
Parallel Performance Studies for a Clustering Algorithm
Robin V. Blasberg∗ and Matthias K. Gobbert†

∗Naval Research Laboratory, Washington, D.C.
†Department of Mathematics and Statistics, University of Maryland, Baltimore County,

gobbert@math.umbc.edu

Abstract

Affinity propagation is a clustering algorithm that functions by identifying similar datapoints in an
iterative process. Its structure allows for taking full advantage of parallel computing by enabling the solution
of larger problems and by solving them faster than possible in serial. We show that our memory-optimal
implementation with minimal number of communication commands per iteration performs excellently on
the distributed-memory cluster hpc and that it is efficient to use all 128 processor cores currently available.

1 Introduction

Affinity propagation is a relatively new clustering algorithm introduced by Frey and Dueck [2] that functions
by identifying similar datapoints in an iterative process. A key advantage of the algorithm is that it does not
require the user to predetermine the number of clusters and is thus useful particularly in the case of large
numbers of clusters in the data. If N denotes the number of datapoints in the given dataset, a memory-optimal
implementation of the algorithm requires three N ×N matrices. The memory requirements for the algorithm
grow very rapidly with N , for instance, a dataset with N = 17,000 datapoints needs about 6.6 GB of memory.
However, the systematic structure of the algorithm allows for its efficient parallelization with only two parallel
communication commands in each iteration. Thus, both the larger memory available and the faster run times
achievable by using several nodes of a parallel computer demonstrate the combined advantages of a parallel
implementation of the algorithm. The structure of the algorithm and its memory requirements are discussed in
more detail in Section 2. Due to its excellent potential for scalability, the algorithm is also an ideal candidate
for evaluating the hardware of a parallel cluster in extension of earlier studies such as [3].

The distributed-memory cluster hpc in the UMBC High Performance Computing Facility (HPCF, www.umbc.
edu/hpcf) has an InfiniBand interconnect network and 32 compute nodes each with two dual-core processors
(AMD Opteron 2.6 GHz with 1024 kB cache per core) and 13 GB of memory per node for a total of up to
four parallel processes to be run simultaneously per node. This means that up to 128 parallel MPI processes
can be run and the cluster has a total system memory of 416 GB. Section 3 describes the parallel scalability
results in detail and provides the underlying data for the following summary results. Table 1 summarizes the
key results of the present study by giving the wall clock time (total time to execute the code) in seconds. We
consider nine progressively larger datasets, as indicated by the number of datapoints N , resulting in problems
with progressively larger memory requirements. The parallel implementation of the numerical method is run
on different numbers of nodes from 1 to 32 with different numbers of processes per node used. Specifically, the
upper-left entry of each sub-table with 1 process per node on 1 node represents the serial run of the code, which
takes 1.73 seconds for the dataset with N = 500 datapoints. The lower-right entry of each sub-table lists the
time for running 4 processes on all 32 nodes using both cores of both dual-core processors on each node for a
total of 128 parallel processes working together to solve the problem which takes 0.13 seconds for the N = 500
case. More strikingly, one realizes the advantage of parallel computing for a case with N = 17,000 datapoints
requiring 6.6 GB of memory: The serial run of about 291/4 minutes (1754.29 seconds) can be reduced to about
24 seconds using 128 parallel processes. Yet, the true advantage of parallelizing the algorithm is evident for a
problem with N = 126,700 datapoints that uses over 367 GB of memory. To solve this problem requires the
combined memory of all 32 nodes of the cluster in order to be solved at all. Thus, a parallel implementation
allows the solution of a problem that simply could not be solved before in serial, and it moreover takes only the
very reasonable amount of 44 minutes (2641.05 seconds) to complete.

The results in Table 1 are arranged to study two key questions: (i) “Does the code scale optimally to all
32 nodes?” and (ii) “Is it worthwhile to use multiple processors and cores on each node?” The first question
addresses the quality of the throughput of the InfiniBand interconnect network. The second question sheds light
on the quality of the architecture within the nodes and cores of each processor.

(i) Reading along each row of Table 1, the wall clock time approximately halves as the number of nodes
used doubles for all cases of N except for large numbers of nodes for the smallest datasets. That is, by
being essentially proportional to the number of nodes used, the speedup is nearly optimal for all cases

1



of significant size which are the cases for which parallel computing is relevant. This is discussed in more
detail in Section 3 in terms of the number of parallel processes.

(ii) To analyze the effect of running 1, 2, or 4 parallel processes per node, we compare the results column-wise
in each sub-table. It is apparent that, with the exception of the largest numbers of nodes for the smallest
dataset, the execution time of each problem is in fact vastly reduced with doubling the numbers of processes
per node albeit not quite halved. These results are still excellent and confirm that it is not just effective to
use both processors on each node, but also to use both cores of each dual-core processor simultaneously.
Roughly, this shows that the architecture of the IBM nodes purchased in 2008 has sufficient capacity in all
vital components to avoid creating any bottlenecks in accessing the memory of the node that is shared by
the processes. These results thus justify the purchase of compute nodes with two processors (as opposed
to one processor) and of dual-core processors (as opposed to single-core processors).

Table 1: Performance on hpc using OpenMPI. Wall clock time in seconds for the solution of problems with N
data points using 1, 2, 4, 8, 16, 32 compute nodes with 1, 2, and 4 processes per node. N/A indicates that the
case required more memory than available.

(a) N = 500 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 1.73 0.91 0.44 0.22 0.13 0.08
2 processes per node 0.92 0.46 0.21 0.12 0.09 0.07
4 processes per node 0.45 0.22 0.13 0.10 0.11 0.13
(b) N = 1,300 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 9.60 4.93 2.47 1.31 0.69 0.41
2 processes per node 5.09 2.64 1.54 0.76 0.43 0.32
4 processes per node 2.58 1.40 0.73 0.45 0.33 0.36
(c) N = 2,500 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 35.00 17.69 8.95 4.69 2.41 1.30
2 processes per node 20.47 9.62 4.87 2.54 1.36 0.97
4 processes per node 9.05 4.84 2.54 1.67 1.04 0.73
(d) N = 4,100 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 94.40 47.72 24.13 12.42 6.33 3.32
2 processes per node 50.45 27.96 12.94 6.65 3.67 2.23
4 processes per node 25.45 12.53 6.45 3.95 2.43 1.68
(e) N = 9,150 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 489.32 249.63 125.59 64.56 32.93 16.99
2 processes per node 291.32 142.66 75.03 39.34 19.49 10.08
4 processes per node 130.38 69.78 33.64 19.98 12.15 7.27
(f) N = 17,000 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 1754.29 854.63 427.95 223.98 113.79 57.21
2 processes per node 939.21 503.39 255.32 128.41 63.56 36.32
4 processes per node 448.83 224.60 118.93 60.18 37.27 24.01
(g) N = 33,900 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node N/A N/A 2150.87 981.88 501.16 265.30
2 processes per node N/A N/A 1260.82 650.91 335.64 175.80
4 processes per node N/A N/A 559.66 290.41 162.27 101.13
(h) N = 65,250 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node N/A N/A N/A N/A 2528.92 1116.41
2 processes per node N/A N/A N/A N/A 1397.71 861.20
4 processes per node N/A N/A N/A N/A 719.32 364.10
(i) N = 126,700 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node N/A N/A N/A N/A N/A N/A
2 processes per node N/A N/A N/A N/A N/A 4528.19
4 processes per node N/A N/A N/A N/A N/A 2641.05

2



2 The Method

Affinity propagation functions by identifying similar datapoints in an iterative process [2]. The dataset is given
as N datapoints of x and y coordinates, and the goal of the algorithm is to cluster groups of datapoints that
are close to each other. The method of affinity propagation is based on a criterion embedded in a similarity
matrix S = (Sij) where each component Sij quantifies the closeness between datapoints i and j. We follow the
default suggested in [2] by using the negative square of the Euclidean distance between the datapoints.

The algorithm updates a matrix A of ‘availabilities’ and a matrix R of ‘responsibilities’ iteratively until
the computed clusters do not change for convits many iterations. Our memory-optimal code uses the three
matrices S, A, and R as the only variables with significant memory usage. All matrices are split consistently
across the p parallel processes by groups of adjacent columns. Our implementation uses the symmetry of S to
compute as many quantities as possible by using only information that is local to each parallel process. This
minimizes the number of parallel communications. As a result, we have only two MPI_Allreduce calls in each
iteration. We use the programming language C and the OpenMPI implementation of MPI.

Since affinity propagation is based on matrix calculations, it has relatively large memory requirements. This
can be seen concretely in Table 2 (a) which shows in the column p = 1 the total memory requirements in MB
for the three N ×N matrices using 8 bytes per double-precision matrix component. The remaining columns list
the memory requirement for each parallel process if the three matrices are split into p equally large portions
across the processes. For instance, a dataset with N = 126,700 datapoints requires 367,421 MB or over 367 GB.
This kind of memory requirement cannot be accommodated on a serial computer but requires the combined
memory of many nodes of a parallel computer. Table 2 (b) shows the memory usage observed for our code. We
observe that the memory required in reality is more predicted, but within reason for some smaller variables and
required libraries; it is clear that we did not overlook any large arrays in our prediction. The memory usage is
also stable over time, thus confirming that the code does not have a memory leak.

For testing purposes, we use a synthetic dataset that we can create in any desired size N . Moreover, this
dataset is designed to let us control the true clusters. This allows us to check that the algorithm converged to
the correct solution, independent of the number of parallel processes. The design of the synthetic dataset and
its properties are discussed in detail in [1]. We run the affinity propagation algorithm with default numerical
parameters suggested by [2] of maxits = 1,000, convits = 100, and damping parameter λ = 0.9.

Table 2: Memory usage on hpc using OpenMPI in MB per process. For small N values, N/A indicates that the
run finished too fast to observe memory usage. For large N values, N/A indicates that the case required more
memory than available per node.

(a) Predicted memory usage in MB per process
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 6 3 1 1 < 1 < 1 < 1 < 1
1,300 39 19 10 5 2 1 1 < 1
2,500 143 72 36 18 9 4 2 1
4,100 385 192 96 48 24 12 6 3
9,150 1,916 958 479 240 120 60 30 15

17,000 6,615 3,307 1,654 827 413 207 103 52
33,900 26,303 13,152 6,576 3,288 1,644 822 411 205
65,250 97,448 48,724 24,362 12,181 6,090 3,045 1,523 761

126,700 367,421 183,711 91,855 45,928 22,964 11,482 5,741 2,870
(b) Observed memory usage on hpc using OpenMPI

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 N/A N/A N/A N/A N/A N/A N/A N/A

1,300 169 152 151 151 N/A N/A N/A N/A
2,500 274 204 177 164 160 N/A N/A N/A
4,100 516 325 237 195 175 178 327 385
9,150 2,050 1,092 621 387 272 227 352 397

17,000 6,752 3,444 1,797 974 566 374 425 434
33,900 N/A N/A 6,722 3,437 1,797 990 733 589
65,250 N/A N/A N/A N/A 6,248 3,216 1,846 1,146

126,700 N/A N/A N/A N/A N/A N/A 6,071 3,260

3



3 Performance Studies on hpc

The serial run times for the larger datasets observed in Table 1 bring out one key motivation for parallel
computing: The run times for a problem of a given, fixed size can be potentially dramatically reduced by
spreading the work across a group of parallel processes. More precisely, the ideal behavior of parallel code for
a fixed problem size using p parallel processes is that it be p times as fast as with 1 process. If Tp(N) denotes
the wall clock time for a problem of a fixed size parametrized by the number N using p processes, then the
quantity Sp := T1(N)/Tp(N) measures the speedup of the code from 1 to p processes, whose optimal value is
Sp = p. The efficiency Ep := Sp/p characterizes in relative terms how close a run with p parallel processes is
to this optimal value, for which Ep = 1. This behavior described here for speedup for a fixed problem size is
known as strong scalability of parallel code.

Table 3 lists the results of a performance study for strong scalability. Each row lists the results for one
problem size parametrized by the number of datapoints N . Each column corresponds to the number of parallel
processes p used in the run. The runs for Table 3 distribute these processes as widely as possible over the
available nodes. That is, each process is run on a different node up to the available number of 32 nodes. In
other words, up to p = 32, three of the four cores available on each node are idling, and only one core performs
calculations. For p = 64 and p = 128, this cannot be accommodated on 32 nodes, thus 2 processes run on each
node for p = 64 and 4 processes per node for p = 128. Comparing adjacent columns in the raw timing data
in Table 3 (a) indicates that using twice as many processes speeds up the code by nearly a factor of two at
least for all larger datasets. To quantify this more clearly, the speedup in Table 3 (b) is computed, which shows
near-optimal with Sp ≈ p for all cases up to p = 32 which is expressed in terms of efficiency 0.84 ≤ Ep ≤ 1 in
Table 3 (c) for all but the two smallest datasets.

The customary visualizations of speedup and efficiency are presented in Figure 1 (a) and (b), respectively,
for four intermediate values of N . Figure 1 (a) shows very clearly the very good speedup up to p = 32 parallel
processes for all cases shown. The efficiency plotted in Figure 1 (b) is directly derived from the speedup, but
the plot is still useful because it can better bring out any interesting features for small values of p that are
hard to tell in a speedup plot. Here, we notice that the variability of the results for small p is visible. It is
customary in results for fixed problem sizes that the speedup is better for larger problems since the increased
communication time for more parallel processes does not dominate over the calculation time as quickly as it
does for small problems. Thus, the progression in speedup performance from smaller to larger datasets seen in
Table 3 (b) is expected. To see this clearly, it is vital to have the precise data in Table 3 (b) and (c) available
and not just their graphical representation in Figure 1.

The conclusions discussed so far apply to up to p = 32 parallel processes. In each case, only 1 parallel process
is run on each node with the other three cores available to handle all other operating system or other duties.
For p = 64 and p = 128, 2 or 4 processes share each node necessarily, as only 32 nodes are available. Thus, one
expects slightly degraded performance as we go from p = 32 to p = 64 and p = 128. This is borne out by all
data in Table 3 as well as clearly visible in Figures 1 (a) and (b) for p > 32. However, the times in Table 3 (a)
for all larger datasets clearly demonstrate an improvement by using more cores just not at the optimal rate of
halving the wall clock time as p doubles.

To analyze the impact of using more than one core per node, we run 2 processes per node in Table 4 and
Figure 2, and we run 4 processes per node in Table 5 and Figure 3, wherever possible. That is, for p = 128 in
Table 4 and Figure 2, entries require 4 processes per node since only 32 nodes are available. On the other hand,
in Table 5 and Figure 3, p = 1 is always computed on a dedicated node, i.e., running the entire job on a single
process on a single node, and p = 2 is computed using a two-process job running on a single node. The results
in the efficiency plots of Figures 2 (b) and 3 (b) show clearly that there is a significant loss of efficiency when
going from p = 1 (always on a dedicated node) to p = 2 (with both processes on one node) to p = 4 (with 4
processes on one node).

The results presented so far indicate clearly the well-known conclusion that best performance improvements,
in the sense of halving the time when doubling the number of processes, are achieved by only running one
parallel process on each node. However, for production runs, we are not interested in this improvement being
optimal, but we are interested in the run time being the smallest on a given number of nodes. Thus, given a
fixed number of nodes, the question is if one should run 1, 2, or 4 processes per node. This is answered by the
data organized in the form of Table 1 in the Introduction, and we saw clearly that it is well worthwhile to use
all available cores for fastest absolute run times.

4



Table 3: Performance on hpc using OpenMPI by number of processes used with 1 process per node except for
p = 64 which uses 2 processes per node and p = 128 which uses 4 processes per node. N/A indicates that the
case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.73 0.91 0.44 0.22 0.13 0.08 0.07 0.13
1,300 9.60 4.93 2.47 1.31 0.69 0.41 0.32 0.36
2,500 35.00 17.69 8.95 4.69 2.41 1.30 0.97 0.73
4,100 94.40 47.72 24.13 12.42 6.33 3.32 2.23 1.68
9,150 489.32 249.63 125.59 64.56 32.93 16.99 10.08 7.27

17,000 1754.29 854.63 427.95 223.98 113.79 57.21 36.32 24.01
33,900 N/A N/A 2150.87 981.88 501.16 265.30 175.80 101.13
65,250 N/A N/A N/A N/A 2528.92 1116.41 861.20 364.10

126,700 N/A N/A N/A N/A N/A N/A N/A N/A
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 1.9011 3.9318 7.8636 13.3077 21.6250 24.7143 13.3077

1,300 1.0000 1.9473 3.8866 7.3282 13.9130 23.4146 30.0000 26.6667
2,500 1.0000 1.9785 3.9106 7.4627 14.5228 26.9231 36.0825 47.9452
4,100 1.0000 1.9782 3.9121 7.6006 14.9131 28.4337 42.3318 56.1905
9,150 1.0000 1.9602 3.8962 7.5793 14.8594 28.8005 48.5437 67.3067

17,000 1.0000 2.0527 4.0993 7.8324 15.4169 30.6640 48.3009 73.0650
33,900 N/A N/A 4.0000 8.7623 17.1671 32.4292 48.9390 85.0735
65,250 N/A N/A N/A N/A 16.0000 36.2436 46.9841 111.1308

126,700 N/A N/A N/A N/A N/A N/A N/A N/A
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 0.9505 0.9830 0.9830 0.8317 0.6758 0.3862 0.1040

1,300 1.0000 0.9736 0.9717 0.9160 0.8696 0.7317 0.4688 0.2083
2,500 1.0000 0.9893 0.9777 0.9328 0.9077 0.8413 0.5638 0.3746
4,100 1.0000 0.9891 0.9780 0.9501 0.9321 0.8886 0.6614 0.4390
9,150 1.0000 0.9801 0.9740 0.9474 0.9287 0.9000 0.7585 0.5258

17,000 1.0000 1.0263 1.0248 0.9790 0.9636 0.9583 0.7547 0.5708
33,900 N/A N/A 1.0000 1.0953 1.0729 1.0134 0.7647 0.6646
65,250 N/A N/A N/A N/A 1.0000 1.1326 0.7341 0.8682

126,700 N/A N/A N/A N/A N/A N/A N/A N/A

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 1: Performance on hpc using OpenMPI by number of processes used with 1 process per node except for
p = 64 which uses 2 processes per node and p = 128 which uses 4 processes per node.

5



Table 4: Performance on hpc using OpenMPI by number of processes used with 2 processes per node except
for p = 1 which uses 1 process per node and p = 128 which uses 4 processes per node. Also, data marked by an
asterisk do not use 2 processes per node but are copied from the previous table to allow for a comparison here.
N/A indicates that the case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.73 0.92 0.46 0.21 0.12 0.09 0.07 0.13
1,300 9.60 5.09 2.64 1.54 0.76 0.43 0.32 0.36
2,500 35.00 20.47 9.62 4.87 2.54 1.36 0.97 0.73
4,100 94.40 50.45 27.96 12.94 6.65 3.67 2.23 1.68
9,150 489.32 291.32 142.66 75.03 39.34 19.49 10.08 7.27

17,000 1754.29 939.21 503.39 255.32 128.41 63.56 36.32 24.01
33,900 N/A N/A *2150.87 1260.82 650.91 335.64 175.80 101.13
65,250 N/A N/A N/A N/A *2528.92 1397.71 861.20 364.10

126,700 N/A N/A N/A N/A N/A N/A 4528.19 2641.05
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 1.8804 3.7609 8.2381 14.4167 19.2222 24.7143 13.3077

1,300 1.0000 1.8861 3.6364 6.2338 12.6316 22.3256 30.0000 26.6667
2,500 1.0000 1.7098 3.6383 7.1869 13.7795 25.7353 36.0825 47.9452
4,100 1.0000 1.8712 3.3763 7.2952 14.1955 25.7221 42.3318 56.1905
9,150 1.0000 1.6797 3.4300 6.5217 12.4382 25.1062 48.5437 67.3067

17,000 1.0000 1.8678 3.4850 6.8709 13.6616 27.6005 48.3009 73.0650
33,900 N/A N/A *4.0000 6.8237 13.2176 25.6331 48.9390 85.0735
65,250 N/A N/A N/A N/A *16.0000 28.9493 46.9841 111.1308

126,700 N/A N/A N/A N/A N/A N/A 64.0000 109.7307
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 0.9402 0.9402 1.0298 0.9010 0.6007 0.3862 0.1040

1,300 1.0000 0.9430 0.9091 0.7792 0.7895 0.6977 0.4688 0.2083
2,500 1.0000 0.8549 0.9096 0.8984 0.8612 0.8042 0.5638 0.3746
4,100 1.0000 0.9356 0.8441 0.9119 0.8872 0.8038 0.6614 0.4390
9,150 1.0000 0.8398 0.8575 0.8152 0.7774 0.7846 0.7585 0.5258

17,000 1.0000 0.9339 0.8712 0.8589 0.8539 0.8625 0.7547 0.5708
33,900 N/A N/A *1.0000 0.8530 0.8261 0.8010 0.7647 0.6646
65,250 N/A N/A N/A N/A *1.0000 0.9047 0.7341 0.8682

126,700 N/A N/A N/A N/A N/A N/A 1.0000 0.8573

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 2: Performance on hpc using OpenMPI by number of processes used with 2 processes per node except
for p = 1 which uses 1 process per node and p = 128 which uses 4 processes per node.

6



Table 5: Performance on hpc using OpenMPI by number of processes used with 4 processes per node except
for p = 1 which uses 1 process per node and p = 2 which uses 2 processes per node. Also, data marked by an
asterisk do not use 4 processes per node but are copied from the previous tables to allow for a comparison here.
N/A indicates that the case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.73 0.92 0.45 0.22 0.13 0.10 0.11 0.13
1,300 9.60 5.09 2.58 1.40 0.73 0.45 0.33 0.36
2,500 35.00 20.47 9.05 4.84 2.54 1.67 1.04 0.73
4,100 94.40 50.45 25.45 12.53 6.45 3.95 2.43 1.68
9,150 489.32 291.32 130.38 69.78 33.64 19.98 12.15 7.27

17,000 1754.29 939.21 448.83 224.60 118.93 60.18 37.27 24.01
33,900 N/A N/A *2150.87 *1260.82 559.66 290.41 162.27 101.13
65,250 N/A N/A N/A N/A *2528.92 *1397.71 719.32 364.10

126,700 N/A N/A N/A N/A N/A N/A *4528.19 2641.05
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 1.8804 3.8444 7.8636 13.3077 17.3000 15.7273 13.3077

1,300 1.0000 1.8861 3.7209 6.8571 13.1507 21.3333 29.0909 26.6667
2,500 1.0000 1.7098 3.8674 7.2314 13.7795 20.9581 33.6538 47.9452
4,100 1.0000 1.8712 3.7092 7.5339 14.6357 23.8987 38.8477 56.1905
9,150 1.0000 1.6797 3.7530 7.0123 14.5458 24.4905 40.2733 67.3067

17,000 1.0000 1.8678 3.9086 7.8107 14.7506 29.1507 47.0698 73.0650
33,900 N/A N/A *4.0000 6.8237 15.3727 29.6253 53.0195 85.0735
65,250 N/A N/A N/A N/A *16.0000 28.9493 56.2513 111.1308

126,700 N/A N/A N/A N/A N/A N/A 64.0000 109.7307
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 0.9402 0.9611 0.9830 0.8317 0.5406 0.2457 0.1040

1,300 1.0000 0.9430 0.9302 0.8571 0.8219 0.6667 0.4545 0.2083
2,500 1.0000 0.8549 0.9669 0.9039 0.8612 0.6549 0.5258 0.3746
4,100 1.0000 0.9356 0.9273 0.9417 0.9147 0.7468 0.6070 0.4390
9,150 1.0000 0.8398 0.9383 0.8765 0.9091 0.7653 0.6293 0.5258

17,000 1.0000 0.9339 0.9771 0.9763 0.9219 0.9110 0.7355 0.5708
33,900 N/A N/A *1.0000 0.8530 0.9608 0.9258 0.8284 0.6646
65,250 N/A N/A N/A N/A *1.0000 0.9047 0.8789 0.8682

126,700 N/A N/A N/A N/A N/A N/A 1.0000 0.8573

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3: Performance on hpc using OpenMPI by number of processes used with 4 processes per node except
for p = 1 which uses 1 process per node and p = 2 which uses 2 processes per node.

7



A Performance Studies on kali

This appendix summarizes results of analogous studies to the previous sections performed on the cluster kali
purchased in 2003. This cluster originally had 32 nodes, each with two (single-core) processors (Intel Xeon
2.0 GHz with 512 kB cache) and 1 GB of memory (except the storage node with 4 GB of memory), connected
by a Myrinet interconnect network. Only 27 of the 32 nodes are connected by the Myrinet network at present
(2008). Hence, only 16 nodes are available for parallel performance study when considering only powers of 2 for
convenience.

Table 6 summarizes the predicted and observed memory usage of the code. We see that N = 17,000 is the
largest dataset that can be accommodated on 16 nodes with 1 GB of memory each.

Table 7 is a summary table of raw timing results analogous to Table 1 in the Introduction. We observe
that the execution times in Table 1 are more than twice as fast as those recorded in Table 7 for corresponding
entries, that is, for the entries with the same number of nodes and parallel processes per node. For instance, we
see that kali can solve the case with N = 17,000 datapoints when using 16 nodes, and the best observed time
is 191.77 seconds with 2 parallel processes on each node. By comparison, hpc requires about 63.56 seconds for
this problem using 16 nodes and 2 processes per node. However, the optimal time on hpc, when using 16 nodes,
is in fact 37.27 seconds when using all 4 cores on each node. This shows the benefit of having 4 cores per node
concretely. Looking at the comparison between the machines in a different way, we see that only 4 nodes on
hpc instead of 16 on kali are required to solve this problem in an even faster wall clock time of 118.93 seconds.

Table 8 and Figure 4 summarize and visualize the underlying performance results for the case of running
only 1 process on each node except p = 32 with 2 processes and are analogous to Table 3 and Figure 1. We note
here that the necessary memory for the largest dataset requires at least 8 nodes. Therefore, speedup is redefined
to use only the available data as Sp := 8T8(N)/Tp(N) for the dataset with N = 17,000 datapoints. Comparing
the corresponding efficiency data in Table 3 (c) with Table 8 (c), we notice that the efficiency demonstrated
by kali is better than that seen in the new IBM machine up to p = 16 for all datasets where data is available.
However, while considering this speedup result, we must recall that the new IBM machine completes the task
in half the time as kali for every value of p.

Table 9 and Figure 5 summarize and visualize the performance results for the case of running 2 processes on
each node except p = 1 with 1 process. Once more, we redefine speedup for the largest dataset to use only the
available data as Sp := 16T16(N)/Tp(N). The efficiency plot in Figure 5 (b) demonstrates that the performance
degradation occurs from p = 1 to p = 2. That is, it is associated with using both processors per node instead
of one process only.

References

[1] Robin Blasberg and Matthias K. Gobbert. Clustering large datasets with parallel affinity propagation.
Submitted.

[2] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points. Science, vol. 315,
pp. 972–976, 2007.

[3] Matthias K. Gobbert. Parallel performance studies for an elliptic test problem. Technical Report HPCF–
2008–1, UMBC High Performance Computing Facility, University of Maryland, Baltimore County, 2008.

8



Table 6: Memory usage on kali in MB per process. Data is from runs with one process per node where available.
For small N values, N/A indicates that the run finished too fast to observe memory usage. For large N values,
N/A indicates that the case required more memory than available. Cases marked by an asterisk were run on
the storage node with 4 GB of memory.

(a) Predicted memory usage in MB per process
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

500 6 3 1 1 < 1 < 1
1,300 39 19 10 5 2 1
2,500 143 72 36 18 9 4
4,100 385 192 96 48 24 12
9,150 1,916 958 479 240 120 60

17,000 6,615 3,307 1,654 827 413 207
33,900 26,303 13,152 6,576 3,288 1,644 822

(b) Observed memory usage on kali
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

500 8 25 N/A N/A 22 N/A
1,300 42 42 32 27 22 N/A
2,500 145 96 59 41 31 29
4,100 388 214 118 72 47 37
9,150 *1,921 *964 502 261 141 86

17,000 N/A N/A N/A 850 436 231

Table 7: Performance on kali. Wall clock time in seconds for the solution of problems with N data points
using 1, 2, 4, 8, 16 compute nodes with 1 and 2 processes per node. N/A indicates that the case required more
memory than available.

(a) N = 500 1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 process per node 4.10 2.05 1.03 0.54 0.27
2 processes per node 2.19 1.14 0.60 0.28 0.18
(b) N = 1,300 1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 process per node 23.15 11.45 5.80 2.92 1.50
2 processes per node 12.38 6.29 3.24 1.68 0.94
(c) N = 2,500 1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 process per node 85.58 41.17 20.83 10.67 5.43
2 processes per node 44.01 22.14 11.50 5.94 3.17
(d) N = 4,100 1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 process per node 221.17 109.58 55.77 28.64 14.40
2 processes per node 117.05 59.54 30.25 15.99 8.26
(e) N = 9,150 1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 process per node 1157.88 N/A 288.61 147.42 75.13
2 processes per node 683.78 N/A 158.91 91.16 44.96
(f) N = 17,000 1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 process per node N/A N/A N/A 580.66 281.90
2 processes per node N/A N/A N/A 421.01 191.77

9



Table 8: Performance on kali by number of processes used with 1 process per node except for p = 32 which uses
2 processes per node. N/A indicates that the case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

500 4.10 2.05 1.03 0.54 0.27 0.18
1,300 23.15 11.45 5.80 2.92 1.50 0.94
2,500 85.58 41.17 20.83 10.67 5.43 3.17
4,100 221.17 109.58 55.77 28.64 14.40 8.26
9,150 1157.88 N/A 288.61 147.42 75.13 44.96

17,000 N/A N/A N/A 580.66 281.90 191.77
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
500 1.0000 2.0000 3.9806 7.5926 15.1852 22.7778

1,300 1.0000 2.0218 3.9914 7.9281 15.4333 24.6277
2,500 1.0000 2.0787 4.1085 8.0206 15.7606 26.9968
4,100 1.0000 2.0183 3.9658 7.7224 15.3590 26.7760
9,150 1.0000 N/A 4.0119 7.8543 15.4117 25.7536

17,000 N/A N/A N/A 8.0000 16.4785 24.2232
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
500 1.0000 1.0000 0.9951 0.9491 0.9491 0.7118

1,300 1.0000 1.0109 0.9978 0.9910 0.9646 0.7696
2,500 1.0000 1.0393 1.0271 1.0026 0.9850 0.8437
4,100 1.0000 1.0092 0.9914 0.9653 0.9599 0.8368
9,150 1.0000 N/A 1.0030 0.9818 0.9632 0.8048

17,000 N/A N/A N/A 1.0000 1.0299 0.7570

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4: Performance on kali by number of processes used with 1 process per node except for p = 32 which
uses 2 processes per node.

10



Table 9: Performance on kali by number of processes used with 2 processes per node except for p = 1 which
uses 1 process per node.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

500 4.10 2.19 1.14 0.60 0.28 0.18
1,300 23.15 12.38 6.29 3.24 1.68 0.94
2,500 85.58 44.01 22.14 11.50 5.94 3.17
4,100 221.17 117.05 59.54 30.25 15.99 8.26
9,150 1157.88 683.78 N/A 158.91 91.16 44.96

17,000 N/A N/A N/A N/A 421.01 191.77
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
500 1.0000 1.8721 3.5965 6.8333 14.6429 22.7778

1,300 1.0000 1.8700 3.6804 7.1451 13.7798 24.6277
2,500 1.0000 1.9446 3.8654 7.4417 14.4074 26.9968
4,100 1.0000 1.8895 3.7146 7.3114 13.8318 26.7760
9,150 1.0000 1.6934 N/A 7.2864 12.7016 25.7536

17,000 N/A N/A N/A N/A 16.0000 35.1262
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32
500 1.0000 0.9361 0.8991 0.8542 0.9152 0.7118

1,300 1.0000 0.9350 0.9201 0.8931 0.8612 0.7696
2,500 1.0000 0.9723 0.9664 0.9302 0.9005 0.8437
4,100 1.0000 0.9448 0.9287 0.9139 0.8645 0.8368
9,150 1.0000 0.8467 N/A 0.9108 0.7939 0.8048

17,000 N/A N/A N/A N/A 1.0000 1.0977

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5: Performance on kali by number of processes used with 2 processes per node except for p = 1 which
uses 1 process per node.

11


