
Accelerating Real-Time Imaging for Radiotherapy:
Leveraging Multi-GPU Training with PyTorch

Ruth Obe
Dept. of Computer Science and of Software Engineering

U. of Houston—Clear Lake, USA

Brandt Kaufmann
Dept. of Mathematics and Statistics

U. of San Francisco, USA

Kaelen Baird
Dept. of Computer Science and of Mathematics

Skidmore College, USA

Sam Kadel
Dept. of Computer Science and of Psychology

Mount Holyoke College, USA

Yasmin Soltani
Dept. of Biomedical Engineering

U. of Houston, USA

Mostafa Cham
Dept. of Information Systems

U. of Maryland, Baltimore County

Matthias K. Gobbert
Dept. of Mathematics and Statistics
U. of Maryland, Baltimore County

Carlos A. Barajas
Dept. of Mathematics and Statistics
U. of Maryland, Baltimore County

Zhuoran Jiang
Medical Physics Graduate Program

Duke University, USA

Vijay R. Sharma
Dept. of Radiation Oncology

U. of Maryland School of Medicine, USA

Lei Ren
Department of Radiation Oncology

U. of Maryland School of Medicine, USA

Stephen W. Peterson
Dept. of Physics

U. of Cape Town, South Africa

Jerimy C. Polf
H3D, Inc.

USA

Abstract—Proton beam therapy is an advanced form of cancer
radiotherapy that uses high-energy proton beams to deliver
precise and targeted radiation to tumors. This helps to mit-
igate unnecessary radiation exposure in healthy tissues. Real-
time imaging of prompt gamma rays with Compton cameras
has been suggested to improve therapy efficacy. However, the
camera’s non-zero time resolution leads to incorrect interaction
classifications and noisy images that are insufficient for accurately
assessing proton delivery in patients. To address the challenges
posed by the Compton camera’s image quality, machine learning
techniques are employed to classify and refine the generated
data. These machine-learning techniques include recurrent and
feedforward neural networks. A PyTorch model was designed
to improve the data captured by the Compton camera. This
decision was driven by PyTorch’s flexibility, powerful capabilities
in handling sequential data, and enhanced GPU usage. This
accelerates the model’s computations on large-scale radiotherapy
data. Through hyperparameter tuning, the validation accuracy
of our PyTorch model has been improved from an initial 7% to
over 60%. Moreover, the PyTorch Distributed Data Parallelism
strategy was used to train the RNN models on multiple GPUs,
which significantly reduced the training time with a minor impact
on model accuracy.

Index Terms—Proton beam therapy, Compton camera, Clas-
sification, Recurrent neural network, PyTorch, Distributed Data
Parallelism.

I. INTRODUCTION

Proton beam therapy is an advanced form of cancer ra-
diotherapy that uses high-energy proton beams to deliver
precise and targeted radiation to tumors mitigating unnecessary

radiation exposure [14]. Unlike x-ray therapies, which go
through the entire body, proton beams release the majority of
their energy in a more localized area. This localized release
of energy is the Bragg peak, which allows more precise
radiation delivery [14]. Since proton beam therapy applies
more radiation in a smaller radius, it is especially important to
know where the beam is in relation to tumors. In order to take
full advantage of proton beam therapy and prevent damaging
healthy tissue when patients move, clinicians need an efficient
technique to image prompt gamma rays in real time.

Utilizing real-time imaging of prompt gamma rays can
enhance the effectiveness of this therapy. Compton cameras
are proposed for this purpose, capturing prompt gamma rays
emitted by proton beams as they traverse a patient’s body [3],
[13]. However, the Compton camera’s non-zero time resolution
results in the simultaneous recording of interactions, causing
reconstructed images to be noisy and lacking the necessary
level of detail to assess proton delivery for the patient effec-
tively. The noise in the Compton camera causes uncertainty
about the location of the proton beam when radiating tissues
which can cause healthy tissue to be radiated possibly leading
to future complications [3], [7], [8], [13].

To address the challenges posed by the Compton camera’s
resolution and its impact on image quality, machine learning
techniques, such as recurrent and deep neural networks, are
employed to classify the prompt gamma event ordering to
improve the clarity of the proton beam during treatment [8].

These trained models clean the raw Compton camera data
by identifying and removing false data before image recon-
struction. These advanced learning algorithms can effectively
distinguish various interaction types and enhance the captured
information while reducing external noise in the imaging. This
type of real-time imaging leads to more precise evaluations
of the radiation delivery during the patient’s treatment. It
ensures the whole tumor gets the appropriate radiation levels
for successful treatment.

We designed feed-forward neural networks (FNN) and re-
curent neural networks (RNN) models in PyTorch to enhance
data captured by the Compton camera. The decision to develop
these models with the PyTorch library over the commonly
used TensorFlow library [3], [7], [8], [13] was driven by Py-
Torch’s flexibility, powerful capabilities in handling sequential
data, enhanced GPU usage, and simple Python-like syntax,
accelerating the model’s computations and further optimizing
the processing of large-scale data and allowing for faster
development and training of new model types [10]. The model
successfully demonstrated speedier training performance than
previous approaches and achieved fair accuracy with limited
hyperparameter tuning. It highlights its effectiveness in ad-
vancing real-time imaging of prompt gamma rays for enhanced
evaluation of proton delivery in cancer therapy.

The remainder of this paper is organized as follows: Sec-
tion II covers proton beam radiation and the background infor-
mation on imaging, prompt-gamma interactions, and machine
learning models. Section III covers our translation of the
models to PyTorch, configuration of distributed data parallel
(DDP) training, and hardware and software used for model
training. Section IV covers the results of our hyperparameter
study on our deep and recurrent neural networks and multi-
GPU training results. Section V wraps up our research by
concluding our findings.

II. APPLICATION BACKGROUND

A. Proton Beam Therapy

Radiation therapy is an effective approach for treating can-
cer by utilizing powerful radiation to eradicate cancer cells. X-
ray therapy is frequently utilized in cancer treatment. However,
a large portion of the radiation is delivered as it enters the
body. Unfortunately, radiation therapy often fails to provide a
sufficiently concentrated dose to the tumor while providing a
similar dose to healthy tissue. Moreover, x-rays pass through
the entire body, causing unavoidable radiation exposure. In
contrast, proton therapy, another type of radiation treatment,
offers enhanced efficiency in addressing these issues [14].

In contrast to x-ray therapy, proton therapy concentrates
most of the radiation dosage at the tumor site instead of the
point of entry. This precise of targeting significantly improves
the treatment’s effectiveness. Moreover, proton therapy outper-
forms x-ray therapy by limiting the penetration of the proton
beam to the tumor area, thereby reducing the exposure of
surrounding tissues [3], [8], [9], [13].

The tumor size determines whether a step-by-step elimina-
tion of tumor cells using the radiation beam is required. To

guarantee that every part of the tumor receives the necessary
radiation dosage, healthcare professionals create a safety mar-
gin. This margin expands the treatment area and accounts for
the patient’s slight movements or positional variations during
several weeks of treatment, to guarantee that all of the tumor
is treated [14]. But this safety margin may encroach on healthy
tissue that should not receive treatment. Figure 1 visualizes the
issue. Figure 1 (a) shows the desired outcome of the treatment
by a proton beam from the bottom of the scan. Figure 1 (b)
illustrates the situation of the patient moving slightly upward
during the treatment, cause an undershoot of the proton beam
from the bottom of the scan. While Figure 1 (c) illustrates an
overshoot because of the patient moving upward during the
treatment.

Having real-time information about the path of the proton
beam inside the patient’s body during treatment could reduce
the safety margin’s size and protect healthy tissue better. One
proposed solution for obtaining such information is using a
Compton camera, which can capture immediate images of
prompt gamma rays emitted by the proton beams as they
pass through the body. These cameras offer valuable insights
into the beam’s location, facilitating more precise and efficient
treatment.

B. Compton Camera and Image Reconstruction

Compton cameras are advanced multistage detectors used
to image proton beams used in proton beam therapy. When
protons pass through the human body, they interact with
atoms, resulting in the emission of prompt gamma rays.
As these gamma rays exit the body, some of them collide
with the modules in the Compton camera [14]. The camera’s
modules then measure the energy and position of the prompt
gamma rays as they traverse different detection stages. Each
recorded Compton scatter includes x-, y-, and z-coordinates,
as well as the corresponding energy level. These recorded
interactions, known as events, provide raw output data in the
form (ei, xi, yi, zi), where i = 1, 2, 3, and ei represents the
energy level [1], [7], [8], [14].

Sophisticated algorithms exist for reconstructing the path of
the proton beam based on the data obtained from the Compton
camera. By utilizing the camera’s ability to generate complete
3D images of the proton beam’s range, it becomes possible
to compare the planned treatment dose with the patient’s CT
scan and make any necessary adjustments. In radiotherapy,
it is crucial to ensure conformity between the treatment plan
and its execution, ensuring that the patient’s bone and soft
tissue landmarks are aligned as intended during treatment
planning. Even minor movements such as changes in position,
fidgeting, scratching, or looking away can disrupt the treatment
plan. By obtaining reliable information about the patient’s
condition from the reconstructed images, clinicians have a
better chance of ensuring that the entire tumor receives the
precise dose planned while ensuring the safety of surrounding
healthy tissues.

(a) normal (b) undershoot (c) overshoot

Fig. 1: Distal range uncertainties of beam therapy.

C. Scatter Types

When the proton beam passes through tissue, prompt gam-
mas are emitted at speeds close to the speed of light. Since all
of the interactions in an event happen almost simultaneously,
the Compton camera cannot decode the proper ordering of
the interaction in an event. This is where scatter types help
to identify false events causing noise in the image. There are
13 classes of scatterings, in three groups by type:

1) True Triple: The true triple events happen when the
camera captures the path of the prompt gamma with a
triple interaction in the event. Notice that the ordering of
the interactions can be one of six combinations of true
triple scattering: 123, 132, 213, 231, 312, 321. As the
data is currently implemented, only the 123 ordering of
the triple event is usable for image reconstruction [14].

2) Double-to-Triples (DtoT): The DtoT events happen
when the Compton camera detects an event composed
of double and single interaction that are independent
of each other [14]. There are six possible ordering of
DtoT events: 124, 134, 214, 234, 324, 314. Interaction
“4” in the ordering refers to the second prompt gamma
interaction in the misdetection events [14].

3) False Triple: The false triple events happen when the
Compton camera detects a true triple when in reality,
the event is composed of three single independent inter-
actions [14].

D. Machine Learning in Image Reconstruction

In our case — and as it often is in medical imaging — our
data is extremely noisy, and getting significantly more raw data
is not cheap or efficient. This is where machine learning comes
in. Machine learning has a rich history in image processing
and reconstruction. Since 2006, deep learning has been known
to have the capability to recognize target objects in images,
and since has been used and improved upon [5]. The data
obtained from the Compton cameras are extremely noisy, as
there are limitations in the imaging provided, primarily due to

their inability to gauge the timing of interactions of gamma
particles. Because of the noise, the raw images from the
cameras are far from the required accuracy for use in proton
beam therapy. They must be thoroughly clean to be precise
enough to be used and trusted when using proton beams.
This cleaning process uses machine learning to predict the
initial proton beams based on the messy result returned by the
Compton cameras.

III. METHODOLOGY

A. Deep Neural Networks

A neural network with more than three hidden layers is
called a Deep Neural Network (DNN). Deep neural networks
employ deep learning techniques to generate a suitable rep-
resentation of the input data required for a specific task.
However, one significant challenge posed by the implemen-
tation of these deep neural networks is the diminishment of
human interpretability. The decision-making processes of these
sophisticated methodologies are primarily non-transparent and
obscure, thereby creating a ”black box” scenario [5]. Despite
the drawback of reduced interpretability in deep learning
methodologies, they are crucial when handling vast and high-
dimensional datasets. Traditional machine learning techniques
can struggle to find meaningful patterns in such complex data
due to their limitations in managing multidimensionality and
sheer volume. Therefore, the capability of deep learning to
model intricate and nuanced data structures makes it indis-
pensable in advancing machine learning applications, despite
the trade-off in human interpretability.

1) Feedforward Neural Networks: Feedforward Neural
Networks (FNNs) are a type of artificial neural network, where
information flows only in one direction, namely from the input
layer through the hidden layers to the output layer. FNNs
are also known as multilayer perceptrons (MLPs) and are
characterized by the absence of cycles or loops in the network
structure. In an FNN, each neuron in a layer is connected
to every neuron in the subsequent layer, forming a fully

connected layer. This means that the output of each neuron in
one layer serves as input to all neurons in the next layer. The
connections between neurons are weighted, and each neuron
applies an activation function to the weighted sum of its inputs
to produce an output [5].

FNNs are powerful models that can approximate any con-
tinuous function to arbitrary precision, thanks to the universal
approximation theorem. They have been successfully applied
in various domains, including image classification, natural
language processing, and financial forecasting. Training an
FNN involves adjusting the weights and biases of the network
using optimization algorithms such as gradient descent to
minimize the difference between the predicted outputs and the
true outputs [5].

2) Recurrent Neural Networks: Recurrent Neural Networks
(RNNs) are a type of artificial neural network commonly used
in tasks involving sequential data, such as speech recognition,
natural language processing, and time series analysis. Unlike
traditional neural networks where inputs and outputs are
independent of each other, RNNs have connections that allow
information to flow in a loop, enabling them to capture and
utilize sequential dependencies in the data. The key feature
of RNNs is their ability to maintain an internal memory or
hidden state that allows them to process inputs in a sequential
manner. At each time step, the output from the previous step
is fed as input to the current step, allowing the network
to retain information about the past and make predictions
based on the context of the sequence. RNNs are composed
of interconnected layers of artificial neurons, or nodes, with
weighted connections between them. These connections allow
the network to learn and update its parameters, such as weights
and biases, through a process called backpropagation. During
training, the network compares its output to the desired output
and adjusts its parameters to minimize the error [11], [15]. The
specific implementation of the recurrence block distinguishes
several types of RNNs. RNNs are a helpful model when
classifying Compton camera events because of the ability of
the model to encode information about previous events into
the evaluation of another event.

Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM) are recurrent neural network (RNN) layers that offer
advantages in capturing sequential information and handling
long-term dependencies. They are widely used in various deep
learning models, particularly in natural language processing,
time series analysis, and other sequential data tasks. These
layers possess gating mechanisms that control the flow of
information through the network, enabling them to focus
on relevant information and discard irrelevant or redundant
information. This feature enhances the model’s ability to retain
essential information over time. In previous years, the gating
mechanisms in GRU and LSTM layers have been used to
help prevent overfitting by regulating the flow of information
and controlling the network’s capacity to memorize training
data. This property is particularly beneficial when dealing
with large and complex datasets, as it improves the model’s
generalization capability [6].

B. Translation to PyTorch

PyTorch and TensorFlow are both powerful, open-source
deep learning frameworks, however, there are some general
differences that might make one more appealing than the other
for certain use cases. Previous works on this project used Ten-
sorFlow and Keras as ML library [1], [7], [8], [16]. In recent
years, the percentage of research papers using PyTorch over
TensorFlow has continued to grow reaching 75% of all new
data science research papers using the PyTorch library [12].
PyTorch’s dynamic computation graph and native Pythonic
design can make it more intuitive for Python developers. This
can lead to simpler and more readable code, which can be
especially beneficial in complex multi-GPU settings where
clarity is crucial.

1) PyTorch Distributed Data Parallel (DDP): Threading
is a standard solution to carrying out parallel tasks allowing
tasks to be distributed across multiple threads. A benefit of
using PyTorch is implementing a similar technique to train
different machine learning models in parallel across multiple
GPUs [10]. DDP splits the input data batch to the number
of available GPUs, passes it with a copy of model to each
GPU, and runs parallel forward and backward passes on each
GPU. Gradients from all GPUs are then synchronized and
averaged, ensuring consistent weight updates across the entire
model [10]. DDP in PyTorch uses multiprocessing to avoid
well-known issues of threading in Python that arise due to the
Global Interpreter Lock (GIL). The Global Interpreter Lock
only allows one program thread to use the Python Interpreter,
locking all of the others. This is the issue with threading
since the GIL prevents perfect parallelism [4]. Implementing
DDP will allow for faster training and better scaling as the
training data size grows. DDP reduces the memory footprint by
sharing parameters and ensures consistency across the model
during training. Another benefit of implementing DDP into
our research is that it provides a fault tolerance mechanism to
handle failures during distributed training.

2) Training Model Across Single/Multiple GPU(s): Dis-
tributedDataParallel is a PyTorch module used for distributed
training across multiple devices or machines [10]. DDP is
designed to work with GPU and CPU modules where model
is trained across multiple devices. The DDP wrapper requires
that the underlying module supports parallel execution. The
device type we train our model on is CUDA, which means
our model was on a GPU device. The DDP wrapper takes a
device ids array argument which specifies how many devices
to use for parallel training. If the array contains only one
element, the training is done on a single GPU but if the array
contains more than one element, the training is performed
on multiple GPUs. To ensure that all tensors used by the
model are on CUDA devices, we checked that all the model
parameters are on CUDA and verified that the model inputs
during training are also on CUDA devices [2].

C. Hardware and Software

We used the Graphics Processing Unit (GPU) clusters in the
ada system in the UMBC High Performance Computing Facil-

ity (hpcf.umbc.edu) for our hyperparameter studies. The ada
system has 3 distinct node types: four nodes with 8 NVIDIA
RTX 2080 Ti GPUs each with 11 GB GPU memory; seven
nodes with 8 NVidia Quadro RTX 6000 GPUs each with
24 GB of GPU memory; two nodes with 8 NVidia Quadro
RTX 8000 GPUs each with 48 GB GPU memory. Each node
has 384 GB of CPU memory (12 × 32 GB DDR4 at 2933
MT/s), except the two RTX 8000 nodes, which have 768 GB
of CPU memory (12 × 64GB DDR4 at 2933 MT/s).

Networks built on ada were built using PyTorch v1.12.1
(https://pytorch.org/). We also used Pytoch Lightning v2.0.6
(https://lightning.ai/) which is an open-source Python library
that provides a high-level interface for PyTorch. Moreover
pandas v1.1.0 (https://pandas.pydata.org/) and numpy v1.25.1
(www.numpy.org) were also used to help preprocess the data.
Finally, we used the matplotlib v3.5.1 (www.matplotlib.org)
library to graph our results. Networks built on ada were built
inside the python virtual environment package Anaconda3
(https://www.anaconda.com/) v4.8.3.

IV. RESULTS

We trained the neural networks using a dataset derived from
a Monte Carlo simulation, comprising 1,443,993 labeled data
points. Each data point consists of 15 features which have
been classified into 13 classes. These features encapsulate
spatial coordinates, the distance between points, and energy
levels for every interaction. An interaction is a grouping of
three spatial coordinates and an energy level. Each row is
either a triple, double-to-triple, or a false triple and consists
of three interactions each. Our training data set only consisted
of True Triples, Double-to-Triple scatter, and False events.
For our training, we utilized datasets exposed to 150MeV
beams at three varying intensity levels: 20kMU, 100kMU, and
180kMU, with higher kMU values indicating stronger dosage
rates. We reformatted both our training and testing datasets
for sequential processing. As a result, each 15-feature entry
was transformed into a sequence of three interactions, each
having five features: three spatial points, distance, and energy
deposition. This data was then input into the neural network
in sequences of three interactions. We allocated 20% of the
data for validation purposes during the training process. [2].

We encountered a significant change when using the cross-
entropy loss function in PyTorch. This function does not work
with a data format called one-hot encoded labels. So, we did
not use these labels during training. We made this specific
change to make sure our training with PyTorch’s cross-entropy
loss function was efficient and accurate [2].

A. Hyper-parameter Study

Previous research explored various networks, such as fully
connected neural networks and RNNs, for the classification
task [1], [7], [8], [16]. In this work we utilized similar model
structures in PyTorch and tried to improve the performance
of our model with hyper-parameter tuning. We begin by
examining the number of epochs, the batch size, and the
learning rate. We then explore the number of layers, neurons,

Hyperparameter Value
Layers 256

Neurons 256
Batch Size 8192

Learning Rate 1e-3
Train/Validation 0.8/0.2

Dropout 0.45
Inter-activation leakyrelu
Clip Gradient 0

TABLE I: Variable Model Parameters.

and the dropout rate to determine a promising configuration for
the network [2]. The varying hyperparameters that are tuned
throughout this study can be seen in Table I.

1) Number of Layers: When starting this study, we observe
the parameters used for the dense models runs of previous
TensorFlow models [16]. We first investigated the number of
layers, starting with 64, 128, and 256 layers. These runs stag-
nated at roughly 7% accuracy with little to no improvement
with increasing epochs. We then tested a model with only 16
layers, which saw a significant increase in accuracy from 7%
to 49.7% , indicating that fewer layers leads to higher accuracy
in our fully connected model. We then conducted 2048 epoch
runs with 1–16 layers. We found that if there were too few
layers, the model would become severely over fitted. 11 layers
produced the best accuracy while limiting overfitting [2].

2) Learning rate: After finding that a lower number of
dense layers produced better results, the next step was to adjust
our learning rate hyperparameters. We trained 2, 4, 6, and
11 layer dense models with constant hyperparameters defined
in Table II. We utilized learning rate scheduler to adjust
the learning rate throughout the training process, which can
lead to faster convergence and better performance. PyTorch
offers various scheduling strategies, such as StepLR, which
modifies the learning rate at specific epoch intervals, and
ExponentialLR, which decays the learning rate exponentially
over epochs. Others, like ReduceLROnPlateau, adjust the rate
based on the recent model performance, decreasing it when
a plateau is detected. In this work we used StepLR strategy,
with an initial learning rate of 1e-3, which was multiplied by
of 1e-1, 3e-1, and 5e-1 every 682 epochs and 341 epochs.
From this experiment, we found better results from changing
the learning rate every 341 epochs [2]. When we multiplied the
learning rate by 1e-1, 3e-1, and 5e-1, we achieved an accuracy
of 63.9%, 63.5%, and 59.8% and 5e-1 had an accuracy of
59.8%. Decreasing the learning step from 682 to 341 improve
all models independent of learning change by a couple of
percentage points, as shown in Figure 2.

3) Batch Size: Larger batch sizes can improve model
performance by providing more stable weight updates, effi-
cient parallel processing, and better generalization. However,
extremely large batch sizes can lead to memory issues and
slower convergence.

To determine the best batch size for the data we trained
models using batch sizes of 8192, 16384, 32768, and 65536
as shown in Table III. Based on our training of these model

hpcf.umbc.edu
https://pytorch.org/
https://lightning.ai/
https://pandas.pydata.org/
www.numpy.org
www.matplotlib.org
https://www.anaconda.com/

Hyperparameter Value
Learning Rate 1.0e-3

Train/Validation 0.8/0.2
Batch Size 8192

Neurons 256
Number of Layers 11

Dropout 0.45
Inter-activation leakyrelu
Clip Gradient 1.0e-3

TABLE II: Hyperparameters in learning rate model.

(a) 11 layer Dense model with 3e-1 learning change and 682
learning step

(b) 11 layer Dense model with 3e-1 learning change and 341
learning step

Fig. 2: Graphs of model accuracy.

we concluded that a batch size of 8192 has the best accuracy
of any of the models with the least training time. As the batch
size increase the training time increased while the accuracy of
the model significantly decrease [2].

B. RNN with LSTM and GRU layers

In RNN training with LSTM layers, we tested our model
with 2, 4, 16, and 128 LSTM layers. Both 16 and 128 LSTM
layers performed poorly with accuracy not more than 7.73%.

Batch Size Val. Accuracy
8192 63.96%
16384 63.89%
32768 52.74%
65536 50.32%

TABLE III: Batch size on 11-layer dense model accuracy.

For 4 LSTM layers, we obtained accuracies of 76.0%, 66.5%,
63.7%, and 56.4% using L2 regularization of 1e-2 and 1e-3,
while for 2 LSTM layers, we obtained accuracies of 56.6%,
54.1%, 63.7%, and 63.3% using L2 regularization of 1e-2 and
1e-4. During our training, we also observed the perfomance
of our model using 2, 4, and 6 GRU layers. For 6 GRU
layers, the runs produced a 7.7% accuracy with 16 dense
layers and a 7.6% accuracy with 64 dense layers. For 4 GRU
layers, we achieved a 55.1% accuracy with 16 dense layers
and 8.4% accuracy with 64 dense layers. The best performed
RNN training was the 2 GRU layers, which produced a 64.4%
accuracy with 10 dense layers and a 66.0% accuracy with 16
dense layers.

C. Multiple GPU training

In our experiments, we undertook the training of two RNN
models across multiple GPUs to explore the potential benefits
of distributed training. Table IV (a) shows the result of training
the RNN model with 4 LSTM layers, followed by two fully
connected layers with ReLU activation function, for 1024
epochs on single and multiple GPUs. Similarly, Table IV (b)
demonstrates the results of single and multi-GPU training of
the other RNN model, which utilizes 4 GRU layers coupled
with the same fully connected layers in the LSTM model.

As is shown Table IV, while using the power of multiple
GPUs significantly reduced our training times, leading to more
efficient model iterations and quicker experimentation cycles,
there was a slight decrease in both training and validation ac-
curacies. This minor reduction in accuracy could be attributed
to factors like the effective batch size, different gradient aggre-
gation dynamics, and the complexities introduced by parallel
processing. The Distributed Data Parallel (DDP) strategy in
PyTorch evenly divides the total batch across multiple GPUs,
resulting in what is termed as ”mini-batches”. For example,
with a total batch size of 8019 and the use of 4 GPUs, each
GPU processes 2046 inputs, making the mini-batch size 2048.
Moreover, we proportionally increased both the total batch size
and the learning rate (LR) with each doubling of GPU count.
This ensures that each GPU in a multi-GPU setup effectively
maintains the same batch size and learning rate as in single
GPU training. However, these adjustments did not yield the
anticipated improvements in model performance.

To have a better demonstration of multi-GPU training, we
provide a visual representation of how the validation accuracy
of our RNN model varies with the use of different numbers
of GPUs. We plot the accuracy graph for the two LSTM and
GRU models, with 8192 batch size and 1.0e-3 learning rate,
for 1024 epochs on different numbers of GPUs. As shown

GPUs Total Learning Training Validation Time
batch Size rate accuracy accuracy (minutes)

1 8192 1.0e-3 73.40% 63.14% 453.84
2 8192 1.0e-3 67.51% 63.45% 205.93
2 16384 2.0e-3 68.14% 60.56% 191.44
4 8192 1.0e-3 63.39% 61.47% 163.53
4 16384 2.0e-3 63.32% 60.94% 171.18

(a) RNN with 4 LSTM layers multi-GPU training time for 1024
epochs

GPUs Total Learning Training Validation Time
batch Size rate accuracy accuracy (minutes)

1 8192 1.0e-3 74.21% 66.45% 440.01
2 8192 1.0e-3 70.13% 65.88% 204.49
4 8192 1.0e-3 65.17% 62.89% 159.39
4 16384 2.0e-3 63.59% 59.92% 166.99

(b) RNN with 4 GRU layers multi-GPU training time for 1024 epochs

TABLE IV: Comparison of RNN with LSTM and GRU layers
for multi-GPU training.

in Figure 3, the best overall validation accuracy was obtained
when using 2 GPUs in both models.

Nonetheless, the accelerated training process presents a
compelling advantage. It demonstrates that, with the right
optimization strategies and meticulous hyperparameter tuning,
multi-GPU training can be an invaluable tool for deep learning
practitioners, especially when time-to-solution is paramount.
As we further refine our distributed training techniques, we
anticipate narrowing the accuracy gap, all while reaping the
benefits of reduced training duration.

V. CONCLUSIONS

Our research focuses on the methodology of defining and
training DNNs in PyTorch, which provides the advantage of
dynamic computational graphs. In this study, we explored
various networks, including Dense, LSTM, and GRU layers,
for classification to optimize the performance of recurrent
neural networks (RNNs).

To determine the optimal network configurations, we con-
ducted an extensive hyper-parameter study. Among those
hyper-parameters, the number of epochs, batch size, learning
rate, learning-rate scheduler, and number of layers had a
noticeable impact on the models’ performance. Initial tests
with higher layer counts (64, 128, and 256) resulted in a
stagnant accuracy of around 7%. However, a model with 16
layers exhibited a notable increase in accuracy, and 11 layers
were found to be optimal, achieving the best accuracy while
effectively preventing overfitting. Furthermore, the learning
rate’s adjustment, especially when using the StepLR strategy,
proved beneficial in enhancing model accuracy. Additionally,
we discovered that a batch size of 8192 yielded the highest
accuracy while minimizing training time, making it the favored
option for our model. The influence of clip gradient and
dropout rate on peak accuracy was marginal.

In the realm of recurrent neural networks (RNNs), both
LSTM and GRU layers were explored. While models with
16 and 128 LSTM layers underperformed, achieving a mere

(a) 4 LSTM layers + 2 Dense layers

(b) 4 GRU layers + 2 Dense layers

Fig. 3: Comparison of validation accuracy for the RNN model
trained across multiple GPUs.

7.73% accuracy, the 4-layer LSTM configuration yielded ac-
curacies up to 76.0% with specific L2 regularization settings.
On the other hand, GRU-based models showcased the best
performance with 2 layers, achieving a 66.0% accuracy with
16 dense layers. This study underscores the significance of
layer configurations and regularization in determining RNN
performance.

Moreover, in our exploration of multi-GPU training for
RNN models, we found that while leveraging multiple GPUs
considerably expedited the training process, it introduced
a slight decline in both training and validation accuracies.
More specifically, training on two GPUs was twice faster
than a single GPU with almost the same validation accuracy,
however, run-time on four GPUs is roughly 20% faster than
two GPUs with around 3% lower validation accuracy. Despite
making adjustments to the total batch size and learning rate in
alignment with the DDP strategy, the expected performance
enhancement remained elusive so far. However, the rapidity
advantage of multi-GPU training cannot be overlooked.

ACKNOWLEDGMENTS

This work is supported by the NSF-grant “REU Site:
Online Interdisciplinary Big Data Analytics in Science and
Engineering” from the National Science Foundation (grant no.
OAC–2050943). Co-author Ren acknowledges support from
the NIH-grant R01–CA279013. Co-author Cham additionally
acknowledges support as HPCF RA. The hardware used in
the computational studies is part of the UMBC High Perfor-
mance Computing Facility (HPCF). The facility is supported
by the U.S. National Science Foundation through the MRI
program (grant nos. CNS–0821258, CNS–1228778, OAC–
1726023, and CNS–1920079) and the SCREMS program
(grant no. DMS–0821311), with additional substantial support
from the University of Maryland, Baltimore County (UMBC).
See hpcf.umbc.edu for more information on HPCF and the
projects using its resources.

REFERENCES

[1] Alina M. Ali, David Lashbrooke, Rodrigo Yepez-Lopez, Sokhna A.
York, Carlos A. Barajas, Matthias K. Gobbert, and Jerimy C. Polf.
Towards optimal configurations for deep fully connected neural networks
to improve image reconstruction in proton radiotherapy. Technical
Report HPCF–2021–12, UMBC High Performance Computing Facility,
University of Maryland, Baltimore County, 2021.

[2] Kaelen Baird, Sam Kadel, Brandt Kaufmann, Ruth Obe, Yasmin Soltani,
Mostafa Cham, Matthias K. Gobbert, Carlos A. Barajas, Zhuoran Jiang,
Vijay R. Sharma, Lei Ren, Stephen W. Peterson, and Jerimy C. Polf. En-
hancing real-time imaging for radiotherapy: Leveraging hyperparameter
tuning with PyTorch. Technical Report HPCF–2023–12, UMBC High
Performance Computing Facility, University of Maryland, Baltimore
County, 2023.

[3] Carlos A. Barajas, Matthias K. Gobbert, and Jerimy C. Polf. Deep
residual fully connected neural network classification of Compton cam-
era based prompt gamma imaging for proton radiotherapy. Front. Phys.,
11:903929, 2023.

[4] Jason Brownlee. ThreadPool and the global interpreter lock (gil). In
SuperFast Python. 2021. https://superfastpython.com/threadpool-gil/.

[5] Rene Y. Choi, Aaron S. Coyner, Jayashree Kalpathy-Cramer, Michael F.
Chiang, and J. Peter Campbell. Introduction to Machine Learning,
Neural Networks, and Deep Learning. Translational Vision Science &
Technology, 9(2):14–14, 02 2020.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

[7] Joseph Clark, Anaise Gaillard, Justin Koe, Nithya Navarathna, Daniel J.
Kelly, Matthias K. Gobbert, Carlos A. Barajas, and Jerimy C. Polf.
Sequence-based models for the classification of Compton camera prompt
gamma imaging data for proton radiotherapy on the GPU clusters taki
and ada. Technical Report HPCF–2022–12, UMBC High Performance
Computing Facility, University of Maryland, Baltimore County, 2022.

[8] Joseph Clark, Anaise Gaillard, Justin Koe, Nithya Navarathna, Daniel J.
Kelly, Matthias K. Gobbert, Carlos A. Barajas, and Jerimy C. Polf.
Multi-layer recurrent neural networks for the classification of Compton
camera based imaging data for proton beam cancer treatment. In 9th
IEEE/ACM International Conference on Big Data Computing, Applica-
tions and Technologies (BDCAT 2022), in press (2022).

[9] Zhuoran Jiang, Jerimy C. Polf, Carlos A. Barajas, Matthias K. Gobbert,
and Lei Ren. A feasibility study of enhanced prompt gamma imaging
for range verification in proton therapy using deep learning. Phys. Med.
Biol., 68(7):075001, 2023.

[10] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,
Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania,
and Soumith Chintala. PyTorch distributed: Experiences on accelerating
data parallel training, 2020.

[11] Javaid Nabi. Recurrent Neural Networks (RNNs). In
Towards Data Science. 2019. https://towardsdatascience.com/
recurrent-neural-networks-rnns-3f06d7653a85.

[12] Ryan O’Connor. PyTorch vs TensorFlow in 2023. In Assembly AI. 2023.
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/.

[13] Jerimy C. Polf, Carlos A. Barajas, Stephen W. Peterson, Dennis S.
Mackin, Sam Beddar, Lei Ren, and Matthias K. Gobbert. Applications of
machine learning to improve the clinical viability of Compton camera
based in vivo range verification in proton radiotherapy. Front. Phys.,
10:838273, 2022.

[14] Jerimy C. Polf and Katia Parodi. Imaging particle beams for cancer
treatment. Phys. Today, 68(10):28–33, 2015.

[15] Chi-Feng Wang. The vanishing gradient problem: The
problem, its causes, its significance, and its solutions. In
Towards Data Science. 2019. https://towardsdatascience.com/
the-vanishing-gradient-problem-69bf08b15484.

[16] Sokhna A. York, Alina M. Ali, David C. Lashbrooke Jr, Rodrigo
Yepez-Lopez, Carlos A. Barajas, Matthias K. Gobbert, and Jerimy C.
Polf. Promising hyperparameter configurations for deep fully connected
neural networks to improve image reconstruction in proton radiotherapy.
In 2021 IEEE International Conference on Big Data (Big Data 2021),
pages 5648–5657, 2021.

hpcf.umbc.edu
https://superfastpython.com/threadpool-gil/
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484

	Introduction
	Application Background
	Proton Beam Therapy
	Compton Camera and Image Reconstruction
	Scatter Types
	Machine Learning in Image Reconstruction

	Methodology
	Deep Neural Networks
	Feedforward Neural Networks
	Recurrent Neural Networks

	Translation to PyTorch
	PyTorch Distributed Data Parallel (DDP)
	Training Model Across Single/Multiple GPU(s)

	Hardware and Software

	Results
	Hyper-parameter Study
	Number of Layers
	Learning rate
	Batch Size

	RNN with LSTM and GRU layers
	Multiple GPU training

	Conclusions
	References

