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Abstract

Accurate quantitative precipitation estimation (QPE) is essential for managing water re-
sources, monitoring flash floods, creating hydrological models, and more. Traditional methods
of obtaining precipitation data from rain gauges and radars have limitations such as sparse
coverage and inaccurate estimates for different precipitation types and intensities. Symbolic
regression, a machine learning method that generates mathematical equations fitting the data,
presents a unique approach to estimating precipitation that is both accurate and interpretable.
Using WSR-88D dual-polarimetric radar data from Oklahoma and Florida over three dates,
we tested symbolic regression models involving genetic programming and deep learning, sym-
bolic regression on separate clusters of the data, and the incorporation of knowledge-based loss
terms into the loss function. We found that symbolic regression is both accurate in estimating
rainfall and interpretable through learned equations. Accuracy and simplicity of the learned
equations can be slightly improved by clustering the data based on select radar variables and
by adjusting the loss function with knowledge-based loss terms. This research provides insights
into improving QPE accuracy through interpretable symbolic regression methods.

Key words. Quantitative precipitation estimation, Polarimetric radar, Symbolic regression,
Knowledge-based loss terms.

1 Introduction

Accurate estimations of rainfall are crucial for a variety of applications such as extreme weather
condition forecasting, flash flood monitoring, and ongoing climate research [1]. Rainfall can be
measured directly through rain gauge stations or indirectly calculated through radar remote sensing.
Rain gauges provide accurate data but have limited spatial coverage, whereas radars have higher
coverage yet more uncertainty as rainfall rate must be calculated from radar data through empirical
equations [2]. The traditional radar method for estimating precipitation primarily relied on the
Z–R relationship between rainfall rate R and radar reflectivity factor Z. This approach, however,
has limitations due to the complex and variable nature of rainfall [3]. There has been significant
progress in quantitative precipitation estimation (QPE) with the development of dual-polarimetric
radars, which provide additional variables such as differential reflectivity ZDR, specific differential
phase KDP , and correlation coefficient ρhv. The integration of these variables has been shown to

*These authors contributed equally to this work.
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reduce uncertainty in QPE by addressing issues related to drop size distribution variability, radar
miscalibration, attenuation, and partial beam blockage [3].

Despite these advancements, challenges still remain in accurately modeling the complex rela-
tionships between radar measurements and precipitation rate. Symbolic regression is a machine
learning method that discovers mathematical relationships from data [4,5], which offers a promising
approach to further enhance the interpretability and accuracy of radar-based precipitation estima-
tion. Symbolic regression will create interpretable models, allowing us to explicitly understand how
specific variables impact rainfall rate in the form of concrete equations. Our implementation code
is publicly available.1

This research aims to improve precipitation estimation from dual-polarimetric radar data through
the following contributions:

• Testing various symbolic regression models, from genetic programming to deep learning-
based methods, in order to understand how symbolic regression could achieve accurate and
interpretable QPE.

• Studying whether improved mathematical equations could be learned by subsetting the data
prior to applying symbolic regression, considering the complexity of the physics of precipita-
tion and various precipitation types.

• Studying how existing symbolic regression approaches could be extended to embed domain
knowledge and to adapt to the complexity of precipitation.

The remainder of this report is organized as follows: Section 2 provides a background of QPE and
symbolic regression, Section 3 covers related work, Section 4 describes our dataset, Section 5 covers
our methodology for testing the symbolic regression models, subsetting the data prior to applying
symbolic regression, and applying knowledge-based loss terms, Section 6 covers the results, Section 7
reviews the equations produced by symbolic regression, and Section 8 provides a conclusion of our
research and an overview of future work.

2 Application Background

2.1 Quantitative Precipitation Estimation (QPE)

One method of measuring precipitation is through a network of rain gauges, each of which collects
rain at a specific time and location. However, sampling errors, poor gauge placement, wind, clogging
of the gauge funnel, and other errors can cause inaccurate precipitation measurements [6]. Another
way of measuring precipitation is through radar-derived QPE sources, which provide wider coverage
compared to rain gauges as radar can sample large areas in a short amount of time [2]. In particular,
polarimetric radars perform real-time and high-resolution QPE the most efficiently [7].

In quantitative estimates of precipitation with radars, conventional methods use a Z–R relation-
ship to estimate rainfall R (mm/hr) via reflectivity Z (mm6/m3), given by the equation Z = aRb,
where a and b are constants that vary by drop size distribution and precipitation type [2,8], and Z
measures the amount of energy reflected back to the radar after hitting a raindrop [9]. However,
the Z–R relationship fails to account for nuances in rainfall by precipitation type, region, and
season [2].

1View our implementation code at https://github.com/big-data-lab-umbc/big-data-reu/tree/main/

2024-projects/team-1.
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Dual-polarization radars gather data from both the horizontal and vertical polarizations, thus
being able to better reflect the size, shape, distribution, and phase state of raindrops compared to
previous, single-polarization radars [2,9]. In addition to reflectivity, dual-polarization radars provide
differential reflectivity ZDR, specific differential phase KDP , and co-polar correlation coefficient ρhv
(also referred to as CC) [9]. ZDR is impacted by the composition or density of raindrops, helping
differentiate water drops from ice pellets and snow. As the ratio between reflectivity factors at
horizontal and vertical polarizations, ZDR is not impacted by calibration errors, but may become
biased with issues such as beam blockage [9]. KDP , a derived variable that represents the change
in differential phase shift ΦDP , is useful for identifying heavy precipitation and when hail is mixed
with rain, but KDP can be more noisy in light rain [9]. KDP , being immune to radar calibration
errors, attenuation, and partial beam blockage, is a reliable factor for rainfall estimation [3]. The
relationship between KDP and rainfall has lower sensitivity to variations in drop size distribution
than the Z–R relationship [2]. Moreover, as a measure of the variety of how particles affect the
radar signals, ρhv is close to 1.0 during uniform rainfall and decreases with more variability in the
types, shapes, and orientations of particles. ρhv is independent of particle concentrations and is
immune to radar miscalibration, attenuation, and beam blockage [9]. As such, dual-polarization
radar variables pose significant improvements for accurate precipitation estimation.

2.2 Symbolic Regression

Symbolic regression (SR) is a machine learning technique that finds an interpretable and best-fitting
mathematical expression based on the data [4]. Popularity as well as advancements in computing
have redefined SR and led to the rapid growth of related published papers in the past decade [10].
SR is usually implemented by evolutionary algorithms, specifically genetic programming, which
constructs, compares, and combines different symbolic expressions to form a potential expression
while discarding poor-performing combinations [10].

However, SR also presents some limitations for quantitative precipitation estimation. Sym-
bolic regression methods may generate simple to complex equations that disagree with presently
accepted knowledge regarding the relationships between radar data and rainfall rate. This prompts
further research into the applicability and generalizability of symbolic regression methods to com-
plex datasets.

2.2.1 Genetic Programming Symbolic Regression Models

We tested five genetic programming symbolic regression methods (gpg, gplearn, PySR, Feyn, and
pyoperon), each with unique characteristics and approaches. Models such as gplearn [11] and
gpg [12], the latter of which is a re-implementation of Gene-pool Optimal Mixing Evolutionary Al-
gorithm (GP-GOMEA) focusing on symbolic regression, generate random sets of expressions and
improve them to best fit the data using genetic concepts such as evolution, crossover, mutation,
and population fitness. GP-GOMEA excels at generating simpler symbolic expressions through
estimating and crossing over interdependencies between model components [12, 13]. In contrast,
the C++ framework Operon [14], which is implemented in Python through pyoperon, focuses on
execution speed and local search with gradient-based optimization, but tends to produce exceed-
ingly complex models [15]. Packages like PySR [16] have made modifications to classic evolutionary
algorithms and use a multi-population evolutionary algorithm that optimizes unknown scalar con-
stants in newly discovered expressions. Similarly, Feyn [17] creates an evolutionary environment to
simulate discrete paths from multiple inputs to an output, an idea inspired by Feynman’s path inte-
gral. Random interactions are sampled onto paths, and with evolution and repeated reinforcement,
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the best output is produced [17].

2.2.2 Deep Learning-Based and Other Symbolic Regression Models

We tested three additional symbolic regression methods (DSO, FFX, and RILS-ROLS), each of
which applies different approaches to generate expressions learned from the data. Deep Sym-
bolic Optimization (DSO) [18] combines symbolic regression with deep learning to leverage neural
networks and a novel risk-seeking policy gradient to generate better-fitting expressions. Another
method, Fast Function Extraction (FFX) [19], uses pathwise regularized machine learning to rapidly
extract interpretable and simpler models. Moreover, RILS-ROLS [20] is a symbolic regression
method that is built upon iterated local search and ordinary least squares to solve combinatorial
aspects and determine best-fitting coefficients for equations, respectively.

3 Related Work

Previous research has found that machine learning and deep learning methods have resulted in
improved QPE accuracy compared to conventional Z–R relationships. Huangfu et al. [21] found, in
a study of twelve deep-learning-based QPE models, rainfall estimates were more accurate when dis-
tinguishing rainfall intensity using a KDP threshold and when applying a self-defined loss function
that gave varying weights to different intervals of rainfall intensity. Using dual-polarization radar
variables as input data, Li et al. [22] and Wang and Chen [23] have found that QPEs derived from
convolutional neural networks outperformed those derived from conventional Z–R relationships.
Shin et al. [24] found that random forest and regression tree methods were also more accurate
at estimating precipitation than the Z–R relationship. Moreover, Verdelho et al. [25] found that
combining classification and regression techniques (random forest and gradient boosting) applied
on dual-polarimetric radar variables outperformed Z–R relationships. They found that the models
had varying accuracy across different rain intensity groups, performing best on moderate rain [25].

Previous studies have explored the role of clustering the data prior to applying symbolic re-
gression. Sofos et al. [26] used k-medoids and agglomerative hierarchical clustering to separate a
fluid simulation dataset into gas, liquid, and supercritical states prior to applying symbolic regres-
sion with PySR on each cluster. They found that clustering may reveal underlying nuances in
the dataset for which symbolic regression identifies specific equations [26]. Building upon previous
research, we test different symbolic regression methods and evaluate whether separating the data
into groups based on the radar variables and rainfall intensity may reveal relationships between
rainfall observations that can strengthen estimation accuracy.

4 Data

The source of dual-polarimetric radar data we used for this research is the Weather Surveillance
Radar, 1988 Doppler (WSR-88D), also referred to as Next Generation Weather Radar (NEXRAD),
operated across the United States by the National Weather Service. Our dataset consists of reflec-
tivity ZH (dBZ), differential reflectivity ZDR (dB), specific differential phase KDP (deg/km), and
co-polar correlation coefficient ρhv, collected from the WSR-88D radars at Level II and 0.5 eleva-
tion angle. We explore radar data from South Florida, USA and Central Oklahoma, USA across
three dates with significant precipitation. The data for South Florida are retrieved from the Miami
KAMX WSR-88D radar and the data for Central Oklahoma are retrieved from the Oklahoma City
KTLX WSR-88D radar.
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The radar data are spatially and temporally merged with the rainfall rate (mm/hr) collected
from rain gauge stations from the Oklahoma Mesonet and the South Florida Water Management
District’s DBHYDRO. We keep only observations where the rainfall rate is equal to 1 mm/hr or
greater due to data quality concerns with trace amounts of rainfall. The range of rainfall rates are
1.010 mm/hr to 101.600 mm/hr, and the median value is 5.334 mm/hr. As shown in Figure 4.2,
the rainfall rate has a right-skewed distribution with a few extreme values.

For Florida, we have data for every 15 minutes on April 12, 2023 (totalling 1,324 observations
after cleaning the data), and for Oklahoma, we have data for every 5-10 minutes on July 9, 2023 and
June 8, 2022 (totalling 1,406 observations after cleaning the data). Figure 4.1 shows an example
of the radar data from the Miami WSR-88D radar (KAMX) and the Oklahoma WSR-88D radar
(KTLX) for rainfall events on April 12, 2023 at 17:00 UTC and July 9, 2023 at 10:50 UTC,
respectively. Rain gauge stations providing the ground truth data are displayed as black circular
outlines. While the radar data are available over the observed area of Central Oklahoma and South
Florida, the rain gauge data are only available at specific stations. We only use data located at
these points for symbolic regression, which totals 2730 observations across the three days.

(a) Reflectivity Z (b) Differential Reflectivity ZDR

(c) Co-Polar Correlation Coefficient ρhv (d) Specific Differential Phase KDP

Figure 4.1: WSR-88D Radar Data of Rainfall Events in South Florida (KAMX) and Central
Oklahoma (KTLX)
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Figure 4.2: Distribution of rainfall rate

Figure 4.3: Reflectivity-rainfall relationship for three rainfall events

5 Methodology

5.1 Benchmarking Procedure

The procedure used to apply symbolic regression to the dual-polarimetric radar data was informed
by SRBench [4], a benchmark of 14 different methods on over 200 datasets.

Following the procedure in SRBench, each symbolic regression model was trained on 75% of the
data and tested on 25% of the data in ten repeated trials, with a different train-test split in each trial.
The models were trained on the radar variables (Z, ZDR, KDP , ρhv) without scaling. Each model’s
hyperparameters were selected based on SRBench [4] and the model’s respective documentation.
We report two sets of metrics for PySR: one without restrictions on the complexity of the equation,
and one with restrictions, the latter of which is subsequently referred to as PySR (simplified).

The training and testing R2 scores, normalized root mean square error (NRMSE) scores, and
simplicity scores were reported for each trial using the following equations, where k is the training
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or testing size, yi is the actual rainfall rate for observation i collected from rain gauges, ŷi is the
predicted rainfall rate for observation i from the learned equation, ȳ is the mean rainfall rate for
the training or testing set, and s is the number of components in the learned equation.

R2 = 1−
∑k

i=1(yi − ŷi)
2∑k

i=1(yi − ȳi)2
(5.1)

NRMSE =

√
1
k

∑k
i=1(yi − ŷi)2

ȳ
(5.2)

simplicity = −log5(s) (5.3)

Metrics are reported based on the R2 score (Equation 5.1) on the test data. NRMSE score (Equa-
tion 5.2) was used instead of root mean squared error to ensure that this metric was comparable
across different training and testing sets that could have different distributions of rainfall rates.
The simplicity score metric (Equation 5.3) was chosen from the SRBench Competition 2022 [5]
to assign higher scores to simpler equations. The simplest equation (with only one component)
has a simplicity score of 0, and as the equations become more complex, the simplicity decreases.
Our objective is to find symbolic expressions with both high test R2 scores and simplicity scores
close to 0, representing an accurate yet interpretable equation. For our model performance to be
comparable to existing models, we hope to achieve R2 scores over 0.85.

5.2 Benchmarking Existing Symbolic Regression Models

To identify the most effective model for estimating precipitation rates from radar data, we tested
various symbolic regression models by systematically comparing their performance. Benchmarking
is crucial for ensuring that the selected models perform well on both training and unseen data.
It allows us to understand the trade-offs between model complexity and prediction accuracy. We
benchmarked five genetic programming symbolic regression algorithms (gpg, gplearn, PySR, Feyn,
and pyoperon) and three non-genetic programming symbolic regression algorithms (DSO, FFX, and
RILS-ROLS). We compared results from these symbolic regression methods to results from ordinary
least squares linear regression, which creates a linear expression to fit the data by minimizing the
sum of squares between the predicted rainfall rate and the ground-truth rainfall rate.

5.3 Symbolic Regression on Subsets of Data

One significant challenge to quantitative precipitation estimation is the applicability of methods
to different precipitation types and intensities. For example, the Z–R relationship to estimate
rainfall from radar reflectivity varies across geographical region and type of rain. Previous research
into quantitative precipitation estimation using machine learning and deep learning have found
successful results when distinguishing the intensity of rainfall [21,25]. To test whether the accuracy
and interpretability of the learned equations improve, we applied three methods to subset the data
before applying symbolic regression on the separate subsets.

5.3.1 Symbolic Regression on Clusters

Using k-means clustering, bisecting k-means clustering, and agglomerative hierarchal clustering,
we divided the data into three clusters based on all four radar variables (Z, ZDR, KDP , ρhv),
based only on ZDR and ρhv, and based on the rainfall rate. Figures 5.1, 5.2, and 5.3 show the
Z–R relationship by cluster for all clustering methods. The clustering methods were implemented

7



using the Python library scikit-learn [27]. K-means clustering is an algorithm that separates
data into equal-variance subsets by minimizing the sum of squared distances between observations
and the mean of their cluster [28]. Bisecting k-means clustering is a hybrid approach combining
k-means and hierarchical clustering, where the entire dataset is split into two clusters, which are
then split again until the set number of clusters is reached [28]. On the other hand, agglomerative
clustering starts from the bottom with each data point being a cluster, which are consecutively
merged together until a set number of clusters is reached. We applied agglomerative clustering
using ward as the linkage criterion, which minimizes the increase in variance when two clusters are
combined [28,29].

After clustering the data into three clusters with each method, symbolic regression using Feyn
was applied on the clusters separately following the benchmarking procedure from Section 5.1.
Clustering was performed on data scaled to unit variance, while symbolic regression was applied
on unscaled data to maintain the respective units of each variable.

(a) With Z, ZDR, KDP , and ρhv (b) With ZDR and ρhv (c) With rainfall rate

Figure 5.1: Reflectivity-rainfall relationship with k-means clustering

(a) With Z, ZDR, KDP , and ρhv (b) With ZDR and ρhv (c) With rainfall rate

Figure 5.2: Reflectivity-rainfall relationship with bisecting k-means clustering
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(a) With Z, ZDR, KDP , and ρhv (b) With ZDR and ρhv (c) With rainfall rate

Figure 5.3: Reflectivity-rainfall relationship with agglomerative hierarchical clustering

5.3.2 Symbolic Regression by Radar Variables

Another method to subset the data prior to applying symbolic regression is based on the mean of
the radar variables. We grouped the data into observations below and observations above the mean
ZDR (0.7641 dB), and followed the benchmarking procedure from Section 5.1 on the two groups.
We then repeated this process for mean ρhv (0.9830).

Figure 5.4 shows the two groups for both ZDR and ρhv. For both, separate patterns could be
distinguished between the above-mean group and the below-mean group in the Z–R relationship. It
is possible that dividing the data this way will allow for better-fitting equations to be learned within
the two groups. Other radar variables, Z and KDP , were not used to divide the data because there
were no prominent patterns seen after separating the data based on the mean of these variables.
Similarly, there were no prominent patterns seen after separating the data based on the median for
all four radar variables.

(a) Mean ZDR (b) Mean ρhv

Figure 5.4: Reflectivity-rainfall relationship for above and below mean ZDR and mean ρhv

5.3.3 Symbolic Regression on Decision Tree Leaf Nodes

Decision trees are a type of supervised learning algorithm that recursively subsets data to create
nodes with increasingly similar target values within each node and increasingly different target
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values between nodes by learning decision rules based on the predictor values [28, 30]. Decision
trees may work particularly well with symbolic regression due to their interpretability, breaking
down complex relationships into simpler segments to train symbolic regression models.

Using decision trees in scikit-learn, we set the parameters to create three leaf nodes—subsets
of the data that cannot be further divided—with at least 400 values in each. The decision trees
first divided the data based on KDP ≤ 0.367, then based on Z ≤ 35.9, as shown in Figure 5.5. We
then followed the benchmarking procedure from Section 5.1 on the three leaf nodes.

Figure 5.5: Steps taken by decision tree to separate the data into three leaf nodes

5.4 Exploring New Symbolic Regression Models

Machine learning models can be improved by incorporating prior knowledge into the training process
[31]. This is especially useful in contexts of limited data where deep learning models capable of
high accuracy are less feasible [32]. Adding knowledge-based loss terms to a model’s loss function
penalizes models that stray away from meeting the criteria that the target variable should follow. In
addition to measuring the discrepancy between the ground-truth target variable and the predicted
target variable, the updated loss function measures the deviation between the predicted target
variable and the knowledge-based criteria,

argmin
f

Loss
(
Y, Ŷ

)
+ λDLossD

(
Ŷ
)

(5.4)

where f is the model the machine learning algorithm is testing, Y is the ground-truth target
variable, Ŷ is the predicted target variable, and λD is the weight for the knowledge-based loss
term [31]. The goal is to find the model f that minimizes this expression. In addition to using
QPE-specific knowledge in loss functions, we incorporated knowledge learned from the data such
as information from clustering the data prior to applying symbolic regression and from binning
observations into groups by magnitude of rainfall rate. We integrated these new loss functions into
the source code of gpg [12] with the goal of generating simpler symbolic expressions that perform
better on the testing data. After applying these new loss terms, all final results were obtained
following the benchmarking procedure from Section 5.1.
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5.4.1 Implementing Z–R Relation Into the Loss Function

One format of knowledge-based loss terms is in the form of algebraic equations [31]. In the domain
of QPE, this would mean we use the Z–R relation, Z = aRb. Prior to implementing a new loss
term for the Z–R relation, we needed to choose optimal values of a and b for our dataset through
the following process:

1) Gather empirically derived values of a and b from previous studies.

2) Use optimization methods to find additional optimal values of a and b.

3) Evaluate the performance of each Z–R relationship gathered from the previous two steps on

the entire dataset of size n. This involves computing (Zi
a )(

1
b
) and comparing this result to the

ground-truth value of Ri, i = 1, 2, ..., n.

4) Select the values of a and b with the highest performance. Incorporate these values into a
Z–R relation loss term for a symbolic regression model.

Following the process above, we used the Marshall-Palmer relationship (a = 200 and b = 1.6)
[33] and the Fulton et al. relationship (a = 300 and b = 1.4) [34] for 1), scipy’s optimize() function
(a = 134 and b = 1.6) for 2), and R2 and NRMSE score for 3) (Table 5.1). We selected a = 134
and b = 1.6 as final values for a and b for 4), with R2 and NRMSE scores of 0.7614 and 0.5804,
respectively.

Values of a and b R2 Score NRMSE Score

a = 200 and b = 1.6 0.6958 0.6552
a = 300 and b = 1.4 0.7389 0.6071
a = 134 and b = 1.6 0.7614 0.5804

Table 5.1: Results from using three different Z–R relations to predict rainfall rate

We then inserted the optimal values of a and b into a Z-R based loss function,

lossf =
1

2k

k∑
i=1

(yi − ŷi)
2 +

λ

2k

k∑
i=1

(ŷi − (
Zi

134
)

1
1.6 )2 (5.5)

where k is the training size, yi is the ground-truth rainfall rate for observation i, ŷi is the predicted
rainfall rate for observation i, Zi is the reflectivity for observation i, and λ is a weight parameter.

5.4.2 Implementing Silhouette Score Into the Loss Function

We incorporated the radar-based and rainfall-based clusters generated from k-means clustering,
bisecting k-means clustering, and agglomerative hierarchical clustering into the training process
of symbolic regression models. To reward models that predict rainfall rates aligning with the
predetermined clusters, we subtracted the silhouette score multiplied by a weight term (λ) from
the mean squared error term of the loss function. The silhouette score, a value from -1 to 1, measures
how well each predicted rainfall rate is assigned to the cluster it is supposed to be a part of [35]. A
higher score indicates better cluster assignment. This means the models that predict rainfall rates
matching the clusters closely will have a lower error term associated with them, making them more
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likely to be selected as the best model. Incorporating the silhouette score between the predicted
rainfall rates and the predetermined cluster labels in the loss function, we obtain

lossf =
1

2k

k∑
i=1

(yi − ŷi)
2 − λ ∗ silhouette score(Ŷ , L) (5.6)

as the updated loss term, where L denotes the cluster labels.

5.4.3 Implementing Deviations From Rainfall Group Into the Loss Function

Approximation constraints introduce reasonable ranges of the target variable to help train higher
quality models [32]. Approximation constraints can be added to the loss function of machine
learning models to penalize models that predict values of the target variables violating realistic
bounds. Similar to approximation constraints, we binned precipitation rates in our dataset into
three roughly equally sized groups: low precipitation in the range [1.00, 3.05), medium precipitation
in the range [3.05, 9.15), and high precipitation in the range [9.15, 102.00). The bounds were chosen
arbitrarily so that each group is of similar size, making each group evenly represented in the training
process of symbolic regression models. We then included terms that increase the loss for models
that predict rainfall rates not aligning with these three predetermined groups. Expanding on the
work from [32], the approximation constraint loss function is

lossf =
1

2k

k∑
i=1

(yi − ŷi)
2

+ λ
3∑

j=1


kj∑
i=1

ReLU(Lj −
ˆ
y
j
i ) +

kj∑
i=1

ReLU(
ˆ
y
j
i − Uj)

 (5.7)

where kj is the number of observations from group j = 1, 2, 3, Lj is the lower bound of group j,

Uj is the upper bound of group j,
ˆ
yji is the predicted rainfall rate for observation i from group j,

and ReLU(x) = max(0, x). Only one weight term of λ was included for simplicity.

6 Results

6.1 Benchmarking Existing Symbolic Regression Models

The metrics for each model from the trial with the 5th highest trainR2 score2 are shown in Table 6.1.
Metrics from the trial with the highest test R2 score are listed in Table 6.2, and the corresponding
equations are listed in Table 6.3. All metrics are associated with one equation generated by the
symbolic regression model. Distributions of test R2 scores and the comparison with simplicity are
shown in Figure 6.1.

The linear regression model achieving a low test R2 score justifies the need for more complex
expressions generated from symbolic regression. The model with the best performance regardless
of model simplicity is pyoperon with a best test R2 score of 0.9214. However, the equation has too
low of a simplicity value to be used in operational QPE. Feyn and gpg also resulted in some of the
highest test R2 scores, but with complex equations. Thus, we decided that the best-performing
model taking model simplicity into account is RILS-ROLS with a best test R2 score of 0.9145 and
a simplicity score of -1.9. Figure 6.3 shows the estimated rainfall rate across Central Oklahoma
and South Florida using the RILS-ROLS equation.

2The 5th highest train R2 score is used as an approximation of the median of all ten trials while ensuring metrics
from only one equation are reported.
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Model Train R2 Test R2 Train NRMSE Test NRMSE Simplicity

Linear Regression 0.8354 0.8521 0.4875 0.4393 -1.6
gplearn 0.8296 0.8311 0.4889 0.4903 -1.8
gpg 0.8824 0.8824 0.4018 0.4246 -2.4
PySR 0.8885 0.8720 0.3916 0.4420 -1.9

PySR (simplified) 0.8409 0.8452 0.4723 0.4695 -1.5
FFX 0.8971 0.8553 0.3761 0.4698 -4.2
Feyn 0.8940 0.8792 0.3864 0.4142 -2.4

RILS-ROLS 0.8944 0.8859 0.3904 0.3894 -2.0
DSO 0.8998 0.8940 0.3743 0.3920 -3.1

pyoperon 0.9003 0.8938 0.3701 0.3782 -2.5

Table 6.1: Results from the trial with the median test R2 score for each model

Model Train R2 Test R2 Train NRMSE Test NRMSE Simplicity

Linear Regression 0.8229 0.8753 0.4912 0.4364 -1.6
gplearn 0.8117 0.8721 0.5065 0.4421 -1.8
gpg 0.8744 0.9049 0.4115 0.3842 -2.5
PySR 0.8533 0.8943 0.4446 0.4050 -1.5

PySR (simplified) 0.8291 0.8864 0.4825 0.4166 -1.5
FFX 0.8840 0.9020 0.3955 0.3899 -4.0
Feyn 0.8757 0.9046 0.4116 0.3817 -2.4

RILS-ROLS 0.8824 0.9145 0.4003 0.3900 -1.9
DSO 0.8909 0.9188 0.3856 0.3523 -3.2

pyoperon 0.8882 0.9214 0.3902 0.3787 -2.6

Table 6.2: Results from the trial with the highest test R2 score for each model

(a) Distribution of test R2 scores (b) Test R2 scores compared with simplicity

Figure 6.1: Accuracy and simplicity of symbolic regression models
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Model Equation

Linear
Regression

R = 0.5070Z − 2.082ZDR + 35.16KDP + 22.99ρhv − 34.48

gplearn R =

√∣∣∣KDP (ρ4hv)(Z)
√∣∣KDP (ρ2hv)(Z

2)
∣∣∣∣∣

GP-GOMEA R = −0.0095ZZDRρhv
(ZDR−5.0785)
(ρhv−4.5774) + 0.0047Zρ2hv(Z + KDP )(KDP +

0.5812)(ρhv + cos(ZDR) + cos(KDP − ρhv) + 0.8610) + (0.0047KDP +

0.0070)
−cos(ρhv)+

KDP
ZDR

cos(Z) − 4.5493

PySR R =
∣∣0.8496ZDR(Z)(KDP + 0.4819)− 10.92

∣∣
PySR

(simplified)
R = Zρhv(KDP + 0.1387)− ZDR

FFX* R = −4.78 − 28000max(0,KDP − 1.46)max(0, ρhv − 0.987) −
17400max(0, 0.940 − ρhv)max(0, 0.956 − ρhv) − 16900max(0, ρhv −
1)max(0, ρhv − 0.987) + 14900max(0, 0.0308−KDP )max(0, ρhv − 1) + ...

Feyn* R = 103.7e−2.381(0.34KDP+0.9164e−34.62(0.8061ρhv−1)2−0.5622(ZDR−0.16)2−1)2+...

RILS-ROLS R = 1.208Z(KDP )ρ
3
hv − 20.09KDP + 2(10−6)ρ4hvZ

4ecos(ZDR) − 0.6427

DSO* R = log(ρhv + eρhv(5.355K
3
DP−56.22K2

DP (ρhv)−1.577Z(K2
DP )+6.587ZDR(K2

DP )+...

pyoperon R = −0.044 + (−39.35KDP (ρhv) − 760.3KDP + 797.1KDP−0.052Z√
0.004Z2

DR+1
−

sin(0.149Z))( 1√
0.487Z2

DR+1
)(1.002(−4.72KDP−0.168Z√

0.8118Z2
DR+1

− sin(0.208Z)))

*Equations truncated due to length.

Table 6.3: Equation from the trial with the highest test R2 score for each model
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Figure 6.2: Predicted vs. actual rainfall rate across different symbolic regression methods
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Figure 6.3: Map of estimated rainfall rate from RILS-ROLS equation (Table 6.3)

6.2 Symbolic Regression on Subsets of Data

In Section 6.1, we identified that Feyn achieved one of the highest test R2 scores out of the models
but had a lower simplicity score, so we used Feyn for symbolic regression on subsets of data to see
if the R2 and simplicity could be improved.

6.2.1 Symbolic Regression on Clusters

Table 6.4 shows the results from the trial with the highest test R2 score; the metrics reported are
the mean from the three clusters for each clustering method.

The best result came from k-means clustering based on ZDR and ρhv, which resulted in a
mean test R2 of 0.9200. The train and test R2 score and simplicity score are slightly higher than
the metrics from Feyn applied on the entire dataset without initial clustering. This indicates that
clustering based on ZDR and ρhv may break down the data into sections with stronger relationships
that are learned by symbolic regression. However, it may be harder to generalize to new data within
these clusters.

Cluster Variable Train R2 Test R2 Train NRMSE Test NRMSE Simplicity

All Data (Without Clustering) 0.8757 0.9046 0.4116 0.3817 -2.4

K-Means
All Radar 0.7382 0.7826 0.4142 0.3784 -2.1

ZDR and ρhv 0.9048 0.9200 0.3605 0.3250 -2.2
Rain 0.6318 0.6764 0.2456 0.2434 -2.1

Bisecting
K-Means

All Radar 0.7129 0.7527 0.4300 0.3936 -2.0
ZDR and ρhv 0.9064 0.8980 0.3554 0.3722 -2.1

Rain 0.6106 0.6069 0.2214 0.2265 -2.0

Agglomerative
All Radar 0.7556 0.7887 0.4006 0.3727 -2.1

ZDR and ρhv 0.8973 0.8746 0.3758 0.3980 -2.3
Rain 0.6466 0.6623 0.2201 0.2248 -2.0

Table 6.4: Mean metrics of three clusters from the trial with the highest test R2 score using Feyn
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Figure 6.4: Actual vs. predicted rainfall of each cluster identified by k-means clustering on ZDR

and ρhv

Cluster Size Train R2 Test R2 Train NRMSE Test NRMSE Simplicity

All Data 2730 0.8757 0.9046 0.4116 0.3817 -2.4
0 2292 0.8979 0.9125 0.3767 0.3458 -2.5
1 128 0.9282 0.9581 0.2849 0.2134 -2.2
2 310 0.8778 0.9473 0.4446 0.3010 -1.7

Table 6.5: Metrics from trial with highest test R2 score for each cluster identified by k-means
clustering on ZDR and ρhv

6.2.2 Symbolic Regression by Radar Variables

Table 6.6 shows the results from applying symbolic regression on the data divided into two groups
based on mean ZDR, and the same for ρhv. The above mean ZDR group achieved the highest
test R2 score of 0.9519, indicating that radar observations in this group had a strong relationship
with the rainfall rate. However, the below mean ZDR group performed much worse with a test
R2 score of 0.8538. This may indicate that in our dataset, the radar data associated with higher
ZDR values estimate rainfall rates better than those with lower ZDR values. Similarly, there were
slight improvements in the above mean ρhv group, and worse performance in the below-mean group,
compared with symbolic regression on the ungrouped data.

Variable Group Size Train
R2

Test
R2

Train
NRMSE

Test
NRMSE

Simplicity

All Data 2730 0.8757 0.9046 0.4116 0.3817 -2.4

ZDR
Above Mean 1242 0.9161 0.9519 0.3620 0.2976 -2.2
Below Mean 1488 0.8538 0.8538 0.4096 0.4314 -2.3

ρhv
Above Mean 2085 0.9023 0.9132 0.3554 0.3898 -2.1
Below Mean 645 0.8586 0.9025 0.4268 0.3985 -2.4

Table 6.6: Metrics from the trial with the highest test R2 score for each group using Feyn
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(a) Mean ZDR (b) Mean ρhv

Figure 6.5: Predicted vs. actual rainfall rate by threshold set by mean ZDR and mean ρhv

6.2.3 Symbolic Regression on Decision Tree Leaf Nodes

The metrics for each leaf node from the trial with the highest test R2 score are listed in Table 6.7,
and a comparison of the actual and predicted rainfall values is shown in Figure 6.6.

Subset Size Train R2 Test R2 Train NRMSE Test NRMSE Simplicity

All Data 2730 0.8757 0.9046 0.4116 0.3817 -2.4
Node 1 1704 0.5775 0.6330 0.4620 0.4271 -2.1
Node 2 616 0.4510 0.5624 0.3923 0.3123 -2.1
Node 3 410 0.7773 0.7826 0.2277 0.2199 -2.0

Table 6.7: Metrics from the trial with the highest test R2 score for each node using Feyn
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Figure 6.6: Actual vs. predicted rainfall of each node identified by decision trees

The R2 scores for the nodes are significantly lower than the score achieved without subsetting
the data, while the learned equations are simpler. Although grouping the data using decision trees
prior to applying symbolic regression failed to achieve a higher R2 score, decision trees introduced
an interesting approach to dividing the data, using both KDP and Z as described in Section 5.3.3,
which may be valuable for further study.

6.3 Exploring New Symbolic Regression Models

The results from the trial with the best test R2 score from modifying the loss function of GP-
GOMEA are found in Table 6.8 and Table 6.9.

Including the Z–R relation in the loss function with λ = 1 worsened the original results.
Different values of λ produced similar results. This is likely because the Z–R relationship is not
very accurate in predicting rainfall to begin with, thus adding unnecessary noise to the loss function.

Including the silhouette score term in the loss function from k-means clustering by ZDR and ρhv
as in Section 6.2.1 slightly improved the testing metrics while leaving the training metrics relatively
unchanged. By identifying different clusters and predicting rainfall rates in the appropriate magni-
tudes, this clustering-based term was able to generate a model that fit slightly better to the data.
Including the silhouette score term from other methods of clustering and clustered by different
variables did not change or worsened the original results.

Including the binned rainfall term in the loss function with λ = 0.01 was able to slightly improve
model performance in addition to generate a simpler equation. Other values of λ either worsened
or did not change the original results. Incorporating bounds that the rainfall rates should follow
within the loss function could have guided the models in the right direction to predict rainfall rates
from unseen data in the appropriate magnitudes. As shown in Table 6.8, when the model generated
from the binned rainfall loss term was evaluated on the whole dataset, it produced test R2 and
NRMSE scores of 0.9067 and 0.3804, compared to test R2 and NRMSE scores of 0.9049 and 0.3842
for the original method, respectively.
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Loss Function Train R2 Test R2 Train NRMSE Test NRMSE Simplicity

Original 0.8744 0.9049 0.4115 0.3842 -2.5

Z-R (λ = 1)
(Equation 5.4.1) 0.8546 0.8900 0.4427 0.4132 -2.3

Silhouette score (λ = 20)
(Equation 5.4.2) 0.8746 0.9060 0.4110 0.3819 -2.5

Binned rainfall (λ = 0.01)
(Equation 5.4.3) 0.8748 0.9067 0.4108 0.3804 -2.3

Table 6.8: Results from the model with the highest test R2 score using gpg

Loss Function Equation

Original

R = −0.0095ZZDRρhv
(ZDR−5.0785)
(ρhv−4.5774) + 0.0047Zρ2hv(Z + KDP )(KDP +

0.5812)(ρhv + cos(ZDR) + cos(KDP − ρhv) + 0.8610) + (0.0047KDP +

0.0070)
−cos(ρhv)+

KDP
ZDR

cos(Z) − 4.5493

Z–R relation
(λ = 1)

R = 0.0016Zρ2hv(Z−KDP )(KDP +0.59340)(ρhv+cos(ZDR)+cos(KDP −
ρhv) + 6.9488)− 0.3357sin(cos(1) + 6.5855

(ZDR−2.7016))− 4.3605

Silhouette
score (λ = 20)

R = −0.0149ZZDRρhv
(ZDR−4.9152)
(ρhv−4.5719) + 0.0043Zρ2hv(Z + KDP )(KDP +

0.6023)(ρhv + cos(ZDR) + cos(KDP − ρhv) + 1.2032) − (0.0137KDP +

0.0017)
(cos(ρhv)−

KDP
ZDR

)

cos(Z) − 4.7574

Binned rainfall
(λ = 0.01)

R = 0.0051Zρ2hv(Z −KDP )(KDP +0.4857)(ρhv + cos(ZDR)+ cos(KDP −
ρhv) + 0.9265)− 0.7527sin(cos(1) + 5.9838

(ZDR−2.6914))− 4.5027

Table 6.9: Equation from the model with the highest test R2 score using GP-GOMEA

Figure 6.7: Results from using the model generated from a binned rainfall loss term (λ = 0.01)
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7 Evaluation from Radar Meteorology

7.1 Potential Equations for Operational Applications

Among all the SR algorithms, the simplest equations were produced by gplearn, PySR, and RILS-
ROLS, as shown in Table 6.3. Compared with the conventional Z–R relationships shown in Ta-
ble 5.1, the equation from gplearn performed slightly better, and the equations from PySR and
RILS-ROLS showed significant improvement, with acceptable test R2 values of 0.8943 and 0.9145,
respectively.

The PySR equation consists of two stages. When the first term is less than 10.92, the QPE
tends to decrease as Z and KDP increase, which contradicts the expected relationship between
rainfall and radar measurements. Further research could explore the significance of the absolute
operation and whether it consistently aligns with physical understanding. When the first term
exceeds 10.92, the equation’s relationship aligns with domain knowledge: the QPE increases as Z
and KDP increase. For ZDR, it is represented as a decreasing exponential function in this equation.
These trends are consistent with previous studies [36,37].

The PySR (simplified) equation, which includes all four radar variables, indicates that the QPE
increases as Z and KDP increase, which similarly aligns with domain knowledge. However, the
equation indicates that as ZDR increases, QPE decreases the same amount, which does not fully
capture the relationship between ZDR and rainfall rate.

In the RILS-ROLS equation, all variables are utilized. The equation consists of three terms:
the first two terms reflect the interaction between Z and KDP , while ρhv influences the strength of
this interaction. Since ρhv is crucial for identifying precipitation types, its role in the interaction
between Z and KDP can be seen as a representation of a fuzzy classification strategy within the
equation [38]. The third term is more complex, and further evaluation is needed to understand its
contribution to the final estimation.

The equations demonstrate promising accuracy and lower errors compared to traditional QPE
equations. Their potential for operational applications is evident, provided that contradictions
within the equations with domain knowledge are addressed.

7.2 Insights from Complex Equations

The equations with more complex terms provide us with new insights about the relationship between
radar and rainfall. The presence of trigonometric functions suggests that new combinations and
transformations on existing radar products may play an important role. While the FFX equation is
more complex, most of the terms are related to the max operation between 0 and the radar variables.
The equation can be manually simplified based on the classification of different thresholds set by
the radar variables ρhv and KDP [39]. This classification strategy indeed aligns with the ability of
ρhv and KDP . This emphasizes the importance of the classification of precipitation types, as well
as determining the drop size and density.

8 Conclusions and Future Work

Symbolic regression is an effective approach to quantitative precipitation estimation given its in-
terpretability and accuracy. All of the symbolic regression methods we tested (Table 6.1) resulted
in higher accuracy than conventional Z–R relationships (Table 5.1). Of the symbolic regression
models, we decided that the best model for estimating rainfall rate from the four radar variables is
RILS-ROLS due to its high test R2 score and simplicity.
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We tested Feyn symbolic regression on different subsets of the data with the goal of better
quantifying relationships among different precipitation intensities and types. Applying Feyn on
three clsters resulting from k-means clustering based on ZDR and ρhv achieved improved R2 scores,
lower NRMSE scores, and slightly simpler equations. Symbolic regression on clustered data by all
four radar variables, on clustered data by rainfall rate, and on decision tree-identified nodes resulted
in worse scores, but slightly simpler equations. Dividing the data based on mean ZDR resulted in
improved performance for observations in the above-mean group, but worse performance in the
below-mean group. Overall, the radar variables provide insights into complex relationships with
rainfall rate, which can be learned by symbolic regression.

The models generated from adding knowledge-based loss terms to the loss function of GP-
GOMEA was able to improve the original results slightly. This demonstrates that including
cluster-based loss terms generated from unsupervised algorithms prior to training symbolic re-
gression models as well as including penalties when the model predicts a rainfall rate outside of its
appropriate range in the overall loss function have potential for improving the accuracy of machine
learning models. However, improved models were not always able to be reproduced when retraining
the model due to variation in the GP-GOMEA model itself. Additionally, whether modifying the
loss function of other symbolic regression algorithms will improve the original results is unknown.

This study can be built upon through future work by testing symbolic regression on a larger
dataset encompassing more geographic regions and dates, as well as considering the time of the
observations when training symbolic regression models. Our dataset for this study is limited and
only includes data from Florida and Oklahoma. Future research will aim to train symbolic regression
models with robust datasets that can be generalizable to other regions. There is also more work
to be done in analyzing how to incorporate domain knowledge into the loss function of symbolic
regression models to improve learned equations.
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[38] H. S. Park, A. V. Ryzhkov, D. Zrnić, and K.-E. Kim, “The hydrometeor classification algo-
rithm for the polarimetric WSR-88D: Description and application to an MCS,” Weather and
Forecasting, vol. 24, no. 3, pp. 730–748, 2009.

[39] A. V. Ryzhkov, T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zr-
nic, “The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor
classification,” Bulletin of the American Meteorological Society, vol. 86, no. 6, pp. 809–824,
2005.

25


