
Matthew Brewster

Study of free alternative numerical computation

packages

Abstract:

Matlab is the most popular commercial package for numerical computations in mathematics,

statistics, the sciences, engineering, and other fields. Octave, FreeMat, and Scilab are free numerical

computational packages that have many of the same features as Matlab. They are available to download

on the Linux, Windows, and Mac OS X operating systems. We investigate whether these packages are

viable alternatives to Matlab for uses in research and teaching. We compare the results on the cluster

tara with 86 nodes, each with two quad-core Intel Nehalem processors (2.66 GHz, 8MB cache per core)

and 24GB of memory. Based on our tests, we conclude that Octave is the best viable alternative to

Matlab because it was not only fully compatible with Matlab in our tests, but it also performed very well

and was only slower in one test dealing with very large problems.

Introduction:

There are several numerical computational packages that serve as educational tools and are also

available for commercial use. Matlab (www.mathworks.com) is the most widely used such package.

Matlab is being used in many courses at UMBC from wide range of disciplines, but many of the

assignments in the courses only access basic features of the software and require limited computer

power, so a free alternative that can be used on a laptop or home computer would be of great value to

students. The focus of this study is to introduce three additional free numerical computational packages:

Octave (www.octave.org), FreeMat (www.freemat.org), and Scilab (www.scilab.org), and provide

information on which package is most compatible to Matlab users. To evaluate Octave, FreeMat, and

Scilab, a comparative approach is used based on a Matlab user's perspective. To achieve this task, we

perform some basic and some complex studies on Matlab, Octave, FreeMat, and Scilab. The basic

studies include basic operations solving systems of linear equations, computing the eigenvalues and

eigenvectors of a matrix, and two-dimensional plotting. The complex studies include direct and iterative

solutions of a large sparse system of linear equations resulting from finite difference discretization of an

elliptic test problem. The more complex test case is thus designed to give a feel for a research problem.

Clearly, the use of alternatives assumes that the user's needs are limited to the basic functionalities of

Matlab itself. Matlab does have a very rich set of toolboxes for a large variety of applications or for

certain areas with more sophisticated agorithms. If the use of one of them is profitable or integral to the

research, the other packages are likely not viable alternatives.

 More details of this work on comparing Matlab and its alternatives on a research computer at

UMBC are available in the HPCF tech. report [Brewster and Gobbert 2011]. Earlier work compared the

software packages in a home computer setting [Sharma 2010; Sharma and Gobbert 2010].

The computations for this study are performed using Matlab R2011a, Octave 3.0.4, FreeMat v4.0, and

Scilab-5.3.1. under the Linux operating system Redhat Enterprise Linux 5. The cluster tara at the

University of Maryland Baltimore County was used to carry out the computations. To learn more about

the tara cluster in the High Performance Computing Facility (HPCF) visit http://www.umbc.edu/hpcf/.

Basic Operations Test

In this section we perform the basic operations test using Matlab, Octave, FreeMat, and Scilab.

One of the basic functionalities of these software packages is the capability to solve a system of linear

equations by Gaussian elimination. For example we will consider the following a system of linear system

of equations

−�� +	�� = 3

�	 − �� − �� = 0

−�	 − �� =	−3

where the solution to this system is (1,−1,2). In Matlab to solve this system let us express this linear

system as a single matrix equation

�� = �

Where � is a square matrix consisting of the coefficients of the unknowns, � is the vector of unknowns,

and � is the right-hand side vector. For the particular system we have

� =
0 −1 1

1 −1 −1

−1 0 −1

 , b =

3

0

−3

To find a solution for this system in Matlab, left divide by � to obtain	� = �\�. Hence, Matlab uses the

backslash operator to solve this system. First, the matrix � and vector � are entered using the following:

� = [0		 − 1				1; 		1	 − 1		 − 1;		−1				0				 − 1]

� = [3; 0;−3]

Now use the backslash operator \ to call Gaussian elimination to solve the linear system and find the

vector u by calling � = �\� to solve this system. The resulting vector which is assigned to 	� is

� = 	
1

−1

2

The backslash operator works identically for all of the packages to produce a solution to the linear

system given and is an example of excellent compatibility of all packages.

We also investigate some other basic operations in these numerical computation packages and examine

the commands needed the execute them [Brewster and Gobbert 2011]. The command eig has the same

functionality in Octave and FreeMat as in Matlab for computing eigenvalues and eigenvectors, whereas

Scilab uses the equivalent command spec to compute them. Plotting is another important feature we

analyze by an m-file containing the two-dimensional plot function along with some common

annotations commands. Once again, Octave and FreeMat use the exact commands for plotting and

similar for annotating as Matlab whereas Scilab requires a few changes. For instance in Scilab, the

number π is defined using %pi instead of simply pi as in Matlab, and the command grid from Matlab is

replaced with xgrid. To overcome these conversions, we find that we can use the Matlab to Scilab

translator, which takes care of these command differences for the most part. The translator is unable to

convert the xlim command from Matlab to Scilab. To rectify this, we must manually specify the axis

boundaries in Scilab using additional commands in Plot2d. This issue brings out a major concern that

despite the existence of the translator, there are some functions that require manual conversion.

Complex Test Problem

This section tests the performance of the software packages using a classical complex test

problem [Demmel 1997; Watkins 2010] from partial differential equations that puts a strain on the code

both in terms of execution speed and memory consumption. The Poisson problem with homogeneous

Dirichlet boundary conditions is given as

−∆� = �	 in ,

 � = 0	on �Ω.

We consider this problem on the two dimensional unit square = (0,1) (0,1) ℝ�

where the function � is given by

�(�, �) = 	−2�� cos(2��) !"#�(��) − 2��!"#�(��) cos(2��).	

The test problem solution is designed to admit a closed-form solution as the true solution

�(�, �) = 	 !"#�(��)!"#�(��).

By applying the second-order finite difference approximation we get obtain equations that can be

organized into a linear system of dimension %�

��	 = 	�

with system matrix A that is symmetric positive definite. The theory of the finite difference method

[Braess 2007; Iserles 2009] tells us that the norm of the error u-u_h behaves like

‖� − �'‖()(Ω)	 	≤ +	ℎ�

as the mesh width h tends to zero, ℎ	 → 	0. We can use this theoretical result to predict how the norm

of the error is expected to behave, as the mesh width decreases for finer and finer meshes: Whenever

the mesh width is halved by a refinement of the mesh, the ratio of errors on consecutively refined

meshes approaches 4.

 The easiest way to solve the linear system �� = � is by Gaussian elimination by using the backslash

operator, as explained in the previous section. One should appreciate this simplicity, given that this

linear system here is now much larger, for instance, it has dimension %�= 1,024 for a N x N = 32 x 32

mesh. Figure 1 shows the mesh plot of the numerical solution of the system with the mesh resolution

of	32	 × 32.

Figure 1: Numerical solution. Figure 2: Numerical error.

Figure 2 shows the error at each mesh point, which is computed by subtracting the numerical solution

from the analytical solution; notice the scale of the vertical axis. We can see that the maximum error is

attained at the center of the domain in the x-y-plane and has a value of approximately 3	 ×	10/�.

We now want to solve the Poisson problem on finer meshes with mesh resolutions % = 20

for	1 = 1, 2, 3… , 13 in order to obtain a more precise solution. The results of this are summarized in

Table 1, which lists the mesh size of the discretization % × %, the dimension of the linear system %�,

the norm of the finite difference error ‖� − �'‖, and the ratio of the error norms when doubling the

mesh resolution (i.e., practically from one row of the table to the next).

Table 1: Convergence of finite difference error

% × % %� ‖� − �'‖ Ratio

32 × 32 1,024 3.0128e-3 N/A

64	 × 64 4,096 7.7811e-4 3.8719

128	 × 128 16,384 1.9765e-4 3.9368

256	 × 256 65,536 4.9797e-5 3.9690

512	 × 512 262,144 1.2494e-5 3.9856

1,024	 × 1,024 1,048,576 3.1266e-6 3.9961

2,048	 × 2,048 4,194,304 7.8019e-7 4.0075

4,096	 × 4,096 16,777,216 1.9353e-7 4.0313

8,192	 × 8,192 67,108,864 4.6797e-8 4.1355

In the first row for the resolution 32	 × 	32, we note first that the norm of the finite difference error of

3.0128	 × 10/� confirms the approximate observation from the plot in Figure 2. The entries for the

norm of the finite difference error in Table 1 show that the error is converging toward zero and the ratio

of the consecutively refined meshes is approaching four. Because the ratio and finite difference error

are behaving correctly in agreement with the finite difference theory, this shows that are code is

working correctly.

The previous table focused on the numerical results of the solution to the Poisson problem. We now

turn to comparing the performance of the four software packages in obtaining these results. Table 2

lists the mesh resolution %, the number of degrees of freedom (DOF), and the observed wall clock time

in hours:minutes:seconds for the different software packages, when solving the problem with Gaussian

elimination. The notation O.M. for an entry indicates that the code ran out of memory in that case and

could not solve the problem. For each mesh resolution, we carefully checked the numerical results and

found them to be identical for all packages in all cases, for which a solution was obtained. It is thus

appropriate to focus on comparing the performance of the packages.

Table 2: Performance of Gaussian elimination

By looking at Table 2, it can be concluded that the Gaussian elimination method built into the backslash

operator successfully solves the problem up to a mesh resolution of 4,096	 × 	4,096 in both Matlab, and

Octave. While the Gaussian elimination method built into the backslash operator in FreeMat

successfully solves the problem up to a mesh resolution of 2,048	 × 	2,048, in Scilab, it is only able to

solve up to a mesh resolution of 1,024	 × 	1,024. The wall clock results show that Matlab was faster

than Octave, FreeMat, and Scilab. Octave was faster and was able to solve a larger mesh resolution than

both FreeMat and Scilab. Scilab was the slowest and could not solve the same mesh resolution as the

other packages.

We see that none of the packages considered were able to solve the problem on an 8192	 × 	8192

mesh. The need to solve larger systems leads us to another method known as conjugate gradient

method to solve the linear system. This iterative method is an alternative to using Gaussian elimination

to solve a linear system with a symmetric positive definite system matrix, such as the given matrix. We

use the zero vector as the initial guess and a tolerance of 10/8 on the relative residual of the iterates.

% × % %� Matlab Octave FreeMat Scilab

 32 × 32 1,024 < 00:00:01 <00:00:01 <00:00:01 <00:00:01

 64 × 64 4,096 <00:00:01 <00:00:01 <00:00:01 <00:00:01

	128 × 	128 16,384 <00:00:01 <00:00:01 <00:00:01 00:00:11

256	 × 256 65,536 <00:00:01 <00:00:01 00:00:04 00:03:19

512	 × 512 262,144 00:00:01 00:00:02 00:00:28 00:39:04

1,024	 × 1,024 1,048,576 00:00:31 00:00:16 00:03:15 09:09:32

2,048 × 2,048 4,194,304 00:00:27 00:01:57 00:14:29 O.M.

4,096 × 4,096 16,777,216 00:02:07 00:15:37 O.M. O.M.

8,192	 × 8,192 67,108,864 O.M. O.M. O.M. O.M.

To solve the problem for larger meshes, we use a so-called matrix free implementation of the method to

save a significant amount of memory. Thus we expect to solve the problem for larger meshes. Table 3

lists the mesh resolution % ×%, the degrees of freedom (DOF), the number of iterations taken by the

iteration method to converge (#iter), and the observed wall clock times in hours:minutes:seconds for

the different software packages. For each mesh resolution, we again carefully compared the numerical

results and found them to be equivalent among the packages as well as equivalent to the results

obtained by Gaussian elimination in all cases, where a solution was obtained.

 Table 3: Performance of the conjugate gradient method

Table 3 shows that conjugate gradient method is indeed able to solve for mesh resolutions as large, or

larger, than those solved Gaussian elimination for each package. The matrix-free implementation of the

conjugate gradient method allows us to solve a mesh resolution up to 8,192	 × 	8,192 for Matlab and

Octave. Scilab is able to solve the system for a resolution up to 4,096	 × 	4,096. In FreeMat, we wrote

our own cg function because it does not have a built in pcg function and we were able to solve the

system for a resolution of 2,048	 × 	2,048 within a reasonable amount of time; the notation E.T.R.

indicates excessive time requirements of over 5 days for that case. The wall clock times show that

Octave was slightly faster than Matlab. They also show that FreeMat was slower than Octave, Matlab,

and Scilab and was not able to solve as large of a system before the time required to solve the problem

% ×% DOF #iter Matlab Octave FreeMat Scilab

 32 × 32 1,024 48 <00:00:01 <00:00:01 <00:00:01 <00:00:01

 64	 × 64 4,096 96 <00:00:01 <00:00:01 00:00:03 <00:00:01

 128	 × 128 16,384 192 <00:00:01 <00:00:01 00:00:23 <00:00:01

 256	 × 256 65,536 387 00:00:02 00:00:01 00:03:07 00:00:04

 512 × 512 262,144 783 00:00:40 00:00:02 00:15:21 00:00:36

 1,024 × 1,024 1,048,576 1,581 00:05:47 00:00:16 03:24:25 00:06:57

 2,048	 × 2,048 4,194,304 3,192 00:50:26 00:01:57 03:52:24 00:48:12

4,096	 × 4,096 16,777,216 6,452 07:46:24 00:15:37 E.T.R. 06:03:58

 8,192	 × 8,192 67,108,864 13,033 69:42:45 40:44:32 E.T.R. O.M.

became excessively long. Scilab performed better than FreeMat was able to solve system comparably as

fast as Octave and Matlab, but it ran out of memory in fact for the finest resolution attempted. We see

that only Matlab and Octave were in fact able to obtain the solution on all desired meshes, and their

results are shown in Table 3.

Conclusions:

We tested the four software packages Matlab, Octave, FreeMat, and Scilab for two criteria:

usability and performance.

The software package’s usability was determined by comparing the syntax and functions to

Matlab. We will consider a package more usable, the more similar its syntax is to Matlab. Octave was

determined to be the most usable because the commands and syntax it used were compatible with

Matlab for all of our tests. Scilab exhibited the most differences in both syntax and commands. For

example instead of using the eig function like Matlab, Octave, and FreeMat to compute eigenvalues

Scilab uses a function called spec.

To test the performance of the software packages we used the Gaussian elimination and

conjugate gradient methods to solve the Poisson equation. The results from Table 2 reveal that Matlab

performed the best when solving the system via Gaussian elimination. Octave performed the best out of

all the free software packages tested and was able to solve the same size systems as Matlab. Scilab’s

backslash operator was much slower, in compared to Matlab and Octave and was the least powerful.

The results from Table 3 reveal that Matlab, Octave, and Scilab were all able to solve the system

comparably fast, but Scilab was not able to solve as large a system as Octave or Matlab. FreeMat was

the weakest and could not solve the system for mesh resolutions larger mesh resolutions without

requiring an excessive amount of time.

 In summary, FreeMat and Scilab are far less compatible with Matlab in usability and

performance. However, Matlab and Octave appear fully compatible in their syntax and availability of

commands, and our tests demonstrate that Octave is slower only in one test, but when absolute run

times are considered, this becomes only a problem for very large problems. Additionally, Octave is of

interest, since it is known to work with a free distributed-memory parallel extension pMATLAB [Kepner

2009]. The complex test problem used here is a classical test problem also for parallel computing [Raim

and Gobbert 2010; Sharma and Gobbert 2009]. In the future we hope to continue testing Octave and its

parallel extensions to further analyze its performance and capabilities.

Acknowledgments

The author acknowledges financial support from the Department of Mathematics and Statistics

at UMBC. The hardware used in the computational studies is part of the UMBC High

Performance Computing Facility (www.umbc.edu/hpcf). The facility is supported by the U.S.

National Science Foundation, with additional substantial support from UMBC.

References:

Dietrich Braess. Finite Elements. Cambridge University Press, third edition, 2007.

Matthew Brewster and Matthias K. Gobbert. A comparative evaluation of Matlab, Octave, FreeMat, and

Scilab on tara. Technical Report HPCF-2011-10, UMBC High Performance Computing Facility, University

of Maryland, Baltimore County, 2011. www.umbc.edu/hpcf.

James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in

Applied Mathematics. Cambridge University Press, second edition, 2009.

Jeremy Kepner. Parallel MATLAB for Multicore and Multinode Computers. SIAM, 2009.

Andrew M. Raim and Matthias K. Gobbert. Parallel performance studies for an elliptic test problem

on the cluster tara. Technical Report HPCF-2010-2, UMBC High Performance Computing Facility,

University of Maryland, Baltimore County, 2010. www.umbc.edu/hpcf.

Neeraj Sharma. A comparative study of several numerical computational packages. M.S. thesis,

Department of Mathematics and Statistics, University of Maryland, Baltimore County, 2010.

Neeraj Sharma and Matthias K. Gobbert. Performance studies for multithreading in Matlab with

usage instructions on hpc. Technical Report HPCF-2009-1, UMBC High Performance Computing

Facility, University of Maryland, Baltimore County, 2009. www.umbc.edu/hpcf.

Neeraj Sharma and Matthias K. Gobbert. A comparative evaluation of Matlab, Octave, FreeMat, and

Scilab for research and teaching. Technical Report HPCF-2010-7, UMBC High Performance

Computing Facility, University of Maryland, Baltimore County, 2010. www.umbc.edu/hpcf.

David S. Watkins. Fundamentals of Matrix Computations. Wiley, third edition, 2010.

