
Matthew Brewster is a junior majoring in mathematics with a minor in
environmental science. He hopes to continue his education studying
environmental science. Matthew is a member of the Undergraduate
Training Program in Biology and Mathematics (UBM) and has partici-
pated in the Interdisciplinary Program in High Performance Comput-
ing at UMBC. Matthew is also a member of several honor societies.
He would like to thank his advisor, Dr. Matthias Gobbert, for his guid-
ance, patience, and encouragement during the course of this project.
He would also like to thank his friends, family, and everyone who
supported him throughout his education at UMBC.

MATTHEW
BREWSTER

ALTERNATIVES
TO THE
MATHEMATICAL
SOFTWARE
PACKAGE MATLAB
IN RESEARCH
AND EDUCATION

AS A NEW FRESHMAN, I ENROLLED IN DR. NAGARAJ NEERCHAL’S
First Year Seminar, Crime Busting with Mathematics and Statistics. Dr.
Neerchal suggested that I contact Dr. Matthias Gobbert about research
opportunities. The following summer, I applied to the Interdisciplinary
Program in High Performance Computing at UMBC, and wrote a tech-
nical report on my comparative analysis of MATLAB, Octave, FreeMat,
and Scilab. A year later, I took Introduction to Parallel Computing with
Dr. Gobbert, and learned the basics of parallel computing and how it
is applied to numerical algorithms. I also helped extend my technical re-
port to R and IDL, along with Sai Popuri and Oana Coman. In addition
to my research with Dr. Gobbert, I am involved in the UBM Program as
part of the Erill-Gobbert group for bioinformatics research.

UMBC REVIEW 201352

INTRODUCTION

THERE ARE SEVERAL NUMERICAL COMPUTATIONAL
packages that serve as educational tools and are available for
commercial use. MATLAB (www.mathworks.com) is the most
widely used of these packages. MATLAB is used in many cours-
es at UMBC and in a wide range of disciplines, but many of these
courses only utilize the basic features of the software that require
limited computer power. It would be valuable to students to have a free
alternative with the necessary features that can be used on a laptop or
home computer.

This study examines three free numerical computational pack-
ages: Octave (www.octave.org), FreeMat (www.freemat.org), and

53ALTERNATIVES TO THE MATHEMATICAL SOFTWARE PACKAGE MATLAB

Scilab (www.scilab.org), and analyzes the compatibility of each
package with MATLAB. We use a comparative approach to the
packages based on a MATLAB user’s perspective. We perform
both basic and complex studies on each of the four software
packages. The basic studies include simple operations such as solv-
ing systems of linear equations, computing the eigenvalues and
eigenvectors of a matrix, and plotting two-dimensional data. The
complex studies involve direct and iterative solutions of a large
sparse system of linear equations resulting from finite difference
discretization of an elliptic test problem. The complex test case is
designed to emulate a practical research problem. This study as-
sumes that the needs of a typical student user are limited to the basic
functionalities of MATLAB. Although MATLAB has a rich set of tool-
boxes for more sophisticated algorithms, this study does not consider
alternatives to MATLAB for research or applications that require these
features.

Similar work on comparing MATLAB and its alternatives on a
research computer at UMBC are available in the HPCF Technical
Report [Coman et al. 2012], which also considers other packages
such as R and IDL, which are not intended to be similar to MAT-
LAB and not necessarily free. This paper specifically focuses on
free packages with a high degree of compatibility to MATLAB, and
organizes the results for a direct comparison. Previous work used
a matrix-free implementation of the conjugate gradient method
[Brewster and Gobbert 2011] that makes the results less direct-
ly applicable for most users. Additionally, earlier work compared
the software packages in a home computer setting [Sharma 2010;
Sharma and Gobbert 2010], which makes it less reproducible for us-
ers working from a school computer or laptop.

The computations for this study are performed using MATLAB
R2012a, Octave 3.6.2, FreeMat v4.0, and Scilab 5.3.1 under the Linux
operating system Redhat Enterprise Linux 5. The same server in the
UMBC High Performance Computing Facility was used to carry out
all computations to maintain consistency in the results. The server,
named cluster tara, has 86 nodes, each with two quad-core Intel Ne-
halem processors (2.66 GHz, 8 MB cache) and 24 GB of memory, but
only one node – equivalent to a desktop computer – is used for this
study.

UMBC REVIEW 201354

BASIC OPERATIONS TEST

IN THIS SECTION, we describe the basic operations test using
MATLAB, Octave, FreeMat, and Scilab. One of the basic functionalities
of these software packages is the capability to solve a system of linear
equations by Gaussian elimination. For example, we consider the fol-
lowing system of linear system of equations,

 – u2 + u3 = 3,
 u1 – u2 – u3 = 0,
 –u1 – u3 = –3,

where the solution to this system is (1, –1,2)T . To solve this system In
MATLAB, let us express the linear system as a single matrix equation

Au = b,

where A is a square matrix consisting of the coefficients of the un-
knowns, u is the vector of unknowns, and b is the right-hand side
vector. For the particular system we have

 0 –1 1 3
 A = 1 –1 –1 , b = 0 .
 –1 0 –1 –3

To find a solution u for this system in MATLAB, the matrix A and vec-
tor u are entered using the commands

A = [0 –1 1; 1 –1 –1; –1 0 –1]

b = [3; 0; –3].

The backslash operator \ invokes Gaussian elimination to solve the
linear system (i.e. find the vector u) by calling u=A\b . The resulting
vector, which is assigned to u, is

 1
 u = –1 .
 2

[] []

[]

55ALTERNATIVES TO THE MATHEMATICAL SOFTWARE PACKAGE MATLAB

The backslash operator works identically for all of the packages to
produce a solution to the linear system given and is an example of
seamless compatibility among all packages.

We also investigate other basic operations in these numerical
computation packages and examine the commands needed the ex-
ecute them [Brewster and Gobbert 2011; Coman et al. 2012]. The
command eig has the same functionality in Octave and FreeMat as
in MATLAB for computing eigenvalues and eigenvectors, whereas
Scilab uses the equivalent command spec to compute them. Plotting
is another important feature we analyze using an m-file containing
the two-dimensional plot function, along with some common an-
notations commands. Once again, Octave and FreeMat use the same
commands as MATLAB for plotting, and similar commands for anno-
tating, whereas Scilab requires a few changes. For instance in Scilab,
the number ! is defined using %pi instead of simply pi as in MAT-
LAB, and the command grid that adds grid lines to the plot from
MATLAB is replaced with xgrid. To overcome these conversions, the
MATLAB-to-Scilab translator can be used, which largely takes care of
these command differences. However, the translator is unable to con-
vert the xlim command, which returns the limits of the current axes,
from MATLAB to Scilab. To rectify this, the axis boundaries must be
manually specified in Scilab using additional commands in Plot2d.
This issue brings out a major concern: despite the existence of the
translator, there are some functions that require manual conversion.

COMPLEX TEST PROBLEM

THIS SECTION TESTS the performance of the software packag-
es using a classical complex test problem [Demmel 1997; Watkins
2010] from partial differential equations that puts a strain on the
code both in terms of execution speed and memory consumption.
The Poisson problem with homogeneous Dirichlet boundary condi-
tions is given as:

 – 6u = f in 1 ,
 u = 0 on ∂ 1

UMBC REVIEW 201356

We consider this problem on the two-dimensional unit square
1 = (0,1) × (0,1)∈!2 where the function f is given by

f(x,y) = –2π2 cos(2πx)sin2(πy) – 2π2sin2(πx) cos(2πy).

The test problem solution is designed to admit a closed-form solu-
tion as the true solution

 u(x,y) = sin2(πx)sin2(πy).
Let us define a grid of mesh points with resolution (N + 2) × (N +
2), with mesh spacing h = 1/ (N + 1). By applying the second-order
finite difference approximation, we obtain equations that can be or-
ganized into a linear system of dimension N �

 Au = b
with system matrix A that is symmetric positive definite. The theory
of the finite difference method [Braess 2007; Iserles 2009] tells us
that the norm of the error u – uh behaves like

 ||u – uh||L∞(1) ≤ C h2

and as the mesh width h tends to zero, h � 0. We can use this
theoretical result to predict how the norm of the error is expected
to behave, as the mesh width decreases for finer and finer meshes:
Whenever the mesh width is halved by a refinement of the mesh, the
ratio of errors on consecutively refined meshes approaches four.

To create the matrix A, we use the observation that it is given by a
sum of two Kronecker products [Demmel 1997]: Namely, A can be
interpreted as the sum

∈ !N 2×N 2

T 2I –I
 T –I 2I –I
 +

 T –I 2I –I
 T –I 2I

A =

∈ !N×N

T 2 –1
 T –1 2 –1

 T –1 2 –1
 T –1 2

T =
where

57ALTERNATIVES TO THE MATHEMATICAL SOFTWARE PACKAGE MATLAB

and I is the N×N Identity matrix, and each of the matrices in the sum
can be computed by Kronecker products involving T and I, so that A
= I �T + T � I. To store the matrix A efficiently, all packages provide
a sparse storage mode, in which only the non-zero entries are stored.

 FIGURE 1: Numerical solution

 FIGURE 2: Numerical error

Figure 1 shows the mesh plot of the numerical solution versus (x,y),
while Figure 2 shows the error at each mesh point, which is comput-
ed by subtracting the numerical solution from the analytical solution.
Notice the different scales for each vertical axis. The maximum error
is attained at the center of the domain in the x-y plane and has a value
of approximately 3 × 10–3.

UMBC REVIEW 201358

We solve the Poisson problem on finer meshes with mesh resolu-
tions N = 2υ for υ = 1, 2, 3,...,13 in order to obtain a more precise
solution. The results of this test are summarized in Table 1, which lists
the mesh size of the discretization N×N, the dimension of the

TABLE 1: CONVERGENCE OF FINITE DIFFERENCE ERROR

linear system N 2, the norm of the finite difference error ||u – uh||, and
the ratio of the error norms when doubling the mesh resolution (i.e.,
practically speaking from one row of the table to the next).

In the first row, for the resolution 32 × 32 , we note that the norm
of the finite difference error of 3.0128 ×10–3 confirms the approxi-
mate observation from the plot in Figure 2. The entries for the norm
of the finite difference error in Table 1 show that the error is converg-
ing toward zero and the ratio of the consecutively refined meshes
is approaching four. The ratio and finite difference error behave in
agreement with the finite difference theory, indicating that the code
is working correctly. The previous table focused on the numerical
results of the solution to the Poisson problem.

Table 2 lists the mesh resolution N, the dimension of the linear sys-
tem N2, and the observed wall clock time in hours:minutes:seconds

N×N

32×32

64×64

128×128

256×256

512×512

1,024×1,024

2,048×2,048

4,096×4,096

8,192×8,192

N2

1,024

4,096

16,384

65,536

262,144

1,048,576

4,194,304

16,777,216

67,108,864

||u - uh||

3.0128e-3

7.7811e-4

1.9765e-4

4.9797e-5

1.2494e-5

3.1266e-6

7.8019e-7

1.9353e-7

4.6797e-8

Ratio

N/A

3.8719

3.9368

3.9690

3.9856

3.9961

4.0075

4.0313

4.1355

59ALTERNATIVES TO THE MATHEMATICAL SOFTWARE PACKAGE MATLAB

for the different software packages when solving the problem with
Gaussian elimination. The notation O.M. for an entry indicates that
the code ran out of memory and could not solve the problem. For
each mesh resolution, we found the numerical results to be identical
for all packages, in all cases for which a solution was obtained. It is
therefore appropriate to compare the performance of the packages.

TABLE 2: PERFORMANCE OF GAUSSIAN ELIMINATION

Table 2 shows that the Gaussian elimination method built into the
backslash operator successfully solves the problem up to a mesh reso-
lution of 4,096 × 4,096 in both MATLAB and Octave. While the Gauss-
ian elimination method built into the backslash operator in FreeMat
successfully solves the problem up to a mesh resolution of 2,048 ×
2,048, in Scilab it is only able to solve up to a mesh resolution of 1,024
× 1,024. The wall clock results show that MATLAB was faster than
Octave, FreeMat, and Scilab. Octave was faster than both FreeMat and
Scilab, and was able to solve a larger mesh resolution. Scilab was the
slowest and could not solve the same mesh resolution as the other
packages. We see that none of the packages considered were able to
solve the problem with an 8,192 × 8,192 mesh. The desire to solve
larger systems leads us to another method known as conjugate gradi-
ent method to solve the linear system. This iterative method is an al-
ternative to using Gaussian elimination to solve a linear system with a

N×N
32×32

64×64

128×128

256×256

512×512

1,024×1,024

2,048×2,048

4,096×4,096

8,192×8,192

N2

1,024

4,096

16,384

65,536

262,144

1,048,576

4,194,304

16,777,216

67,108,864

Matlab

< 00:00:01

< 00:00:01

< 00:00:01

< 00:00:01

00:00:01

00:00:05

00:00:23

00:01:50

O.M.

Octave

< 00:00:01

< 00:00:01

< 00:00:01

< 00:00:01

00:00:02

00:00:16

00:01:57

00:15:37

O.M.

FreeMat

< 00:00:01

< 00:00:01

< 00:00:01

 00:00:04

00:00:28

00:03:15

00:14:29

O.M.

O.M.

Scilab

< 00:00:01

< 00:00:01

00:00:11

 00:03:19

00:39:04

09:09:32

O.M.

O.M.

O.M.

UMBC REVIEW 201360

symmetric positive definite system matrix, such as the given matrix.
We use the zero vector as the initial guess and a tolerance of 10–6 on
the relative residual of the iterates. Table 3 lists the mesh resolution
N×N, the dimension of the linear system N2, the number of itera-
tions taken by the iteration method to converge (#iter), and the ob-
served wall clock times in hours:minutes:seconds for each software
package. For each mesh resolution, we again found the numerical
results to be equivalent among the packages, as well as equivalent
to the results obtained by Gaussian elimination, in all cases where a
solution was obtained.

TABLE 3: PERFORMANCE OF THE CONJUGATE GRADIENT METHOD

Table 3 shows that, for each package, the conjugate gradient meth-
od is able to solve for mesh resolutions as large as (or larger than)
those solved using Gaussian elimination. The sparse matrix storage
implementation of the conjugate gradient method allows us to solve
a mesh resolution up to 8,192 × 8,192 for MATLAB and Octave.
Scilab is able to solve the system for a resolution up to 4,096 × 4,096.
In FreeMat, we wrote our own cg (conjugate gradient) function be-
cause it does not have a built in pcg (preconditioned conjugate gradi-
ent) function, and we were able to solve the system for a resolution
of 2,048 × 2,048 within a reasonable amount of time. The notation

N×N

32×32

64×64

128×128

256×256

512×512

1,024×1,024

2,048×2,048

4,096×4,096

8,192×8,192

N2

1,024

4,096

16,384

65,536

262,144

1,048,576

4,194,304

16,777,216

67,108,864

#iter

48

96

192

387

783

1,581

3,192

6,452

13,033

Matlab

< 00:00:01

< 00:00:01

< 00:00:01

00:00:02

00:00:12

00:01:34

00:12:42

00:41:10

13:43:55

Octave

< 00:00:01

< 00:00:01

< 00:00:01

 00:00:02

00:00:14

00:01:56

00:17:50

02:34:29

20:01:27

FreeMat

< 00:00:01

00:00:02

00:00:17

00:02:29

00:21:16

02:59:08

E.T.R

E.T.R

E.T.R

Scilab

< 00:00:01

< 00:00:01

< 00:00:01

 00:00:02

00:00:22

00:03:19

00:026:57

O.M.

O.M.

61ALTERNATIVES TO THE MATHEMATICAL SOFTWARE PACKAGE MATLAB

E.T.R. indicates excessive time requirements of over five days. The wall
clock times show that MATLAB was faster than Octave, but Octave was
faster than both FreeMat and Scilab. The times also show that FreeMat
was slower than Octave, MATLAB, and Scilab, and was not able to

FIGURE 4: Log(N) vs. Log(Time) for Conjugate Gradient Method

FIGURE 3: Log(N) vs. Log(Time) for Gaussian elimination

UMBC REVIEW 201362

solve as large of a system before the time required to solve the prob-
lem became excessively long. Scilab performed better than FreeMat,
but it ran out of memory for the finest resolution attempted. We see
that only MATLAB and Octave were able to obtain the solution on
all desired meshes. In Figures 3 and 4, log(time) is plotted against
log(N) for the data reported in Tables 2 and 3, respectively, to see how
the run times for each software package are affected by the mesh size
for both Gaussian elimination and the conjugate gradient method.
Figure 3 shows the results for Gaussian elimination. MATLAB was
the fastest of all of the numerical computation packages with a time
of about one hour for the largest mesh of N × N = 4,096 × 4,096.
Octave was somewhat slower than MATLAB, but could solve a prob-
lem of the same size. The plots reveal that FreeMat and Scilab were
much slower and not able to solve problems of the same sizes as
MATLAB and Octave. In fact, Scilab was so slow that its line goes far
beyond the limit of the plot already for a mesh of 1,024 × 1,024.

Figure 4 displays the results for the conjugate gradient method.
The plot shows that MATLAB and Octave can solve the problem for
the largest mesh of N × N = 8,192 × 8,192, but MATLAB is some-
what faster than Octave. FreeMat and Scilab could not solve problems
on the same meshes as MATLAB and Octave, and were somewhat
slower on the meshes they were able to solve. Overall, the different
scales of both axes in Figures 3 and 4 highlight that the absolute run
times are larger for the conjugate gradient method than for Gauss-
ian elimination, but that the conjugate gradient method allowed for
larger meshes than Gaussian elimination.

CONCLUSIONS AND FUTURE WORK

WE TESTED THE usability and performance of four software pack-
ages: MATLAB, Octave, FreeMat, and Scilab. The usability of each soft-
ware package was determined by comparing its syntax and functions
to MATLAB. A package is considered more usable when its syntax is
similar to the syntax in MATLAB. Octave was determined to be the
most usable because its commands and syntax were compatible with
MATLAB for all of our tests. Scilab exhibited the most differences in
both syntax and commands. For example, instead of using the eig

63ALTERNATIVES TO THE MATHEMATICAL SOFTWARE PACKAGE MATLAB

function to compute eigenvalues like MATLAB, Octave, and FreeMat,
Scilab uses a function called spec.

To test the performance of the software packages, Gaussian elimi-
nation and conjugate gradient methods were used to solve the Pois-
son equation. The results from Table 2 reveal that MATLAB performed
the best when solving the system via Gaussian elimination. Octave
performed better than the other free software packages tested and
was able to solve the same size systems as MATLAB. The backslash
operator in Scilab was much slower than in MATLAB and Octave, and
was also the least powerful. The results from Table 3 reveal that MAT-
LAB, Octave, and Scilab were all able to solve the system with compa-
rable speed, but Scilab was not able to solve as large a system as Octave
or MATLAB. FreeMat was the weakest and could not solve the system
for larger mesh resolutions without requiring an excessive amount
of time.

In summary, FreeMat and Scilab are far less compatible with MAT-
LAB, and do not compare in regards to usability and performance.
However, MATLAB and Octave appear fully compatible in their syntax
and availability of commands. Our tests demonstrate that Octave is
slower only in one test, and when absolute run times are considered,
the performance difference is only an issue for very large problems.

Octave is of particular interest since it is known to work with a free
distributed-memory parallel extension pMATLAB [Kepner 2009].
The complex test problem used here is a classical test problem also
for parallel computing [Raim and Gobbert 2010; Sharma and Gob-
bert 2009]. In the future, we hope to continue testing Octave and its
parallel extensions to further analyze its performance and capabilities.

UMBC REVIEW 201364

ACKNOWLEDGMENTS

The author acknowledges financial support from the Department of
Mathematics and Statistics at UMBC. The hardware used in the com-
putational studies is part of the UMBC High Performance Computing
Facility (www.umbc.edu/hpcf). The facility is supported by the Na-
tional Science Foundation, with additional substantial support from
UMBC.

REFERENCES

1. Dietrich Braess. Finite Elements. Cambridge University Press, third edition, 2007.

2. Matthew Brewster and Matthias K. Gobbert. A comparative evaluation of MATLAB,

Octave, FreeMat, and Scilab on tara. Technical Report HPCF-2011-10,

UMBC High Performance Computing Facility, University of Maryland,

Baltimore County, 2011. www.umbc.edu/hpcf.

3. Ecaterina Coman, Matthew W. Brewster, Sai K. Popuri, Andrew M. Raim, and

Matthias K. Gobbert. A comparative evaluation of MATLAB, Octave, FreeMat,

Scilab, R, and IDL on tara. Technical Report HPCF-2012-15, UMBC High

Performance Computing Facility, University of Maryland, Baltimore County,

2012. www.umbc.edu/hpcf.

4. James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

5. Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations.

Cambridge Texts in Applied Mathematics. Cambridge University Press, second

edition, 2009.

6. Jeremy Kepner. Parallel MATLAB for Multicore and Multinode Computers. SIAM,

2009.

7. Andrew M. Raim and Matthias K. Gobbert. Parallel performance studies for an

elliptic test problem on the cluster tara. Technical Report HPCF-2010-2, UMBC

High Performance Computing Facility, University of Maryland, Baltimore

County, 2010. www.umbc.edu/hpcf.

65ALTERNATIVES TO THE MATHEMATICAL SOFTWARE PACKAGE MATLAB

8. Neeraj Sharma. A comparative study of several numerical computational packages.

M.S. thesis, Department of Mathematics and Statistics, University of Maryland,
 Baltimore County, 2010.

9. Neeraj Sharma and Matthias K. Gobbert. Performance studies for multithreading in

MATLAB with usage instructions on hpc. Technical Report HPCF-2009-1, UMBC

High Performance Computing Facility, University of Maryland, Baltimore

County, 2009. www.umbc.edu/hpcf.

10. Neeraj Sharma and Matthias K. Gobbert. A comparative evaluation of MATLAB,

Octave, FreeMat, andScilab for research and teaching. Technical Report

HPCF-2010-7, UMBC High Performance Computing Facility, University of

Maryland, Baltimore County, 2010. www.umbc.edu/hpcf.

11. David S. Watkins. Fundamentals of Matrix Computations. Wiley, third edition,

2010.

