractive benefits using random forests lie in the following facts: 1) random
forests could handle thousands of input variables without variable section, which is heavy
burden for logistic regression; 2) through large number of decision trees within random
forest, it could produce an unbiased estimate of the generalization error; 3) it may allow
large portion of missing data [2,10]. Random forest in R is pretty straightforward. In its
setting, we took 2000 as the number of trees in the forest, and also set the importance to
True. The node size was 10.

3.2.5 Ensemble learning

The purpose of ensemble methods is trying to use multiple learning methods to achieve better
predictive performance than single method [14]. There are different types of ensembles, in
this paper, we tried stacking ensemble learning. In stacking, several basic learning methods
are applied to the datasets,and then another model could be build from the outputs from each
individual models. It has been reported that stacked ensemble models could boost predictive
accuracy. For this approach, we basically took the average of the predicted probability from
previous logistic regression, ANN and random forests models.



Figure 4.1: RGB images of two dust storms from MODIS observations

4 Results

We have two types of prediction tasks. One is using data in CALIPSO region data to predict
the data in CALIPSO region. All those data have accurate label- dust or not. Another type
of prediction is to use CALIPSO region data as training data, and predict the data outside
the CALIPSO area. For these prediction, since we don’t have labels, and can validate the
prediction accuracy through visually checking the predicted image against raw image.

4.1 Infrared Algorithm Results

Then we make use of the threshold to detect dust aerosols over the entire MODIS granule
and compare with the RGB image to check how good our Infrared dust detection algorithm
is. We selected two dust storm cases over Atlantic ocean, the RGB images from MODIS
observation of those two dust storms are shown in Figure 3.3. From the above RGB figures,
we could easily tell white clouds and dust aerosols, which are yellowish.

Then we use 0.8 as BTD threshold to detect dust aerosols, if BTD (11-12pm) of a MODIS
pixel is smaller than the threshold, then the pixel is identified as dust-loading pixel. We apply
this algorithm to the entire MODIS granule to detect dust aerosols. Below we show our dust
detection results. Comparison between Figure 3.3 and Figure 3.4 shows that the infrared
BTD algorithm could detect dust aerosols to some extent, but still it may mistake clouds as
dust aerosols.

4.2 Results for predicting CALIPSO region data

To decide which machine learning method is better, we need to compare the performance
among those approaches. We used data on July 15, 2007(3335 data points with 1510 dust

and 1825 non dust) to predict the data on June 22, 2009 (3335 data points with 1915
dust points and 1410 non dust points). The predictor variables include all 38 band values.
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The comparison metric is the accuracy rate, which is a simple ratio between the correctly
predicted dust and the total dust. We tried logistic regression(LR), Random forest (RF),
SVM , ANN and one stacking classifiers. The stacking classifier is basically the average of
the probabilities from the 4 individual classifiers( Random forests, Logistic regression, ANN
and SVM). From the comparison table 4.1,we can see logistic regression model could achieve
the best accuracy compared to other machine learning methods, also, logistic regression
needs little specification and is convenient for implementation, we decide to choose logistic
regression as our final model.

Table 4.1: Performance comparison among different learning methods:dust detection along

CALIPSO track

Method Accuracy
Random Forest 79.8%
Logistic regression 83.9%
ANN 64.7%
SVM 65.8%
Stacking classifiers(RF, LR, ANN,SVM) | 75.6%

4.3 Variable selection for logistic regression and combination of
physical algorithm and machine learning approach

The original data set has 38 variables,due to high multicollinearity among some variables,
for example, variable band 30 and band 29 have correlation coefficient ;0.9, We need feature
engineering to identify the most important variables. We used step-wise function in logis-
tic regression to end up with 16 variables out of 38 band variables (Band30, Band32, Band29,
Band35, Band20, Band6, Band16, Band9, Band14, Band4, Band3, Band12, Band22, Band31,
Band28, Band26, Band27, Band21, Band1). The variables based on physical algorithms are
the division of band 2 value by band 32 or band 33 values, and also the difference between
band 32 and band 33. To combine the physical component and machine learning approach,
we simply add the 4 physical variables to the 16 variables selected by machine learning ap-
proach. In table 4.2, we showed the performance differences under different conditions, the
model with combination of machine learning and physical algorithm gives the best accuracy
result.

4.4 Results for predicting MODIS region data

The biggest challenge for dust detection for MODIS region(with 2748620 data points) is
that we don’t have any labels for MODIS region, which means we don’t know whether the
prediction is correct or not. We can only visually compare the RGB image to raw image.
We applied our model based on machine learning and physical algorithm to predict the dust
of the whole MODIS region. The image produced by our combined approach( figure 4.2,
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Table 4.2: Performance comparison using different number of variables: dust detection along

CALIPSO track

Models Accuracy
July 15,2007 data: 70% for training, 30% testing

Physical algorithm 0.554
All band variables 0.924
Selected 16 band variables based on machine learning 0.929
Selected 16 band variables + 4 variables based on physical algorithm | 0.931
Selected 16 band variables + 4 sensor angle variables 0.925
July 15,2007 data for training , June 22,2009 data for testing

Physical algorithm 0.423
All band variables 0.832
Selected 16 variables based on machine learning 0.820
Selected 16 variables + 4 variables based on physical algorithm 0.835
Selected 16 band variables + 4 sensor angle variables 0.809

right) looks better than the one produced by physical algorithm compared to the raw image
in figure 4.1, right.

Figure 4.2: Dust prediction for MODIS region using infrared physical algorithm(left) and
machine learning approach(right)

5 Conclusions

In our study, we tried both physical algorithms and several data mining approaches for dust
detection. Our results showed that machine learning methods could significantly improve
the prediction accuracy compared to pure physical algorithm (around 55% vs 93% for same
day prediction, and 42% vs 80% for different day prediction), which could greatly enhance
our ability to predict future dust detection. Meanwhile we also tried to combine physical



algorithms with machine learning approach, and due to time limit, we simply put the vari-
ables in the machine learning approach and variables from physical algorithm together. The
combined approach provides even better results. Next step, we may need to investigate
the relationship between the variables from data mining approach and variables from the
physical algorithm for further variable selection and composite variable creation. In future
study of dust detection, we would like to expand our research to land dust detection, which
requires slightly different methods to analyze. Also, we would like to increase our data points
from the coast off North Africa to the whole world and include multiple time periods. Given
the increase of the data size, we also need to think about how to efficiently used our high
performance facilities at UMBC to handle the big data. We already learned from our exercise
that HPCF at UMBC could reduce the running time from around 30 hours to around 30
minutes based on the available computing clusters. Hopefully in the future we can build a
real-time dust detection application using the global data and our HPCF.
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