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Abstract

Calcium is a critical component in many cellular functions. It serves many important func-
tions such as signal transduction, contraction of muscles, enzyme function, and maintaining
potential difference across excitable membranes. In this study we examine calcium waves in
a heart cell and how they diffuse. Calcium sparks are intracellular release events which are
important in converting electrical stimuli into mechanical responses. We investigate the effects
of a stochastic spatially uniform flux density term as well as of a stochastic spatially varying flux
density term. We hypothesize that having a stochastic flux density term is more physiologically
accurate. We use an array of statistical techniques as well as parallel computing to facilitate
the large number of simulation runs.

1 INTRODUCTION

Calcium is a critical component in many cellular functions. It serves many important functions
such as signal transduction, contraction of muscles, enzyme function, and maintaining potential
difference across excitable membranes. Calcium in mammals is stored in their bones and the
calcium ions are released from the bone under controlled conditions and are then transported
through the blood stream. In this study we examine calcium waves in heart cells and how they
diffuse. Calcium sparks are intracellular Ca2+ release events which are important in converting
electrical stimuli into mechanical responses. In cardiac muscle cells Ca2+ sparks arise from the
activation of ryanodine receptors which causes Ca2+ from the sarcoplasmic reticulum. The calcium
ions generated by the spark create waves which diffuse throughout the cell and can replicated.

The existing model for calcium flow is given by a system of coupled, time-dependent advection-
reaction-diffusion equations

∂u(i)

∂t
−∇ ·

(
D(i)∇u(i)

)
+ β(i) · ∇u(i) = r(i) +

(
− Jpump + Jleak + JSR

)
δi1 (1.1)

for concentrations u(i)(x, t) of the ns = 3 chemical species i = 1, . . . , ns as functions of space
x ∈ Ω ⊂ R3 and time 0 ≤ t ≤ tfin [6]. This model is coupled with no flow boundary conditions in
the cell wall, and the concentrations at the initial time are set at basal levels. The second term
models diffusion with diffusivity D(i) ∈ R3×3. Next, the third term is the advection term with
velocity β(i) ∈ R3. r(i) are the reaction terms which are nonlinear functions of different species and
couple the three equations. Terms belonging only to the equation for calcium species i = 1 are
multiplied with the Kronecker delta function δi1 = 1 if i = 1 and δi1 = 0 otherwise.

• Uniform CRU Flux Density: (UCFD) The key term of the model is the

JSR(u(1), x, t) =
∑

x̂ ∈ Ωs

g Sx̂(u(1), t) δ(x− x̂) (1.2)

which describes the release of calcium for all calcium release units (CRUs) in the set of CRUs
Ωs [2,4]. The release of calcium at each CRU is modeled as a point source on the spatial scale
of the cell and is represented mathematically as a Dirac delta distribution δ(x− x̂) for a CRU
located at x̂. Recall from the definition of the Dirac delta distribution that (i) δ(x− x̂) = 0
when x 6= x̂ and (ii)

∫
Ω ψ(x)δ(x− x̂)dx = ψ(x̂) for any continuous function ψ(x). We get the

amount of calcium injected into the cell at one point x̂ is given by the flux density g, that is,
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∫
Ω gδ(x− x̂)dx = g by the definition of delta distribution. Thus g gives the amount of calcium

released into the cell in 1 ms. The effect of a CRU switching in and off is incorporated by the
indicator function Sx̂, where Sx̂ = 1 when the CRU is turned on and Sx̂ = 0 when CRU is
turned off. In the original model g ≡ const. was kept constant for all CRUs and for all time.

• Stochastic Uniform CRU Flux Density (SUCFD): First, we investigate the effects of
introducing a new JSR given by

JSR(u(1),x, t) =
∑

x̂ ∈ Ωs

g Sx̂(u(1), t) δ(x− x̂), (1.3)

in which the g term such that g ∈ N(µg, σg) for all CRUs while keeping all other parameters
constant.

• Stochastic Independent CRU Flux Density (SICFD): Next, we investigate the ef-
fects of introducing another JSR term which utilizes stochastic g term at any CRU, gx̂ ∈
N(µg, σg) ∀ x̂ ∈ Ωs, which will vary the amount of calcium injected into the cell at each
CRU. Therefore, gx̂ varies in space, but is constant in time. The new JSR term is given by

JSR(u(1), x, t) =
∑

x̂ ∈ Ωs

gx̂Sx̂(u(1), t) δ(x− x̂). (1.4)

By experimenting with stochastic g values and gx̂ values we hope to create a more physiologically
accurate model and better understand the the effects of the flux density on the model. To examine
the effects of stochastic g and gx̂ values we will look at the correlation between them and the total
µM of calcium over the entire domain Ω, given by I(1) =

∫
Ω u

(1)dx. [1, 3, 5].

2 THE MODEL

The model for calcium flow in a heart cell given by (1.1) consists of ns = 3 equations, where
(i = 1) represents calcium, (i = 2) represents an endogenous calcium buffer, and (i = 3) represents
a fluorescent indicator dye. We neglect the advective effects by setting β(i) ≡ 0 for i = 1, 2, 3. The
reaction terms r(i) are nonlinear functions of the different species and couple the three equations.
The reversible binding and unbinding of the indicator and buffer species are described by the the
reaction model

C + F 
 G

C + B 
 H

where C has concentration u(1), F has concentration u(2), and B has concentration u(3). represent
the calcium ions, the fluorescent calcium indicator, and endogenous buffer respectively. We let G
have concentration u(4) and H have concentration u(5) represent the F and B bound to calcium.
The reactions rates for these species are given by

R(2) = −k+
2 u

(1)u(2) + k−2 u
(4),

R(3) = −k+
3 u

(1)u(3) + k−3 u
(5).

The total of bound and unbound indicator and buffer species is conserved, that is, u(2) + u(4) = u2

and u(3) + u(5) = u3 can be used to eliminate u(4) and u(5) from the reaction rates [4]. Therefore,
we get the reaction terms:

r(i)(u(1), . . . , u(ns)) :=


ns∑
j=2

R(j)(u(1), u(j)), for i = 1,

R(i)(u(1), u(i)), for i = 2, . . . , ns.
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with reaction rates

R(i) = −k+
i u

(1)u(i) + k−i

(
ui − u(i)

)
for i = 2, . . . , ns.

One to the terms of the calcium equation with i = 1 are multiplied with Kroneker delta function
δi1. These are the nonlinear drain term Jpump, the constant balance term Jleak, and the calcium
release term JSR [4].

The Jpump term is given by the equation

Jpump(u(1)) =
Vpump(u

(1))npump

(Kpump)npump + (u(1))npump
.

Jleak = Jpump(0.1) ≡ const. for the calcium concentration at basal level 0.1 µM. A complete list of
model’s parameter values is given in Table 1.
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Table 1: Table of parameters for the calcium wave model.

Parameter Description Values/Units

Ω Rectangular domain in µm (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0)

D(1) Calcium diffusion coefficent diag(0.15, 0.15, 0.30) µm2/ ms

D(2) Mobile buffer diffusion coefficient diag(0.01, 0.01, 0.02) µm2/ ms

D(3) Stationary buffer diffusion coefficient diag(0.00, 0.00, 0.00) µm2/ ms

β(i) Advection velocity term (0, 0, 0)T

u
(1)
ini Initial calcium concentration 0.1 µM

u
(2)
ini Initial mobile buffer concentration 45.9184 µM

u
(3)
ini Initial stationary buffer concentration 111.8182 µM

∆xs CRU spacing in x direction 0.8 µm
∆ys CRU spacing in y direction 0.8 µm
∆zs CRU spacing in z direction 0.2 µm
g Flux density distribution M µm3

µg Flux density mean 75 M µm3

σg Flux density standard deviation 25 M µm3

F Faraday constant 96,485.3 C/M
Pmax Maximum probability rate 0.3 ms
Kprob Probability sensitivity 0.2 µM
nprob Probability Hill coefficient 4.0
∆ts CRU time step 1.0 ms
topen CRU opening time 5.0 ms
tclosed CRU refractory period 100 ms
k+

2 Forward reaction rate 0.08 µM ms
k−2 Backward reaction rate 0.09 / ms
ū2 Total of bound and unbound indicator 50.0 µM
k+

3 Forward reaction rate 0.10 µM ms
k−3 Backward reaction rate 0.10 / ms
ū3 Total bound and unbound buffer 123.0 µM
vpump Maximum pump strength 4.0 µM ms
kpump Pump sensitivity 0.184 µM
npump Pump Hill coefficient 4
Jleak Leak term 0.320968365152510 µM / ms
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3 METHODS

3.1 Simulation Tools For Calcium Waves

In order to simulate the calcium spark model memory efficient numerical methods are implemented.
The uniform rectangular CRU lattice is used to create a regular numerical mesh. The model uses
constant diffusion coeffcients. We use the finite volume method for spatial discretization. The
parameters to control the timestep selection in the time stepping NDFk method are τ oderel = 10−6

and τ odeabs = 10−8 and the tolerance for the Newton solver is τnewt = 10−4. The Krylov subspace
method used to solve the system of linear equations is BiCGSTAB with tolerance τ lin = 10−2.

The C code used to perform the parallel computations uses MPI for parallel communications.
The computations for this study are preformed on the cluster tara using C/MPI under the Linux
operating system RedHat Enterprise Linux 5 on multiple nodes. This cluster has a total of 86
nodes. Each node features two quad-core Intel Nehalem X5550 processors (2.66 GHz, 8 MB cache)
with 24 GB of memory. To distribute the vector of unknowns among p processes, we split the mesh
in the z-direction and distribute the unknowns into p subdomains for p parallel processes. For more
specifics refer on how this problem was parallelized refer to [6].

3.2 Stochastic Parameter Study

In order to understand the effects of SUCFD and SICFD on the model we must repeatedly sample
g and gx̂ from a normal distribution given by N(σ, µ) by running the code M number to times.
For both g and gx̂ we have chosen to use a normal distribution with σ = 75 and µ = 25.

After M runs have been performed, we determine the linear correlation between g and the total
µM of calcium. To do this we use the Pearson product-moment correlation coefficient to measure
the linear correlation between the two variables. To calculate this coefficient we use the formula

r =
ΣM
i=1(Xi − X̄)(Yi − Ȳ )√

ΣM
i=1(Xi − X̄)2

√
ΣM
i=1(Yi − Ȳ )2

, (3.1)

where Xi and Yi are vectors of length M and X̄ and Ȳ are the average values of the elements of
the vectors. r will have a value between −1 and 1. If r = 0 then the two variables exhibit no
correlation. If r < 0 then the variable have a negative correlation which means that as one variable
increases the other decreases. If r > 0 then the variables have a positive correlation and as one
variable increases the other variable increases. The closer r is to 1 or −1 the more the variables
are correlated.

To automate the running of the SUCFD case a series of three bash scripts. The first bash script
automates the creation of M directories each with a dynamically generated input file such that g is
sampled from a normal distribution N(µg, σg). Then another bash script submits and runs instance
of the spark code and a dynamically generated spark file and stores the data for each run in each
directory. Then a post-processing script stores the run number, associated g, and the value of the
calcium integral and generates plots with Matlab. Further post-processing is done with another
series of Matlab scripts to create animations of the data. A similar method will be used for the
SICFD case except that an array of g values will be created for each CRU for M runs.
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4 RESULTS

4.1 Visualization of Simulations of Calcium Induced Calcium Flow

We solve the model of calcium induced calcium flow given by a system of coupled, time-dependent
advection-reaction-diffusion equations (1.1), where the calcium injection is modeled by (1.2) with
a constant uniform CRU flux density. The parameters are given in Table 1. Currently, there
are several different ways of analyzing the behavior of the calcium simulations. To illustrate the
different visualization tool we plot the simulations with g held constant. We first show three ways
to visualize the simulation when g = 110 constant uniformly at all CRUs. In this case, we have
several waves self initiate and propagate throughout the cell. The first plotting method is called
CRU Plot, shown in Figure 1. The plots in this figure show which CRUs are open at each timestep
during the simulation. We see that at t = 100 a few CRUs are open, the wave mostly spreads
along x and y dimensions at this point. Later on we see that the CRUs have begun to open on
both sides of the cell and spread across it. During our simulation of 1000 ms, several waves have
been generated and run across the cell. The second plotting method is called Isosurface Plot,
shown in Figure 2. The plots in the figure show the same time steps as in the CRU plots, but on
the calcium concentration. The Isosurface Plots give us a 3-dimensional representation how the
calcium diffuses through the cell based on the concentration of calcium species u1. An isosurface
plot shows the surface in three dimensions, on which the concentration of equals the critical value
ucrit = 65µM. Inside the surface, the concentration is higher than ucrit, while outside the plotted
area the concentration is lower than ucrit. Where the surface with u1 = ucrit touches the boundary
of the domain, the concentration may be higher than ucrit, and this is indicates by the color palette
increasing from blue over yellow to red. Again, we see that when t = 100 in Figure 2 there is a
small amount of calcium in the cell. As time advances, we see that the amount of calcium in the
cell increases and diffuses throughout the cell. The third plotting method is called Confocal Image
Plot, shown in Figure 3. The confocal images are meant to replicate what scientists see in the
laboratory experiments using florescent dye to bind to the calcium in the heart cell. The lighter of
green shades indicate higher calcium concentrations, while the darker green shades indicate lower
concentrations of calcium. When t = 100, we see calcium start to diffuse across the cell as shown
in Figure 3. In the following times, the confocal images show the shape of a spiral wave, that is, a
spiral shaped form with center at the original location of the wave and the parts outside of the cell
domain cut off.

We also show the three types of plots for g = 50 constant at all CRU points in Figures 4, 5, and
6. One can see that Figure 4 shows CRU opening from time to time, but no wave self-organizes,
and Figure 5 shows no significant calcium cone. Figure 6 also shows no waves. We conclude from
the simulations for g = 110 and g = 50 that the flux density value at which waves self-organize
must lie in between these values. This motivates our choice of mean value and standard deviation
when treating g as a stochastic variable in the following sections.

6



t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 1: The CRU plots for g = 110.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 2: The isosurface plots for g = 110.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 3: The confocal image plots for g = 110.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 4: The CRU plots for g = 50.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 5: The isosurface plots for g = 50.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 6: The confocal image plots for g = 50.
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(a) M = 10 samples (b) M = 100 samples

(c) M = 1000 samples

Figure 7: Plots of µ M vs. g with tfin = 100 ms.

4.2 Spatially Uniform CRU Flux Density

4.2.1 SUCFD Simulations Using A Smaller Runtime.

We begin by analyzing the the results of the SUCFD case with tfin = 100 ms instead of using
the standard value of tfin = 1000 ms for full simulations. We used a smaller run time to increase
the speed of the simulations so that we could generate samples quickly and see if would could
determine any trends from the data. The abbreviated runs take approximately less than 1 min to
run as opposed to 3 to 5 minutes on average for the full simulations saving a significant amount
of time as the sample size increases. The time between runs varies because the number of CRU’s
that are open and the amount of calcium that is released in each simulations changes with each
run. The more CRU’s that open the longer the code takes to run.

Figure 7 shows graphs of µM vs. total g of calcium. Figure 7 (a) was produced by compiling
the data from M = 10 samples with g sampled from the normal distribution N(75, 25) with mean
of 75 µM and standard derivation 25 µM. We see that as value of g increases the total µ M of
calcium also increases. Because the sample size is small we cannot predict a general trend in the
data.

We increase the resolution by taking M = 100 samples and produce Figure 7 (b). Again we
see that as the value of g increases we the total µM of calcium increases. We see a more defined
trend in the data and observe that there exists some critical value of for g ≈ 100 where the calcium
concentration begins to increase.

To get a better understanding of where the critical point lies we increase the sample size yet
again. Figure 7 (c) was produced by M = 1500 samples. We see that the previous trend in the
data has continued, but a few outliers have developed. We see that critical point is more clearly
defined and is slightly less than g = 100. To fully analyze the effects we increase the the final time
to tf in = 1000 and get more reliable results.
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(a) M = 10 samples (b) = 100 samples

(c) M = 1000 samples

Figure 8: Plots of µ M vs. g with tfin = 1000 ms.

4.2.2 SUCFD Simulations with tfin = 1000 ms.

Now, we analyze the results of running the SUCFD with tfin = 1000 ms to get a more complete
picture of how g influences the behavior of the model. First, we examine the results after taking
M = 10 samples shown in Figure 8 (a). We see that there is no noticeable trend in the data, so we
increase the number of samples to M = 100. Figure 8 (b) shows the data for M = 100 samples and
we see that as g increases the total amount of calcium in the cell also increases. We also see that
there is a critical point at approximately g = 100 where calcium begins to increase dramatically.
To gain a better understanding of this trend we take M = 1000 samples. Figure 8 shows the data
for M = 1000 samples. We see that the trend observed with M = 100 samples is sustained and
that as the value of g increases the total amount of calcium increases. Furthermore, we obtain a
correlation coefficient of r = 0.4553 indicating moderate correlation.

Next, we use the data from the full simulations but scale the value calcium integral on the y
axis by by the volume of the cell, V = 10000 so that we can better see where waves begin to self
organize and propagate. Figure 9 (a) shows the results M = 1000 with tfin = 1000ms with the y
axis scaled by V . After scaling the y axis, we search for the critical point at which calcium integral
becomes greater than 0.1µM. Figure 9 (b) shows that the critical point where activation occurs at
g ≈ 71.5 Mµm3. In addition, we investigate the region in which the calcium integral begins to
blowup. Looking at Figure 9 we see that calcium activity is occurring between g ≈ 98 Mµm3 and
g ≈ 103 Mµm3. Furthermore, we see calcium begin to blowup at g = 104 Mµm3.
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(a) M = 1000 samples with a scaled y-axis (b) Initial Region of calcium activity

(c) Calcium blow up region

Figure 9: µ M/10000 vs. g calcium with M = 1000 with tfin = 1000 ms

4.3 SICFD Simulations with tfin = 1000 ms.

After examining the results of the SUCFD case we turn our attention to the SICFD case. To get
a better understanding of how SICFD would affect the model, we design a test case. To test the
effects of SICFD we let the right half of the cell have CRU values of gx̂r for all CRUs on that side
and then we vary the left half CRU values for all CRUs on the left side gx̂l

. In our experiment we
fix gx̂r = 110.0 and we let gx̂l

= 110, 105, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55.
To further illustrate how varying gx̂l

effects the SICFD simulations we show the CRU plots for
gx̂l

= 110, 95, 75, and 55 in Figures 1, 10, 11, and 12, respectively. Figure 1 shows that for x̂l = 110
waves form and propagate on both halves of the cell. Next, Figure 10 shows for gx̂l

= 95 that the
waves on the left side of the cell begin to slow down slightly, compared to the waves on the right
half. As the values gx̂l

decrease, we see that the wave propagation on the left half eventually stops
altogether around gx̂l

= 55, as illustrated in Figures 11 and 12. Therefore, these test cases illustrate
how varying the value of CRUs across the cell can dramatically affect the wave velocities, possibly
hindering wave propagation all together.

Finally, the linescane images in Figure 13 provide a compact summary of the behavior observed
in the previous plos. The plots show how calcium concentration changes on the z-axis over time.
We see that as the values of gx̂l

decrease, the wave velocities decrease on the left side of the cell.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 10: The CRU plots with gx̂l
= 95.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 11: The CRU plots with gx̂l
= 75.
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t = 100 t = 200

t = 300 t = 400

t = 500 t = 600

t = 700 t = 800

t = 900 t = 1,000

Figure 12: The CRU plots with gx̂l
= 55.
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gx̂r = 110 gx̂r = 100

gx̂r = 90 gx̂r = 80

gx̂r = 70 gx̂r = 60

Figure 13: The linescan plots with gx̂l
= 110, 100, 90, 80, 70, 60.
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5 CONCLUSIONS

The results of our SUCFD studies show that after a sufficient number of runs a pattern emerges
in the data. We also see that shorter simulations do not represent longtime behavior because
the CRUs may not have had sufficient time to open and release calcium. After running longer
simulations and taking a sufficient number of samples, we can be more confident in the pattern of
the data that emerges. Furthermore, we see that if the value of g is less than our critical value then
it is highly unlikely that waves occur and if the value of g is greater than the critical value then it
is very likely that waves will occur. Finally, more analysis of long times show that calcium activity
begins near g = 75 which supports our choices for µg = 75 and σg = 25.

Our results for the test case of the SICFD code show that the code reacts correctly to spatially
non-uniform values of g. This sets the stage for fully stochastic simulations using the SICFD code.
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