
MVAPICH2 vs. OpenMPI for a Clustering Algorithm
Robin V. Blasberg∗ and Matthias K. Gobbert†

∗Naval Research Laboratory, Washington, D.C.
†Department of Mathematics and Statistics, University of Maryland, Baltimore County,

gobbert@math.umbc.edu

Abstract

Affinity propagation is a clustering algorithm that functions by identifying similar data points in an
iterative process. Its structure allows for taking full advantage of parallel computing to enable the solution
of larger problems and to solve them faster than possible in serial. We present a memory-optimal im-
plementation with minimal number of communication commands and demonstrate its excellent scalability.
Additionally, we present a comparison of two implementations of MPI that demonstrate that MVAPICH2
exhibits better scalability up to larger numbers of parallel processes than OpenMPI for this code.

1 Introduction

Affinity propagation is a relatively new clustering algorithm introduced by Frey and Dueck [3] that functions
by identifying similar data points in an iterative process. A key advantage of the algorithm is that it does
not require the user to predetermine the number of clusters and is thus useful particularly in the case of large
numbers of clusters in the data. If N denotes the number of data points in the given data set, a memory-optimal
implementation of the algorithm requires three N ×N matrices. The memory requirements for the algorithm
grow very rapidly with N . For instance, a data set with N = 17,000 data points needs about 6.6 GB of memory.
However, the systematic structure of the algorithm allows for its efficient parallelization with only two parallel
communication commands in each iteration. Thus, both the larger memory available and the faster run times
achievable by using several nodes of a parallel computer demonstrate the combined advantages of a parallel
implementation of the algorithm. The structure of the algorithm and its memory requirements are discussed in
more detail in Section 2. Due to its excellent potential for scalability, the algorithm is also an ideal candidate
for evaluating the hardware of a parallel cluster in extension of earlier studies such as [4].

The distributed-memory cluster hpc in the UMBC High Performance Computing Facility (HPCF, www.umbc.
edu/hpcf) has an InfiniBand interconnect network and 32 compute nodes each with two dual-core processors
(AMD Opteron 2.6 GHz with 1024 kB cache per core) and 13 GB of memory per node for a total of up to
four parallel processes to be run simultaneously per node. This means that up to 128 parallel MPI processes
can be run, and the cluster has a total system memory of 416 GB. Section 3 describes in detail the parallel
scalability results using the MVAPICH2 implementation of MPI and provides the underlying data for the
following summary results. Table 1 summarizes the key results by giving the wall clock time (total time to
execute the code) in seconds. We consider nine progressively larger data sets, as indicated by the number of data
points N , resulting in problems with progressively larger memory requirements. The parallel implementation
of the numerical method is run on different numbers of nodes from 1 to 32 with different numbers of processes
per node used. One realizes the advantage of parallel computing for a case with N = 17,000 data points
requiring 6.6 GB of memory: The serial run time in the upper-left entry of the sub-table of about 30 minutes
(1798.04 seconds) is reduced to about 15 seconds in the lower-right entry of the sub-table using 128 parallel
processes. Yet, the true advantage of parallelizing the algorithm is evident for a problem with N = 126,700 data
points that uses over 367 GB of memory. To solve this problem requires the combined memory of all 32 nodes
of the cluster in order to be solved at all. Thus, a parallel implementation allows the solution of a problem
that simply could not be solved before in serial, and it, moreover, takes only the very reasonable amount of
45 minutes (2720.27 seconds) to complete.

The results in Table 1 are arranged to study two key questions: (i) “Does the code scale optimally to all
32 nodes?” and (ii) “Is it worthwhile to use multiple processors and cores on each node?” The first question
addresses the quality of the throughput of the InfiniBand interconnect network. The second question sheds light
on the quality of the architecture within the nodes and cores of each processor.

(i) Reading along each row of Table 1, the wall clock time approximately halves as the number of nodes used
doubles for all cases of N except for the largest number of nodes (i.e., p = 32) for the smallest data sets.
That is, by being essentially proportional to the number of nodes used, the speedup is nearly optimal for
all cases of significant size which are the cases for which parallel computing is relevant.

1



(ii) To analyze the effect of running 1, 2, or 4 parallel processes per node, we compare the results column-wise
in each sub-table. It is apparent that, with the exception of the largest numbers of nodes for the smallest
data set, the execution time of each problem is, in fact, vastly reduced with doubling the numbers of
processes per node, albeit not quite halved. These results are still excellent and confirm that it is not just
effective to use both processors on each node, but it is also effective to use both cores of each dual-core
processor simultaneously. This shows that the architecture of the nodes has sufficient capacity in all vital
components to avoid creating any bottlenecks in accessing the memory of the node that is shared by the
processes. These results thus justify the purchase of compute nodes with two processors (as opposed to
one processor) as well as the purchase of dual-core processors (as opposed to single-core processors).

Finally, Section 4 collects and extends analogous results from [2] obtained using the OpenMPI implementation of
MPI. It turns out that for this code, MVAPICH2 exhibits better scalability than OpenMPI up to large numbers
of parallel processes.

Table 1: Performance on hpc using MVAPICH2. Wall clock time in seconds for the solution of problems with
N data points using 1, 2, 4, 8, 16, 32 compute nodes with 1, 2, and 4 processes per node. N/A indicates that
the case required more memory than available.

(a) N = 500 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 1.71 0.87 0.45 0.22 0.12 0.08
2 processes per node 0.91 0.47 0.22 0.13 0.08 0.06
4 processes per node 0.53 0.22 0.14 0.08 0.06 0.05
(b) N = 1,300 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 9.57 4.77 2.45 1.23 0.67 0.34
2 processes per node 5.05 2.58 1.31 0.68 0.36 0.18
4 processes per node 2.64 1.32 0.69 0.36 0.18 0.12
(c) N = 2,500 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 35.29 17.58 8.96 4.48 2.28 1.20
2 processes per node 18.48 9.25 4.69 2.38 1.32 0.68
4 processes per node 9.20 4.77 2.39 1.24 0.67 0.42
(d) N = 4,100 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 95.99 47.83 23.98 12.14 6.13 3.18
2 processes per node 49.72 25.06 12.62 6.41 3.37 1.75
4 processes per node 25.11 12.78 6.43 3.31 1.74 1.12
(e) N = 9,150 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 498.37 251.72 126.76 63.16 31.81 16.62
2 processes per node 260.85 130.74 65.31 32.83 17.05 8.70
4 processes per node 130.42 64.99 32.86 16.78 8.53 4.64
(f) N = 17,000 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 1798.04 864.00 424.48 214.80 109.19 56.27
2 processes per node 932.81 448.18 220.77 111.99 58.64 30.32
4 processes per node 440.05 223.39 112.05 56.69 28.91 15.43
(g) N = 33,900 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node N/A N/A 2287.98 1004.23 492.52 255.92
2 processes per node N/A N/A 1223.54 553.48 287.41 153.58
4 processes per node N/A N/A 568.01 300.07 143.58 78.81
(h) N = 65,250 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node N/A N/A N/A N/A 2593.53 1291.01
2 processes per node N/A N/A N/A N/A 1595.91 742.32
4 processes per node N/A N/A N/A N/A 718.26 402.58
(i) N = 126,700 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node N/A N/A N/A N/A N/A 6160.75
2 processes per node N/A N/A N/A N/A N/A 4493.82
4 processes per node N/A N/A N/A N/A N/A 2720.27

2



2 The Method

Affinity propagation functions by identifying similar data points in an iterative process [3]. The data set is given
as N data points of x and y coordinates, and the goal of the algorithm is to cluster groups of data points that
are close to each other. The method of affinity propagation is based on a criterion embedded in a similarity
matrix S = (Sij) where each component Sij quantifies the closeness between data points i and j. We follow the
default suggested in [3] by using the negative square of the Euclidean distance between the data points.

The algorithm updates a matrix A of ‘availabilities’ and a matrix R of ‘responsibilities’ iteratively until
the computed clusters do not change for convits many iterations. Our memory-optimal code uses the three
matrices S, A, and R as the only variables with significant memory usage. All matrices are split consistently
across the p parallel processes by groups of adjacent columns. Our implementation uses the symmetry of S
to compute as many quantities as possible using only information that is local to each parallel process. This
minimizes the number of parallel communications. As a result, we have only two MPI_Allreduce calls in each
iteration. We use the programming language C and both the MVAPICH2 and OpenMPI implementations of
MPI, extending [2] that used only OpenMPI.

Since affinity propagation is based on matrix calculations, it has relatively large memory requirements. This
can be seen concretely in Table 2 (a) which shows in the column p = 1 the total memory requirements in MB for
the three N ×N matrices using 8 bytes per double-precision matrix component. The remaining columns list the
memory requirement for each parallel process if the three matrices are split into p equally large portions across
the processes. As can be seen, a data set with N = 126,700 data points requires 367,421 MB or over 367 GB.
This kind of memory requirement cannot be accommodated on a serial computer but requires the combined
memory of many nodes of a parallel computer. Table 2 (b) shows the memory usage observed for our code using
MVAPICH2. The observed memory usage is only sightly higher than the predicted values. This confirms that
we did not overlook any large arrays in our prediction.

For testing purposes, we use a synthetic data set that we can create in any desired size N . Moreover, this
data set is designed to let us control the true clusters. This allows us to check that the algorithm converged to
the correct solution, independent of the number of parallel processes. The design of the synthetic data set and
its properties are discussed in detail in [1]. We run the affinity propagation algorithm with default numerical
parameters suggested by [3] of maxits = 1,000, convits = 100, and damping parameter λ = 0.9.

Table 2: Memory usage on hpc using MVAPICH2 in MB per process. For small N values, N/A indicates that
the run finished too fast to observe memory usage. For large N values, N/A indicates that the case required
more memory than available per node.

(a) Predicted memory usage in MB per process
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 6 3 1 1 < 1 < 1 < 1 < 1
1,300 39 19 10 5 2 1 1 < 1
2,500 143 72 36 18 9 4 2 1
4,100 385 192 96 48 24 12 6 3
9,150 1,916 958 479 240 120 60 30 15

17,000 6,615 3,307 1,654 827 413 207 103 52
33,900 26,303 13,152 6,576 3,288 1,644 822 411 205
65,250 97,448 48,724 24,362 12,181 6,090 3,045 1,523 761

126,700 367,421 183,711 91,855 45,928 22,964 11,482 5,741 2,870
(b) Observed memory usage on hpc using MVAPICH2

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 N/A N/A N/A N/A N/A N/A N/A N/A

1,300 100 83 76 72 N/A N/A N/A N/A
2,500 202 133 100 86 80 72 74 N/A
4,100 444 253 160 113 93 83 80 75
9,150 1,978 1,020 543 305 189 128 102 87

17,000 6,680 3,372 1,719 894 483 276 176 123
33,900 N/A N/A 6,641 3,355 1,715 893 485 277
65,250 N/A N/A N/A N/A 6,163 3,117 1,599 835

126,700 N/A N/A N/A N/A N/A ≈ 11,600 5,819 2,949

3



3 Performance Studies using MVAPICH2

The serial run times for the larger data sets observed in Table 1 bring out one key motivation for parallel
computing: The run times for a problem of a given, fixed size can be potentially dramatically reduced by
spreading the work across a group of parallel processes. More precisely, the ideal behavior of parallel code for a
fixed problem size using p parallel processes is that it be p times as fast as with 1 process. If Tp(N) denotes the
wall clock time for a problem of a fixed size parametrized by the number N using p processes, then the quantity
Sp := T1(N)/Tp(N) measures the speedup of the code from 1 to p processes. The optimal value of this speedup
is Sp = p. The efficiency Ep := Sp/p characterizes, in relative terms, how close a run with p parallel processes
is to the optimal value of Ep = 1. The behavior described here for speedup for a fixed problem size is known as
strong scalability of parallel code.

Table 3 lists the results of a performance study for strong scalability. Each row lists the results for one
problem size parametrized by the number of data points N . Each column corresponds to the number of parallel
processes p used in the run. The runs for Table 3 distribute these processes as widely as possible over the
available nodes. That is, each process is run on a different node up to the available number of 32 nodes. In
other words, up to p = 32, three of the four cores available on each node are idling, and only one core performs
calculations. For p = 64 and p = 128, this cannot be accommodated on 32 nodes. Thus, 2 processes run on each
node for p = 64 and 4 processes per node for p = 128. Comparing adjacent columns in the raw timing data in
Table 3 (a) indicates that using twice as many processes speeds up the code by nearly a factor of two at least
for all but some of the p = 64 and p = 128 cases. To quantify this more clearly, the speedup in Table 3 (b) is
computed, which shows near-optimal with Sp ≈ p for all but roughly one case up to p = 32. This is expressed
in terms of efficiency 0.81 ≤ Ep ≤ 1 in Table 3 (c) for all p values 9,150 ≤ N ≤ 65,250.

The customary visualizations of speedup and efficiency are presented in Figure 1 (a) and (b), respectively,
for five intermediate values of N . Figure 1 (a) shows very clearly the very good speedup up to p = 32 parallel
processes for all cases shown. The efficiency plotted in Figure 1 (b) is directly derived from the speedup, but
the plot is still useful because it can better bring out any interesting features for small values of p that are
hard to tell in a speedup plot. Here, we notice that the variability of the results for small p is visible, but
excellent efficiency throughout. It is customary in results for fixed problem sizes that the speedup is better for
larger problems since the increased communication time for more parallel processes does not dominate over the
calculation time as quickly as it does for small problems. Thus, the progression in speedup performance from
smaller to larger data sets seen in Table 3 (b) for N ≤ 33,900 is expected. To see this clearly, it is vital to have
the precise data in Table 3 (b) and (c) available and not just their graphical representation in Figure 1.

To analyze the impact of using more than one core per node, we run 2 processes per node in Table 4 and
Figure 2, and we run 4 processes per node in Table 5 and Figure 3, wherever possible. More specifically, p = 1
is always computed on a dedicated node, i.e., running the entire job on a single process on a single node. For
p = 128 in Table 4 and Figure 2, entries require 4 processes per node since only 32 nodes are available. On the
other hand, in Table 5 and Figure 3, p = 2 is computed using a two-process job running on a single node. The
results in the efficiency plots of Figures 2 (b) and 3 (b) show that there is some loss of efficiency when going
from p = 1 (always on a dedicated node) to p = 2 (with both processes on one node) to p = 4 (with 4 processes
on one node), when compared to the the results in Figure 1 (b). However, it is remarkable how little loss of
efficiency there is for this combination of code, MPI implementation, and hardware.

The analysis of the data presented so far shows that the best performance improvement, in the sense of
halving the time when doubling the number of processes, is achieved by only running one parallel process on
each node, even though the advantage was very small by comparison. However, for production runs, we are
not interested in this improvement being optimal, but we are interested in the run time being the smallest on
a given number of nodes. Thus, given a fixed number of nodes, the question is if one should run 1, 2, or 4
processes per node. This is answered by the data organized in the form of Table 1 in the Introduction, and we
saw clearly that it is well worthwhile to use all available cores for fastest absolute run times.

4



Table 3: Performance on hpc using MVAPICH2 by number of processes used with 1 process per node except
for p = 64 which uses 2 processes per node and p = 128 which uses 4 processes per node. N/A indicates that
the case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.71 0.87 0.45 0.22 0.12 0.08 0.06 0.05
1,300 9.57 4.77 2.45 1.23 0.67 0.34 0.18 0.12
2,500 35.29 17.58 8.96 4.48 2.28 1.20 0.68 0.42
4,100 95.99 47.83 23.98 12.14 6.13 3.18 1.75 1.12
9,150 498.37 251.72 126.76 63.16 31.81 16.62 8.70 4.64

17,000 1798.04 864.00 424.48 214.80 109.19 56.27 30.32 15.43
33,900 N/A N/A 2287.98 1004.23 492.52 255.92 153.58 78.81
65,250 N/A N/A N/A N/A 2593.53 1291.01 742.32 402.58

126,700 N/A N/A N/A N/A N/A 6160.75 4493.82 2720.27
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 1.9655 3.8000 7.7727 14.2500 21.3750 28.5000 34.2000

1,300 1.0000 2.0063 3.9061 7.7805 14.2836 28.1471 53.1667 79.7500
2,500 1.0000 2.0074 3.9386 7.8772 15.4781 29.4083 51.8971 84.0238
4,100 1.0000 2.0069 4.0029 7.9069 15.6591 30.1855 54.8514 85.7054
9,150 1.0000 1.9799 3.9316 7.8906 15.6671 29.9862 57.2839 107.4073

17,000 1.0000 2.0811 4.2359 8.3708 16.4671 31.9538 59.3021 116.5288
33,900 N/A N/A 4.0000 9.1134 18.5818 35.7609 59.5906 116.1264
65,250 N/A N/A N/A N/A 16.0000 32.1426 55.9011 103.0764

126,700 N/A N/A N/A N/A N/A 32.0000 43.8700 72.4722
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 0.9828 0.9500 0.9716 0.8906 0.6680 0.4453 0.2672

1,300 1.0000 1.0031 0.9765 0.9726 0.8927 0.8796 0.8307 0.6230
2,500 1.0000 1.0037 0.9847 0.9847 0.9674 0.9190 0.8109 0.6564
4,100 1.0000 1.0034 1.0007 0.9884 0.9787 0.9433 0.8571 0.6696
9,150 1.0000 0.9899 0.9829 0.9863 0.9792 0.9371 0.8951 0.8391

17,000 1.0000 1.0405 1.0590 1.0463 1.0292 0.9986 0.9266 0.9104
33,900 N/A N/A 1.0000 1.1392 1.1614 1.1175 0.9311 0.9072
65,250 N/A N/A N/A N/A 1.0000 1.0045 0.8735 0.8053

126,700 N/A N/A N/A N/A N/A 1.0000 0.6855 0.5662

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 1: Performance on hpc using MVAPICH2 by number of processes used with 1 process per node except
for p = 64 which uses 2 processes per node and p = 128 which uses 4 processes per node.

5



Table 4: Performance on hpc using MVAPICH2 by number of processes used with 2 processes per node except
for p = 1 which uses 1 process per node and p = 128 which uses 4 processes per node. Also, data marked by an
asterisk do not use 2 processes per node but are copied from the previous table to allow for a comparison here.
N/A indicates that the case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.71 0.91 0.47 0.22 0.13 0.08 0.06 0.05
1,300 9.57 5.05 2.58 1.31 0.68 0.36 0.18 0.12
2,500 35.29 18.48 9.25 4.69 2.38 1.32 0.68 0.42
4,100 95.99 49.72 25.06 12.62 6.41 3.37 1.75 1.12
9,150 498.37 260.85 130.74 65.31 32.83 17.05 8.70 4.64

17,000 1798.04 932.81 448.18 220.77 111.99 58.64 30.32 15.43
33,900 N/A N/A *2287.98 1223.54 553.48 287.41 153.58 78.81
65,250 N/A N/A N/A N/A *2593.53 1595.91 742.32 402.58

126,700 N/A N/A N/A N/A N/A *6160.75 4493.82 2720.27
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 1.8791 3.6383 7.7727 13.1538 21.3750 28.5000 34.2000

1,300 1.0000 1.8950 3.7093 7.3053 14.0735 26.5833 53.1667 79.7500
2,500 1.0000 1.9096 3.8151 7.5245 14.8277 26.7348 51.8971 84.0238
4,100 1.0000 1.9306 3.8304 7.6062 14.9750 28.4837 54.8514 85.7054
9,150 1.0000 1.9106 3.8119 7.6308 15.1803 29.2299 57.2839 107.4073

17,000 1.0000 1.9276 4.0119 8.1444 16.0554 30.6623 59.3021 116.5288
33,900 N/A N/A *4.0000 7.4799 16.5352 31.8427 59.5906 116.1264
65,250 N/A N/A N/A N/A *16.0000 26.0018 55.9011 103.0764

126,700 N/A N/A N/A N/A N/A *32.0000 43.8700 72.4722
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 0.9396 0.9096 0.9716 0.8221 0.6680 0.4453 0.2672

1,300 1.0000 0.9475 0.9273 0.9132 0.8796 0.8307 0.8307 0.6230
2,500 1.0000 0.9548 0.9538 0.9406 0.9267 0.8355 0.8109 0.6564
4,100 1.0000 0.9653 0.9576 0.9508 0.9359 0.8901 0.8571 0.6696
9,150 1.0000 0.9553 0.9530 0.9539 0.9488 0.9134 0.8951 0.8391

17,000 1.0000 0.9638 1.0030 1.0181 1.0035 0.9582 0.9266 0.9104
33,000 N/A N/A *1.0000 0.9350 1.0335 0.9951 0.9311 0.9072
65,250 N/A N/A N/A N/A *1.0000 0.8126 0.8735 0.8053

126,700 N/A N/A N/A N/A N/A *1.0000 0.6855 0.5662

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 2: Performance on hpc using MVAPICH2 by number of processes used with 2 processes per node except
for p = 1 which uses 1 process per node and p = 128 which uses 4 processes per node.

6



Table 5: Performance on hpc using MVAPICH2 by number of processes used with 4 processes per node except
for p = 1 which uses 1 process per node and p = 2 which uses 2 processes per node. Also, data marked by an
asterisk do not use 4 processes per node but are copied from the previous tables to allow for a comparison here.
N/A indicates that the case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.71 0.91 0.53 0.22 0.14 0.08 0.06 0.05
1,300 9.57 5.05 2.64 1.32 0.69 0.36 0.18 0.12
2,500 35.29 18.48 9.20 4.77 2.39 1.24 0.67 0.42
4,100 95.99 49.72 25.11 12.78 6.43 3.31 1.74 1.12
9,150 498.37 260.85 130.42 64.99 32.86 16.78 8.53 4.64

17,000 1798.04 932.81 440.05 223.39 112.05 56.69 28.91 15.43
33,900 N/A N/A *2287.98 *1223.54 568.01 300.07 143.58 78.81
65,250 N/A N/A N/A N/A *2593.53 *1595.91 718.26 402.58

126,700 N/A N/A N/A N/A N/A *6160.75 *4493.82 2720.27
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 1.8791 3.2264 7.7727 12.2143 21.3750 28.5000 34.2000

1,300 1.0000 1.8950 3.6250 7.2500 13.8696 26.5833 53.1667 79.7500
2,500 1.0000 1.9096 3.8359 7.3983 14.7657 28.4597 52.6716 84.0238
4,100 1.0000 1.9306 3.8228 7.5110 14.9285 29.0000 55.1667 85.7054
9,150 1.0000 1.9106 3.8213 7.6684 15.1665 29.7002 58.4256 107.4073

17,000 1.0000 1.9276 4.0860 8.0489 16.0468 31.7171 62.1944 116.5288
33,900 N/A N/A *4.0000 *7.4799 16.1123 30.4993 63.7409 116.1264
65,250 N/A N/A N/A N/A *16.0000 *26.0018 57.7736 103.0764

126,700 N/A N/A N/A N/A N/A *32.0000 *43.8700 72.4722
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 0.9396 0.8066 0.9716 0.7634 0.6680 0.4453 0.2672

1,300 1.0000 0.9475 0.9062 0.9062 0.8668 0.8307 0.8307 0.6230
2,500 1.0000 0.9548 0.9590 0.9248 0.9229 0.8894 0.8230 0.6564
4,100 1.0000 0.9653 0.9557 0.9389 0.9330 0.9062 0.8620 0.6696
9,150 1.0000 0.9553 0.9553 0.9586 0.9479 0.9281 0.9129 0.8391

17,000 1.0000 0.9638 1.0215 1.0061 1.0029 0.9912 0.9718 0.9104
33,900 N/A N/A *1.0000 *0.9350 1.0070 0.9531 0.9960 0.9072
65,250 N/A N/A N/A N/A *1.0000 *0.8126 0.9027 0.8053

126,700 N/A N/A N/A N/A N/A *1.0000 *0.6855 0.5662

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3: Performance on hpc using MVAPICH2 by number of processes used with 4 processes per node except
for p = 1 which uses 1 process per node and p = 2 which uses 2 processes per node.

7



4 Performance Studies using OpenMPI

This section compares the results obtained by using the OpenMPI implementation of MPI to the results in the
earlier sections obtained with MVAPICH2. The tables in this section repeat the results from [2] for convenience,
while the figures are extended by results for N = 17,000. Tables 6–10 and Figures 4–6 are the OpenMPI
equivalents of Tables 1–5 and Figures 1–3, respectively.

Comparing Table 1 for MVAPICH2 with Table 6 for OpenMPI shows that the wall clock times for the vast
majority of runs with 8 or more nodes are faster using MVAPICH2. For smaller numbers of compute nodes
as well as for the largest two data sets, the results are somewhat mixed, but, for the most part, the times
are not significantly different. The observed memory usages shown in Table 2 and Table 7 demonstrate that
MVAPICH2 uses less memory, and, in some cases, significantly less.

A comparison of the MVAPICH2 Figures 1–3 with their equivalent OpenMPI Figures 4–6 illustrates that
the observed speedup results for MVAPICH2 are far closer to the optimal linear speedup than the OpenMPI

Table 6: Performance on hpc using OpenMPI. Wall clock time in seconds for the solution of problems with N
data points using 1, 2, 4, 8, 16, 32 compute nodes with 1, 2, and 4 processes per node. N/A indicates that the
case required more memory than available.

(a) N = 500 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 1.73 0.91 0.44 0.22 0.13 0.08
2 processes per node 0.92 0.46 0.21 0.12 0.09 0.07
4 processes per node 0.45 0.22 0.13 0.10 0.11 0.13
(b) N = 1,300 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 9.60 4.93 2.47 1.31 0.69 0.41
2 processes per node 5.09 2.64 1.54 0.76 0.43 0.32
4 processes per node 2.58 1.40 0.73 0.45 0.33 0.36
(c) N = 2,500 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 35.00 17.69 8.95 4.69 2.41 1.30
2 processes per node 20.47 9.62 4.87 2.54 1.36 0.97
4 processes per node 9.05 4.84 2.54 1.67 1.04 0.73
(d) N = 4,100 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 94.40 47.72 24.13 12.42 6.33 3.32
2 processes per node 50.45 27.96 12.94 6.65 3.67 2.23
4 processes per node 25.45 12.53 6.45 3.95 2.43 1.68
(e) N = 9,150 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 489.32 249.63 125.59 64.56 32.93 16.99
2 processes per node 291.32 142.66 75.03 39.34 19.49 10.08
4 processes per node 130.38 69.78 33.64 19.98 12.15 7.27
(f) N = 17,000 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node 1754.29 854.63 427.95 223.98 113.79 57.21
2 processes per node 939.21 503.39 255.32 128.41 63.56 36.32
4 processes per node 448.83 224.60 118.93 60.18 37.27 24.01
(g) N = 33,900 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node N/A N/A 2150.87 981.88 501.16 265.30
2 processes per node N/A N/A 1260.82 650.91 335.64 175.80
4 processes per node N/A N/A 559.66 290.41 162.27 101.13
(h) N = 65,250 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node N/A N/A N/A N/A 2528.92 1116.41
2 processes per node N/A N/A N/A N/A 1397.71 861.20
4 processes per node N/A N/A N/A N/A 719.32 364.10
(i) N = 126,700 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
1 process per node N/A N/A N/A N/A N/A N/A
2 processes per node N/A N/A N/A N/A N/A 4528.19
4 processes per node N/A N/A N/A N/A N/A 2641.05

8



results. In fact, the speedups for OpenMPI in Figures 4–6 are good up to p = 32 parallel processes for the cases
shown, but there is a significant loss of efficiency for p = 64 and 128. By contrast, the MPVAPICH2 speedups
in Figures 1–3 are good up to p = 64 parallel processes for all data sets and up to 128 for the two largest data
set sizes presented in the figures.

References

[1] Robin Blasberg and Matthias K. Gobbert. Clustering large data sets with parallel affinity propagation.
Submitted.

[2] Robin Blasberg and Matthias K. Gobbert. Parallel performance studies for a clustering algorithm. Technical
Report HPCF–2008–5, UMBC High Performance Computing Facility, University of Maryland, Baltimore
County, 2008.

[3] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points. Science, vol. 315,
pp. 972–976, 2007.

[4] Matthias K. Gobbert. Parallel performance studies for an elliptic test problem. Technical Report HPCF–
2008–1, UMBC High Performance Computing Facility, University of Maryland, Baltimore County, 2008.

Table 7: Memory usage on hpc using OpenMPI in MB per process. For small N values, N/A indicates that the
run finished too fast to observe memory usage. For large N values, N/A indicates that the case required more
memory than available per node.

(a) Predicted memory usage in MB per process
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 6 3 1 1 < 1 < 1 < 1 < 1
1,300 39 19 10 5 2 1 1 < 1
2,500 143 72 36 18 9 4 2 1
4,100 385 192 96 48 24 12 6 3
9,150 1,916 958 479 240 120 60 30 15

17,000 6,615 3,307 1,654 827 413 207 103 52
33,900 26,303 13,152 6,576 3,288 1,644 822 411 205
65,250 97,448 48,724 24,362 12,181 6,090 3,045 1,523 761

126,700 367,421 183,711 91,855 45,928 22,964 11,482 5,741 2,870
(b) Observed memory usage on hpc using OpenMPI

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 N/A N/A N/A N/A N/A N/A N/A N/A

1,300 169 152 151 151 N/A N/A N/A N/A
2,500 274 204 177 164 160 N/A N/A N/A
4,100 516 325 237 195 175 178 327 385
9,150 2,050 1,092 621 387 272 227 352 397

17,000 6,752 3,444 1,797 974 566 374 425 434
33,900 N/A N/A 6,722 3,437 1,797 990 733 589
65,250 N/A N/A N/A N/A 6,248 3,216 1,846 1,146

126,700 N/A N/A N/A N/A N/A N/A 6,071 3,260

9



Table 8: Performance on hpc using OpenMPI by number of processes used with 1 process per node except for
p = 64 which uses 2 processes per node and p = 128 which uses 4 processes per node. N/A indicates that the
case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.73 0.91 0.44 0.22 0.13 0.08 0.07 0.13
1,300 9.60 4.93 2.47 1.31 0.69 0.41 0.32 0.36
2,500 35.00 17.69 8.95 4.69 2.41 1.30 0.97 0.73
4,100 94.40 47.72 24.13 12.42 6.33 3.32 2.23 1.68
9,150 489.32 249.63 125.59 64.56 32.93 16.99 10.08 7.27

17,000 1754.29 854.63 427.95 223.98 113.79 57.21 36.32 24.01
33,900 N/A N/A 2150.87 981.88 501.16 265.30 175.80 101.13
65,250 N/A N/A N/A N/A 2528.92 1116.41 861.20 364.10

126,700 N/A N/A N/A N/A N/A N/A N/A N/A
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 1.9011 3.9318 7.8636 13.3077 21.6250 24.7143 13.3077

1,300 1.0000 1.9473 3.8866 7.3282 13.9130 23.4146 30.0000 26.6667
2,500 1.0000 1.9785 3.9106 7.4627 14.5228 26.9231 36.0825 47.9452
4,100 1.0000 1.9782 3.9121 7.6006 14.9131 28.4337 42.3318 56.1905
9,150 1.0000 1.9602 3.8962 7.5793 14.8594 28.8005 48.5437 67.3067

17,000 1.0000 2.0527 4.0993 7.8324 15.4169 30.6640 48.3009 73.0650
33,900 N/A N/A 4.0000 8.7623 17.1671 32.4292 48.9390 85.0735
65,250 N/A N/A N/A N/A 16.0000 36.2436 46.9841 111.1308

126,700 N/A N/A N/A N/A N/A N/A N/A N/A
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 0.9505 0.9830 0.9830 0.8317 0.6758 0.3862 0.1040

1,300 1.0000 0.9736 0.9717 0.9160 0.8696 0.7317 0.4688 0.2083
2,500 1.0000 0.9893 0.9777 0.9328 0.9077 0.8413 0.5638 0.3746
4,100 1.0000 0.9891 0.9780 0.9501 0.9321 0.8886 0.6614 0.4390
9,150 1.0000 0.9801 0.9740 0.9474 0.9287 0.9000 0.7585 0.5258

17,000 1.0000 1.0263 1.0248 0.9790 0.9636 0.9583 0.7547 0.5708
33,900 N/A N/A 1.0000 1.0953 1.0729 1.0134 0.7647 0.6646
65,250 N/A N/A N/A N/A 1.0000 1.1326 0.7341 0.8682

126,700 N/A N/A N/A N/A N/A N/A N/A N/A

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4: Performance on hpc using OpenMPI by number of processes used with 1 process per node except for
p = 64 which uses 2 processes per node and p = 128 which uses 4 processes per node.

10



Table 9: Performance on hpc using OpenMPI by number of processes used with 2 processes per node except for
p = 1 which uses 1 process per node and p = 128 which uses 4 processes per node. Also, data marked by an
asterisk do not use 2 processes per node but are copied from the previous table to allow for a comparison here.
N/A indicates that the case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.73 0.92 0.46 0.21 0.12 0.09 0.07 0.13
1,300 9.60 5.09 2.64 1.54 0.76 0.43 0.32 0.36
2,500 35.00 20.47 9.62 4.87 2.54 1.36 0.97 0.73
4,100 94.40 50.45 27.96 12.94 6.65 3.67 2.23 1.68
9,150 489.32 291.32 142.66 75.03 39.34 19.49 10.08 7.27

17,000 1754.29 939.21 503.39 255.32 128.41 63.56 36.32 24.01
33,900 N/A N/A *2150.87 1260.82 650.91 335.64 175.80 101.13
65,250 N/A N/A N/A N/A *2528.92 1397.71 861.20 364.10

126,700 N/A N/A N/A N/A N/A N/A 4528.19 2641.05
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 1.8804 3.7609 8.2381 14.4167 19.2222 24.7143 13.3077

1,300 1.0000 1.8861 3.6364 6.2338 12.6316 22.3256 30.0000 26.6667
2,500 1.0000 1.7098 3.6383 7.1869 13.7795 25.7353 36.0825 47.9452
4,100 1.0000 1.8712 3.3763 7.2952 14.1955 25.7221 42.3318 56.1905
9,150 1.0000 1.6797 3.4300 6.5217 12.4382 25.1062 48.5437 67.3067

17,000 1.0000 1.8678 3.4850 6.8709 13.6616 27.6005 48.3009 73.0650
33,900 N/A N/A *4.0000 6.8237 13.2176 25.6331 48.9390 85.0735
65,250 N/A N/A N/A N/A *16.0000 28.9493 46.9841 111.1308

126,700 N/A N/A N/A N/A N/A N/A 64.0000 109.7307
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 0.9402 0.9402 1.0298 0.9010 0.6007 0.3862 0.1040

1,300 1.0000 0.9430 0.9091 0.7792 0.7895 0.6977 0.4688 0.2083
2,500 1.0000 0.8549 0.9096 0.8984 0.8612 0.8042 0.5638 0.3746
4,100 1.0000 0.9356 0.8441 0.9119 0.8872 0.8038 0.6614 0.4390
9,150 1.0000 0.8398 0.8575 0.8152 0.7774 0.7846 0.7585 0.5258

17,000 1.0000 0.9339 0.8712 0.8589 0.8539 0.8625 0.7547 0.5708
33,900 N/A N/A *1.0000 0.8530 0.8261 0.8010 0.7647 0.6646
65,250 N/A N/A N/A N/A *1.0000 0.9047 0.7341 0.8682

126,700 N/A N/A N/A N/A N/A N/A 1.0000 0.8573

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 5: Performance on hpc using OpenMPI by number of processes used with 2 processes per node except
for p = 1 which uses 1 process per node and p = 128 which uses 4 processes per node.

11



Table 10: Performance on hpc using OpenMPI by number of processes used with 4 processes per node except
for p = 1 which uses 1 process per node and p = 2 which uses 2 processes per node. Also, data marked by an
asterisk do not use 4 processes per node but are copied from the previous tables to allow for a comparison here.
N/A indicates that the case required more memory than available.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.73 0.92 0.45 0.22 0.13 0.10 0.11 0.13
1,300 9.60 5.09 2.58 1.40 0.73 0.45 0.33 0.36
2,500 35.00 20.47 9.05 4.84 2.54 1.67 1.04 0.73
4,100 94.40 50.45 25.45 12.53 6.45 3.95 2.43 1.68
9,150 489.32 291.32 130.38 69.78 33.64 19.98 12.15 7.27

17,000 1754.29 939.21 448.83 224.60 118.93 60.18 37.27 24.01
33,900 N/A N/A *2150.87 *1260.82 559.66 290.41 162.27 101.13
65,250 N/A N/A N/A N/A *2528.92 *1397.71 719.32 364.10

126,700 N/A N/A N/A N/A N/A N/A *4528.19 2641.05
(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 1.8804 3.8444 7.8636 13.3077 17.3000 15.7273 13.3077

1,300 1.0000 1.8861 3.7209 6.8571 13.1507 21.3333 29.0909 26.6667
2,500 1.0000 1.7098 3.8674 7.2314 13.7795 20.9581 33.6538 47.9452
4,100 1.0000 1.8712 3.7092 7.5339 14.6357 23.8987 38.8477 56.1905
9,150 1.0000 1.6797 3.7530 7.0123 14.5458 24.4905 40.2733 67.3067

17,000 1.0000 1.8678 3.9086 7.8107 14.7506 29.1507 47.0698 73.0650
33,900 N/A N/A *4.0000 6.8237 15.3727 29.6253 53.0195 85.0735
65,250 N/A N/A N/A N/A *16.0000 28.9493 56.2513 111.1308

126,700 N/A N/A N/A N/A N/A N/A 64.0000 109.7307
(c) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128
500 1.0000 0.9402 0.9611 0.9830 0.8317 0.5406 0.2457 0.1040

1,300 1.0000 0.9430 0.9302 0.8571 0.8219 0.6667 0.4545 0.2083
2,500 1.0000 0.8549 0.9669 0.9039 0.8612 0.6549 0.5258 0.3746
4,100 1.0000 0.9356 0.9273 0.9417 0.9147 0.7468 0.6070 0.4390
9,150 1.0000 0.8398 0.9383 0.8765 0.9091 0.7653 0.6293 0.5258

17,000 1.0000 0.9339 0.9771 0.9763 0.9219 0.9110 0.7355 0.5708
33,900 N/A N/A *1.0000 0.8530 0.9608 0.9258 0.8284 0.6646
65,250 N/A N/A N/A N/A *1.0000 0.9047 0.8789 0.8682

126,700 N/A N/A N/A N/A N/A N/A 1.0000 0.8573

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 6: Performance on hpc using OpenMPI by number of processes used with 4 processes per node except
for p = 1 which uses 1 process per node and p = 2 which uses 2 processes per node.

12


