
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Clustering Large Data Sets with Parallel Affinity
Propagation

Robin Blasberg · Matthias K. Gobbert

Received: date / Accepted: date

Abstract Affinity propagation is a recently introduced clustering algorithm that in-

volves iterative row and column updates of matrices. The method has great potential

for large data sets, in particular if the number of clusters in the data set is also large and

not known in advance. The key motivation for parallel computing is the large memory

requirement for the matrices in the algorithm, and the formulation of the algorithm

involving row and column oriented operations holds great potential for efficient par-

allelization. We present a memory-optimal implementation of the algorithm and show

for a synthetic data set its excellent scalability on a distributed-memory cluster with

high-performance interconnect network.

Keywords Pattern Recognition · Clustering · Affinity Propagation · Parallel

Computing · Cluster Computing

1 Introduction

Affinity propagation is a clustering algorithm recently introduced by Frey and Dueck

[1]. This iterative message exchange routine identifies a set of characteristic examples

from the data points. Each data point is then associated with one of these exemplars.

A cluster is the group of data points that has been linked with a particular exem-

plar. Frey and Dueck demonstrated diverse areas in which affinity propagation proved

effective and obtained the solution faster than other clustering methods. Examples in-

cluded facial image clustering, gene detection, and manuscript summarization [1]. The

discussions in [2] and [3] resulting from the original introduction of the algorithm bring

out that affinity propagation may be particularly useful if the data set consists of a

large number of clusters. In this case, it is hard for the user to provide the correct

Robin Blasberg
Naval Research Laboratory, Washington, D.C.

Matthias K. Gobbert
Department of Mathematics and Statistics, University of Maryland, Baltimore County
Tel.: +1-410-455-2404
Fax: +1-410-455-1066
E-mail: gobbert@math.umbc.edu



2

number of clusters as input to the algorithm as is necessary for many other clustering

algorithms. By contrast, the number of clusters emerges from the algorithm in affinity

propagation based on the input of a so-called similarity matrix S and preference vector

p. Specifically, for a data set of N data points, the components sij of the N ×N sim-

ilarity matrix S = (sij) represent the likeliness that point j is an exemplar for point

i. If no other information is known, the similarity can be reasonably set to the nega-

tive squared distance between the two points. The N components pi of the preference

vector p = (pi) indicate the likelihood that a point i is an exemplar. If no a priori

knowledge exists, the preference vector can be set to the mean or median similarity.

The preference values affect the number of clusters that the affinity propagation code

forms. That is, higher preference values tend to result in more clusters [1].

The affinity propagation algorithm involves two additional N ×N matrices besides

S. Each operation of the algorithm is either row or column oriented involving these

matrices. This is an ideal algorithmic formulation for efficient parallelization of the

method. Besides the obvious benefit of excellent speedup, the most important advan-

tage of the parallel implementation is the pooling of all memory of several compute

nodes that allows for the solution of much larger problems. This is important for affin-

ity propagation, because its use of three N ×N matrices makes it inherently memory

intensive. For instance, to apply the algorithm to a data set with N = 17,000 data

points requires at least 6.6 GB of memory. By pooling the memory of several nodes,

it is possible to solve substantially larger cases such as with N = 126,700 data points

which requires at least 367 GB total memory.

Memory limitations are a pervasive problem when working with large data sets,

and a parallel solution is not uncommon. For instance, an examination of many data

clustering algorithms shows an underlying parallel foundation [4]. Parallel implementa-

tions of k-means exist [5], and associated performance studies have been reported [6].

Since k-means involves only vectors of length N (instead of matrices of size N ×N), it

is possible to solve much larger problems, potentially with millions of data points, than

with affinity propagation. However, k-means requires the user to provide the number

of clusters as input, which is problematic particularly for large numbers of clusters.

Another approach to solving large problems is a sparse version of affinity propaga-

tion [1]. This approach will work for problems where it is known a priori for a large

number of pairs of data points that they do not belong to the same cluster. But for gen-

eral clustering problems, for which sparse affinity propagation cannot be used and that

have an unknown, potentially large, number of clusters, the parallel implementation

of (non-sparse) affinity propagation is vital to attack the problem. This is particularly

necessary, because problems with large numbers of clusters will typically also involve

large numbers of data points.

In the following Section 2, we describe our parallel implementation of affinity prop-

agation in more detail. In order to test the algorithm on data sets of any desired size

with a known solution, we have designed a synthetic data set. Section 3 details its

design and lists the results of validation studies. Section 4 presents the results of both

serial and parallel performance studies for our code that demonstrate its excellent scal-

ability and ability to solve large clustering problems. Finally, Section 5 summarizes our

conclusions.



3

2 Parallel Affinity Propagation

Affinity propagation functions by identifying similar data points in an iterative process

[1]. The data set is given as N data points, and the goal of the algorithm is to cluster

groups of data points that are close to each other. The method of affinity propagation is

based on a criterion embedded in a similarity matrix S = (sij) where each component

Sij quantifies the closeness between data points i and j. We follow the default suggested

in [1] by using the negative square of the Euclidean distance between data points.

The algorithm updates a matrix A of ‘availabilities’ and a matrix R of ‘responsibili-

ties’ iteratively until the computed clusters do not change for convits many iterations.

Our memory-optimal code uses the three matrices S, A, and R as the only variables

of significant size, namely N × N double-precision numbers. To distribute the mem-

ory across all parallel processes, all matrices are split consistently across the p parallel

processes by groups of adjacent columns.

Our implementation assumes that the similarity matrix is symmetric. That is, it

is assumed that point j has the same likelihood of being an exemplar for point i as

point i’s likelihood of being an exemplar for point j. As many quantities as possible are

computed for S by using only information that is local to each parallel process. This

minimizes the number of parallel communications. As a result of our design, we need

only two communication commands in each iteration, both of which are MPI_Allreduce

commands from the MPI library for parallel communications. Other MPI commands

appear in the initialization and the post-processing, but only the commands inside the

iteration loop impact the performance significantly. Our code is written in C, and we

use the MVAPICH2 implementation of MPI.

Our code sets all preference values to the mean of the similarity matrix. This differs

from the original [1] which uses the median of the similarity values as the default for

the preference vector. Serial validation tests confirm that this choice does not impact

the clustering significantly.

Since affinity propagation is based on matrix calculations, it has relatively large

memory requirements. For instance, a data set with N = 126, 700 data points requires

367,421 MB or over 367 GB. This kind of memory requirement cannot be accommo-

dated on a serial computer but requires the combined memory of many nodes of a

parallel computer.

In the development of our code, we used the Matlab version of the Frey and Dueck

affinity propagation code available at www.psi.toronto.edu/affinitypropagation.

Starting from this original Matlab code, we developed a simplified version that both

avoids all unnecessary variables and translates the high-level matrix and vector opera-

tions in Matlab to for loops. Our simplified Matlab code was then rewritten in C with

the major matrix operations being broken out such that columnar manipulation would

be possible. This enabled efficient parallelization of the C code.

3 Data Set and Validation

3.1 Synthetic Test Data Set

The focus of this work is to analyze the size of problems that can be solved by a parallel

implementation of affinity propagation and to study the scalability of this solution to

many parallel processes. Therefore, we need on the one hand a test data set for which



4

(a) (b)

Fig. 1 Examples of synthetic data sets (a) with N = 1,300 points in q = 13 classes and
(b) with N = 4,100 points in q = 41 classes

we can readily determine that the problem is solved correctly and that this solution

is not affected significantly by the number of parallel processes used. Thus, we design

a synthetic data set of arbitrary size N with known true clusters, because this allows

the scalar measures of entropy and purity [6,7] to be used to judge the correctness of

the computed results. On the other hand, we want to choose the size N of the data

set as any desired value to analyze memory usage and scalability over the full range

possible. To this end, the use of a synthetic data set is appropriate, because both

memory usage and parallel scalability only depend on the size of the problem, not on

the data themselves.

Our synthetic data set consists of N data points (xi, yi) in q true clusters called

classes such that equal numbers of N/q data points are in each class. For chosen input

values N and q, the data set is created by scattering N/q points about one centroid

computed for each of the q classes. Specifically, inspired by geographic applications

which have clusters of data spread out across the plane, the centroids are first dis-

tributed in a checkerboard fashion about the origin of the (x, y)-plane at points with

integer coordinates (x, y) = (i, j), for which i + j is an even number. This design re-

sults in a uniform spacing between neighboring centroids. The N/q points in each class

are then placed by scattering their x and y coordinates about their centroid with a

normal distribution with standard deviation σ = 0.2. This deviation is significantly

smaller than the distance between neighboring centroids, hence nearly all data points

are indeed closest to the centroid used in their construction. Two examples of data sets

computed in this way are shown in Figure 1.

Table 1 (a) shows the parameters for all data sets considered in the following

studies. The values of N range from 500 to 126,700 along with q classes from 5 to 181.

The values of N are roughly equal to powers of 2 which is chosen so that the memory

usage quadruples approximately for each increase in N . The controlled approach used

to create the data set allows the evaluation of the quality of a generated data set.

Specifically, we can determine whether a data point is closer to another centroid than

the one used in its construction. This is the definition for a ‘bad’ point as counted

in the column with label numbadpts. In turn, the column Pdata shows the fraction

of ‘good’ data points as percent of the total number of data points. The numbers for

Pdata indicate that all data sets have relatively well separated clusters with very few

points closer to the ‘wrong’ than the ‘right’ centroid. Thus, the clustering algorithm



5

Table 1 (a) Properties and (b) results for all data sets considered

(a) Properties
N q numbadpts Pdata(%) mean

500 5 0 100.00 −3.38
1,300 13 0 100.00 −8.82
2,500 25 1 99.96 −16.78
4,100 41 6 99.85 −27.50
9,150 61 8 99.91 −40.82

17,000 85 18 99.89 −56.85
33,900 113 27 99.92 −75.56
65,250 145 56 99.91 −96.84

126,700 181 97 99.92 −120.87

(b) Results
N its k entropy purity

500 153 5 0.0070 0.9980
1,300 131 13 0.0017 0.9992
2,500 130 25 0.0043 0.9972
4,100 131 41 0.0031 0.9978
9,150 135 61 0.0074 0.9931

17,000 133 85 0.0068 0.9912
33,900 139 113 0.0087 0.9890
65,250 156 145 0.0121 0.9828

126,700 172 181 0.0194 0.9672

should be able to produce a correct result, meaning that data points are associated

with the correct cluster. For affinity propagation, this also includes the expectation

that the clustering algorithm determine the correct number of clusters automatically.

In our simulations, we follow the default suggested in [1] by using the negative square

of the Euclidean distance between the data points as definition for the components of

the similarity matrix. We modified the computation of the preference vector from the

original median to using the mean, because this allowed for better parallelization and

is not expected to affect the results significantly. The final column of Table 1 (a) lists

the preference mean for each data set that is used in the input to affinity propagation.

3.2 Validation Results

The focus of this work is on parallel scalability and memory usage of our parallel code.

In validation studies, we use the concepts of entropy and purity as convenient scalars

to measure the quality of the clustering result produced. These quantities measure the

quality relative to the classes in the data set. That is why it was important to use data

sets for which the true clusters (i.e., classes) have very few data points that are closer

to other centroids.

The term entropy is used to describe the heterogeneity of the clusters. Mathemat-

ically, the entropy of a particular cluster Sr is defined as [6,7]

E(Sr) = − 1

log q

q∑
i=1

nir
nr

log
nir
nr
,



6

where q is the number of classes, nr is the size of the cluster Sr, and nir is the number

of points from the ith class that were put in the rth cluster. The entropy of the entire

clustering result is then a weighted sum of all the individual entropies as given by

Entropy =

k∑
r=1

nr
N
E(Sr).

As can be noted from this equation, the ideal value for entropy is 0. Entropy increases

as it moves further away from this ideal value.

In contrast to entropy, purity is used to describe the homogeneity of the clusters.

Mathematically, the purity of a cluster Sr is defined as [6,7]

P (Sr) =
1

nr
max
i

(nir).

The purity of the entire clustering result is then a weighted sum of all of the individual

clustering purities as given by

Purity =

k∑
r=1

nr
N
P (Sr)

The ideal value for purity is 1. Purity values decrease towards 0 as the purity moves

further away from this ideal value.

Entropy and purity are essentially opposites with entropy describing the degree of

disorder in the cluster while purity describes the degree of order in a cluster. To further

illustrate the difference between entropy and purity, consider the following simple ex-

ample: Suppose two clusters are formed with cluster 1 being the set {A,A,B,B} and

cluster 2 the set {A,A,B,C}, where the letter identifies the class of the data point. It

can be seen that both cluster 1 and cluster 2 have the same purity since both of these

clusters have at most two elements from a single class. However, cluster 1 will have a

lower (i.e., better) entropy value than cluster 2, because cluster 1 contains elements

from a smaller number of different classes than cluster 2. That is, cluster 1 only has

elements from classes A and B as opposed to cluster 2 which has elements from classes

A, B, and C.

To examine whether our code could solve all problems correctly, we performed

validation studies for the data sets specified in Table 1 (a). Table 1 (b) shows the

results of affinity propagation applied to this data by listing the number of iterations

its, the number k of clusters formed by the algorithm, as well as the entropy and purity

measures for each data set. We note first that the algorithm finds automatically the

correct number of clusters k, whose values agree exactly with the value q of classes (i.e.,

true clusters) in the data sets shown in Table 1 (a). Moreover, the near-zero entropy

values and the purity values near 1 demonstrate that affinity propagation clustered

even large data sets successfully. It is also interesting to observe that the number of

iterations does not grow with the problem size. This makes this algorithm attractive

for large data sets.

The results in Table 1 (b) were obtained using numerical parameters set to default

values suggested by Frey and Dueck in their Matlab implementation of the algorithm.

Specifically, we used maxits = 1,000 for the maximum number of iterations allowed,

convits = 100 for the number of iterations over which the convergence test is applied,

and the damping parameter λ = 0.9. The results in Table 1 (b) are taken from the



7

runs with p = 128 parallel processes. They were carefully checked against all other

runs, including serial and both original and our Matlab codes (for data sets fitting in

serial memory), and found in agreement in all cases which confirms the correctness

of all results. Specifically, runs with different numbers of parallel processes resulted

in entropy and purity values with deviations within reasonable multiples of round-off,

indicating that a few points were sometimes clustered differently. This is expected as

the true data sets do have a few points that are closer to other centroids than their own

class’s for the larger values of N , as seen in Table 1 (a). But in all cases, the number k of

clusters found automatically by affinity propagation as well as the number of iterations

its were exactly the same for the various numbers of parallel processes tested. This

latter fact is important to ensure that the parallel code indeed does the same amount

of work for a fixed problem size N , independent of the number of processes p.

4 Performance Results

The code was run on the cluster hpc in the UMBC High Performance Computing Facil-

ity (HPCF; www.umbc.edu/hpcf). This distributed-memory cluster consists (presently)

of 32 compute nodes, integrated by IBM. Each of these nodes is equipped with two

dual-core AMD Opteron processors and 13 GB of memory, for a total system memory

of 416 GB. The compute nodes are connected by a high-performance InfiniBand inter-

connect network. We use the MVAPICH2 implementation of MPI. An additional head

node for compiling and job submission has the same processors as the compute nodes,

but an extended 17 GB of memory.

4.1 Serial Performance

Since our code development started with the original Matlab code by Frey and Dueck

and involved our own intermediate Matlab code in the development of our parallel

C code, it makes sense to compare their memory usage and performance with each

other in serial. This gives a feel for the magnitude of the problem and will motivate

the use of parallel computing. The first columns of Table 2 (a) show the predicted

memory usage in MB for all data sets listed in Table 1. The memory prediction for 1

matrix, stored in double-precision with 8 bytes per number, shows how the memory

requirement grows rapidly with N . Recall that the algorithm uses at a minimum 3

matrices, namely the matrix A of ‘availabilities’, the matrix R of ‘responsibilities’,

as well as the similarity matrix S. The remaining columns in Table 2 (a) collect the

memory usage observed during the serial run of each code for those cases that could

be accommodated in serial; to accommodate the original Matlab code for the data set

with N = 17,000, the serial runs were performed on the head node of the cluster which

has the same processors as the compute nodes, but an extended 17 GB of memory

compared to 13 GB on the compute nodes. The original Matlab code uses clearly some

additional large matrices. Although our Matlab memory requirements are noticeably

less than those of the original Matlab code, both columns of Matlab results underscore

the additional memory requirements of running Matlab software. By contrast, it can

be seen from the memory observation for our C code that the amount of memory we

need is far closer to the predicted memory estimates than the original Matlab code.

The results in Table 2 (a) also show that the difference between the serial memory



8

Table 2 Memory usage and performance of the original Matlab code, our Matlab code, and
our C code in serial. For the small N = 500 case, N/A indicates that the run finished too fast
to observe memory usage.

N predicted predicted observed observed observed
memory for memory for memory for memory for memory for

1 N ×N 3 matrices original our our
matrix (S,A,R) Matlab Matlab C code

500 2 6 825 800 N/A
1,300 13 39 937 845 100
2,500 48 143 1,161 999 202
4,100 128 385 1,661 1,334 444
9,150 639 1,916 4,650 3,376 1,978

17,000 2,205 6,615 ≈ 13,800 9,625 6,680
33,900 8,768 26,303 N/A N/A N/A
65,250 32,483 97,448 N/A N/A N/A

126,700 122,474 367,421 N/A N/A N/A

(a) Predicted and observed memory usage in MB in serial

N original Matlab our Matlab code our C code
initialization clustering initialization clustering initialization clustering

500 1.67 4.39 0.49 12.46 0.05 1.71
1,300 11.20 20.34 2.85 68.61 0.18 9.57
2,500 41.14 70.58 10.73 249.76 0.80 35.29
4,100 112.44 192.69 28.59 656.66 1.46 95.99
9,150 581.67 1066.52 144.47 3345.16 7.26 498.37

17,000 1447.24 3676.90 388.16 11780.80 22.77 1798.04

(b) Observed wall clock times in seconds in serial

requirements of the original Matlab code and the serial memory requirements of our

C code grows increasingly wider as the data set size grows larger. This would indicate

that, even in its serial form, our C code holds a noticeable capacity advantage over

both Matlab codes.

Table 2 (b) shows the observed wall clock times in seconds for the same runs as

Table 2 (a). The time taken for the initialization of the similarity matrix and the pref-

erence vector is reported under the heading initialization. The time for the affinity

propagation algorithm is shown separately under the heading clustering. This segrega-

tion brings out the potentially significant fraction of time needed for the initialization

in Matlab, while it is fairly insignificant in C. Thus, the separation allows for a clearer

comparison of the implementations. Our Matlab code was used as an intermediate step

for the development of the C code. That is, we used it to reduce the number of vari-

ables to the memory-optimal case of 3 matrices, but we also replaced various Matlab

functions by explicit code involving, e.g., for loops, for easy translation of the code to

C. Therefore, we do not expect our Matlab code to perform well, and this is exhibited

by the timing results for the clustering. Interestingly though, our times for the initial-

ization are faster than the original Matlab, while still much slower than the C code.

Specifically, a look at the clock times of the serial runs for various N values shows that

the time that it takes to create the similarity matrix is roughly 3 times faster with

our Matlab initialization code. The speed improvement associated with our C code



9

for the initialization function is even more pronounced. The clock times for initializing

the similarity matrices using our C code takes less than 2% of the initialization time

required by the original Matlab code. Additionally, the clock times of the serial runs

also show that the speed of the clustering routine is at least doubled with our C code.

4.2 Parallel Performance

The serial memory usage and run times for the larger data sets in Table 2 bring out the

two key motivations for parallel computing: Combining the memory of several nodes

allows for the solution of significantly larger problems, and the run times for a problem

of a given, fixed size can be potentially dramatically reduced by spreading the work

across a group of parallel processes. Both of these advantages are brought out by this

application in the following.

Since affinity propagation is based on matrix calculations, it has relatively large

memory requirements. This can be seen concretely in Table 3 (a) which shows in the

column p = 1 the total memory requirements in MB for the three N × N matrices

using 8 bytes per double-precision matrix component. The remaining columns list the

memory requirement for each parallel process if the three matrices are split into p

equally large portions across the processes. For instance, a data set with N = 126,700

data points requires 367,421 MB or over 367 GB. This kind of memory requirement

cannot be accommodated on a serial computer but requires the combined memory

of many nodes of a parallel computer. Specifically, on hpc with 13 GB of memory per

Table 3 Memory usage on hpc using MVAPICH2 in MB per process. For small N values,
N/A indicates that the run finished too fast to observe memory usage. For large N values,
N/A indicates that the case required more memory than available per node.

(a) Predicted memory usage in MB per process
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 6 3 1 1 < 1 < 1 < 1 < 1
1,300 39 19 10 5 2 1 1 < 1
2,500 143 72 36 18 9 4 2 1
4,100 385 192 96 48 24 12 6 3
9,150 1,916 958 479 240 120 60 30 15

17,000 6,615 3,307 1,654 827 413 207 103 52
33,900 26,303 13,152 6,576 3,288 1,644 822 411 205
65,250 97,448 48,724 24,362 12,181 6,090 3,045 1,523 761

126,700 367,421 183,711 91,855 45,928 22,964 11,482 5,741 2,870

(b) Observed memory usage on hpc using MVAPICH2
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 N/A N/A N/A N/A N/A N/A N/A N/A
1,300 100 83 76 72 N/A N/A N/A N/A
2,500 202 133 100 86 80 72 74 N/A
4,100 444 253 160 113 93 83 80 75
9,150 1,978 1,020 543 305 189 128 102 87

17,000 6,680 3,372 1,719 894 483 276 176 123
33,900 N/A N/A 6,641 3,355 1,715 893 485 277
65,250 N/A N/A N/A N/A 6,163 3,117 1,599 835

126,700 N/A N/A N/A N/A N/A ≈ 11,600 5,819 2,949



10

compute node, we need all 32 nodes to accommodate a data set of this size. Table 3 (b)

shows the memory usage observed for our code. We observe that the memory required

in reality is more than predicted but within reason when smaller variables and loading

of required libraries are taken into consideration.

The ideal behavior of parallel code for a fixed problem size using p parallel processes

is that it be p times as fast as with 1 process. If Tp(N) denotes the wall clock time for

a problem of a fixed size parametrized by the number N using p processes, then the

quantity Sp := T1(N)/Tp(N) measures the speedup of the code from 1 to p processes,

whose optimal value is Sp = p. The efficiency Ep := Sp/p characterizes in relative

terms how close a run with p parallel processes is to this optimal value, for which

Ep = 1. This behavior described here for speedup and efficiency for a given, fixed

problem size is known as strong scalability of parallel code.

Table 4 lists the results of a performance study for strong scalability. Each row

lists the results for one problem size parametrized by the number of data points N .

Each column corresponds to the number of parallel processes p used in the run. The

runs for Table 4 cluster these p parallel MPI processes on the compute nodes as tightly

as possible by using all 4 cores (both cores on both processors) on each of the p/4

nodes used for the job. For the runs with p = 1 and p = 2, the job uses only one

node, with several cores idling, so that the job can use the entire memory of the node

for the job. Additionally, the table reports data marked with an asterisk that extends

the table as much as possible. These are cases, where the memory of a node could

not accommodate the use of all 4 cores. For instance, for N = 33,900, the case p = 8

requires about 3.4 GB of memory per process according to Table 3 (b). This cannot

be accommodated by clustering 4 processes per node. Thus, the result of clustering

only 2 processes per node is reported for this case. Analogously, the case p = 4 for

N = 33,900 required over 6.6 GB per process, which can only be accommodated by

spreading the run over 4 nodes. Tables with complete results for the configurations

with 1 and 2 processes per node, respectively, are available in [8], which also contains

a comparison to results using the OpenMPI implementation of MPI.

Comparing adjacent columns in the raw timing data in Table 4 (a) indicates that

using twice as many processes speeds up the code by nearly a factor of two for nearly

all cases, except the smallest ones and the case N = 126,700; see below. To quantify

this more clearly, the observed speedup in Table 4 (b) is computed, which shows near-

optimal with Sp ≈ p for all cases of N up to p = 32, except the smallest cases, and still

excellent results beyond that for the larger data sets, except for N = 126,700. For the

data sets that are too large for serial runs, the speedup is re-defined to start with the

first available value of p. For instance, for N = 33,900, we compute Sp := 4T4/Tp, since

p = 4 is the first available case; analogous re-definitions are used for N = 65,250 and

126,700. These re-definitions use the data marked with an asterisk that was obtained

with several cores idling on the node, which has the potential for performing much

better. Thus, this approach of analyzing the data might underestimate the performance

achieved by our code and is conservative in nature, but it makes the most amount of

data available in the table using a consistent scale to allow for comparisons. Finally,

Table 4 (c) lists the observed efficiency Ep = Sp/p. This clearly demonstrates the

excellent scalability of the code all the way to p = 128 for the larger data sets. Notice

that we are comparing to the case of p = 1, which was run on a dedicated node with

3 cores idling. This often results in severe degradation of performance compared to

p = 2 and p = 4. It is a good indicator of both MPI and hardware performance that

this is not the case here. We note that the apparent loss of speedup and efficiency for



11

Table 4 Performance on hpc using MVAPICH2 by number of processes used with 4 processes
per node except for p = 1 which uses 1 process per node and p = 2 which uses 2 processes
per node. N/A indicates that the case required more memory than available. Data marked by
an asterisk indicates that there was insufficient memory to run 4 processes per node, but data
was obtained with 1 or 2 processes per node in order to extend the comparisons in the table
as much as possible.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.71 0.91 0.53 0.22 0.14 0.08 0.06 0.05
1,300 9.57 5.05 2.64 1.32 0.69 0.36 0.18 0.12
2,500 35.29 18.48 9.20 4.77 2.39 1.24 0.67 0.42
4,100 95.99 49.72 25.11 12.78 6.43 3.31 1.74 1.12
9,150 498.37 260.85 130.42 64.99 32.86 16.78 8.53 4.64

17,000 1798.04 932.81 440.05 223.39 112.05 56.69 28.91 15.43
33,900 N/A N/A *2287.98 *1223.54 568.01 300.07 143.58 78.81
65,250 N/A N/A N/A N/A *2593.53 *1595.91 718.26 402.58

126,700 N/A N/A N/A N/A N/A *6160.75 *4493.82 2720.27

(b) Observed speedup Sp
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.0000 1.8791 3.2264 7.7727 12.2143 21.3750 28.5000 34.2000
1,300 1.0000 1.8950 3.6250 7.2500 13.8696 26.5833 53.1667 79.7500
2,500 1.0000 1.9096 3.8359 7.3983 14.7657 28.4597 52.6716 84.0238
4,100 1.0000 1.9306 3.8228 7.5110 14.9285 29.0000 55.1667 85.7054
9,150 1.0000 1.9106 3.8213 7.6684 15.1665 29.7002 58.4256 107.4073

17,000 1.0000 1.9276 4.0860 8.0489 16.0468 31.7171 62.1944 116.5288
33,900 N/A N/A *4.0000 *7.4799 16.1123 30.4993 63.7409 116.1264
65,250 N/A N/A N/A N/A *16.0000 *26.0018 57.7736 103.0764

126,700 N/A N/A N/A N/A N/A *32.0000 *43.8700 72.4722

(c) Observed efficiency Ep
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

500 1.0000 0.9396 0.8066 0.9716 0.7634 0.6680 0.4453 0.2672
1,300 1.0000 0.9475 0.9062 0.9062 0.8668 0.8307 0.8307 0.6230
2,500 1.0000 0.9548 0.9590 0.9248 0.9229 0.8894 0.8230 0.6564
4,100 1.0000 0.9653 0.9557 0.9389 0.9330 0.9062 0.8620 0.6696
9,150 1.0000 0.9553 0.9553 0.9586 0.9479 0.9281 0.9129 0.8391

17,000 1.0000 0.9638 1.0215 1.0061 1.0029 0.9912 0.9718 0.9104
33,900 N/A N/A *1.0000 *0.9350 1.0070 0.9531 0.9960 0.9072
65,250 N/A N/A N/A N/A *1.0000 *0.8126 0.9027 0.8053

126,700 N/A N/A N/A N/A N/A *1.0000 *0.6855 0.5662

the largest case of N = 126,700 is a consequence of the increased effectiveness possible

when only using 1 core per node, as in the case p = 32 that it is compared to.

The customary visualizations of speedup and efficiency are presented in Figure 2 (a)

and (b), respectively, for five intermediate values of N that still allow for serial runs,

thus the canonical definition of speedup. Figure 2 (a) shows very clearly the excellent

speedup all the way up to p = 64 parallel processes for all cases shown and excellent

performance for the two larger cases all the way to p = 128. The efficiency plotted in

Figure 2 (b) is directly derived from the speedup and confirms these conclusions. An ef-

ficiency plot is often useful because it can better bring out interesting features for small

values of p that are hard to tell in a speedup plot. Here, we notice that some variability

of the results for small p is visible. However, there is not a large drop in efficiency from



12

(a) Observed speedup Sp (b) Observed efficiency Ep

Fig. 2 Performance on hpc using MVAPICH2 by number of processes used with 4 processes
per node except for p = 1 which uses 1 process per node and p = 2 which uses 2 processes per
node.

p = 1 to p = 2 and p = 4, as we already noted in the discussion on Table 4 (c). This is

an excellent result, because the runs with p = 1 and p = 2 involve some idling cores on

the node used, thus have added potential for performance, compared to the runs using

all four cores per node. It is customary in results of strong scalability studies for given,

fixed problem sizes that the speedup is better for larger problems since the increased

communication time for more parallel processes does not dominate over the calculation

time as quickly as it does for small problems. Thus, the progression in speedup perfor-

mance from smaller to larger data sets seen in Figures 2 (a) and (b) is expected. To

see this most clearly, it is vital to have the precise data shown in Tables 4 (b) and (c)

available and not just their graphical representation in Figure 2.

The results presented so far were for runs using all 4 cores per node (except for

p = 1 and p = 2 processes or unless memory requirements prevented this). Table 5

summarizes the observed wall clock times for each of the data sets considered and

contrasts the use of 1, 2, or 4 processes per node. Specifically, the upper-left entry of

each sub-table with 1 process per node on 1 node represents the serial run of the code,

while the lower-right entry of each sub-table lists the time for running 4 processes on

all 32 nodes using both cores of both dual-core processors on each node for a total

of 128 parallel processes. This table is designed to analyze the advantage of using

all 4 cores per node when using a given number of nodes for the job. It is apparent

that, with the exception of the largest numbers of nodes for the smallest data set, the

execution time of each problem is, in fact, vastly reduced with doubling the numbers

of processes per node, albeit not quite halved. These results confirm that it is not just

effective to use both processors on each node, but it is also effective to use both cores

of each dual-core processor simultaneously. This is clearly also true for the case of

N = 126,700 data points, despite the fact that the data for this case in Table 4 shows

that the speed improvement associated with doubling the number of cores used is less

than optimal.



13

Table 5 Performance on hpc using MVAPICH2. Wall clock time in seconds for the solution of
problems with N data points using 1, 2, 4, 8, 16, 32 compute nodes with 1, 2, and 4 processes
per node. N/A indicates that the case required more memory than available.

(a) N = 500 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 1.71 0.87 0.45 0.22 0.12 0.08
2 processes per node 0.91 0.47 0.22 0.13 0.08 0.06
4 processes per node 0.53 0.22 0.14 0.08 0.06 0.05

(b) N = 1,300 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 9.57 4.77 2.45 1.23 0.67 0.34
2 processes per node 5.05 2.58 1.31 0.68 0.36 0.18
4 processes per node 2.64 1.32 0.69 0.36 0.18 0.12

(c) N = 2,500 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 35.29 17.58 8.96 4.48 2.28 1.20
2 processes per node 18.48 9.25 4.69 2.38 1.32 0.68
4 processes per node 9.20 4.77 2.39 1.24 0.67 0.42

(d) N = 4,100 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 95.99 47.83 23.98 12.14 6.13 3.18
2 processes per node 49.72 25.06 12.62 6.41 3.37 1.75
4 processes per node 25.11 12.78 6.43 3.31 1.74 1.12

(e) N = 9,150 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 498.37 251.72 126.76 63.16 31.81 16.62
2 processes per node 260.85 130.74 65.31 32.83 17.05 8.70
4 processes per node 130.42 64.99 32.86 16.78 8.53 4.64

(f) N = 17,000 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 1798.04 864.00 424.48 214.80 109.19 56.27
2 processes per node 932.81 448.18 220.77 111.99 58.64 30.32
4 processes per node 440.05 223.39 112.05 56.69 28.91 15.43

(g) N = 33,900 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node N/A N/A 2287.98 1004.23 492.52 255.92
2 processes per node N/A N/A 1223.54 553.48 287.41 153.58
4 processes per node N/A N/A 568.01 300.07 143.58 78.81

(h) N = 65,250 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node N/A N/A N/A N/A 2593.53 1291.01
2 processes per node N/A N/A N/A N/A 1595.91 742.32
4 processes per node N/A N/A N/A N/A 718.26 402.58

(i) N = 126,700 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node N/A N/A N/A N/A N/A 6160.75
2 processes per node N/A N/A N/A N/A N/A 4493.82
4 processes per node N/A N/A N/A N/A N/A 2720.27



14

5 Conclusions

Affinity propagation is a recent clustering method whose algorithm involves iterative

updates of the rows and columns of three large matrices. The method has great po-

tential for data sets consisting of large but unknown numbers of clusters. Problems

of this type will typically also involve large numbers of data points. We observe that

the number of iterations does not grow with the problem size, adding to the attrac-

tiveness of the method. However, to accommodate large data sets, the memory needed

for the three (non-sparse) matrices is a challenge. Parallel computing that pools the

memory of several compute nodes allows us to solve these large problems. Table 4

demonstrates that an efficient parallel implementation in MPI is possible and solves

these problems with excellent scalability on modern compute nodes with a state-of-

the-art interconnect network. Table 5 analyzes the use of different numbers of cores of

the two dual-core processors on each compute node and clearly shows the advantage

of using all cores available. All these results make a parallel implementation of affinity

propagation an attractive tool for clustering large data sets with large but unknown

numbers of clusters.

Acknowledgements The hardware used in the computational studies is part of the UMBC
High Performance Computing Facility (HPCF). The facility is supported by the U.S. National
Science Foundation through the MRI program (grant no. CNS–0821258) and the SCREMS
program (grant no. DMS–0821311), with additional substantial support from the University
of Maryland, Baltimore County (UMBC). See www.umbc.edu/hpcf for more information on
HPCF and the projects using its resources.

References

1. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315,
972–976 (2007)

2. Brusco, M.J., Köhn, H.F.: Comment on “Clustering by passing messages between data
points”. Science 319, 726c (2008)

3. Frey, B.J., Dueck, D.: Response to comment on “Clustering by passing messages between
data points”. Science 319, 726d (2008)

4. Zhang, B., Hsu, M.: Scale up center-based data clustering algorithms by parallelism. Tech.
Rep. HPL–2000–6, Hewlett-Packard Company (2000)

5. Pataneè, G., Russo, M.: Parallel clustering on a commodity supercomputer. In: Proceedings
of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, vol. 3, pp.
575–580 (2000)

6. Xu, S., Zhang, J.: A parallel hybrid web document clustering algorithm and its performance
study. J. Supercomput. 30, 117–131 (2004)

7. Zhao, Y., Karypis, G.: Criterion functions for document clustering experiments and analysis.
Tech. rep., Department of Computer Science/Army HPC Research Center, University of
Minnesota (2002)

8. Blasberg, R., Gobbert, M.K.: MVAPICH2 vs. OpenMPI for a clustering algorithm. Tech.
Rep. HPCF–2008–7, UMBC High Performance Computing Facility, University of Maryland,
Baltimore County (2008). URL www.umbc.edu/hpcf


