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Abstract

Atmospheric gravity waves are produced when gravity attempts to restore disturbances
through stable layers in the atmosphere. This phenomena should be considered when predicting
weather due to their association with weather fronts, wind currents, and extreme weather events.
Despite their importance, little research has been conducted on how to computationally detect
gravity waves. In this study, we explored various methods of preprocessing and transfer learning
in order to work around the small size of our labeled dataset. We pre-trained an autoencoder on
unlabeled data before training it to classify labeled data. We also created a CNN by combining
certain pre-trained layers from the InceptionV3 Model trained on ImageNet with custom layers
and a custom learning rate scheduler.

Key words. atmospheric gravity waves, machine learning, image denoising, transfer learning,
custom model

1 Introduction

Gravity waves are generated when parcels of air are displaced from an equilibrated position and
the force of gravity tries to restore the equilibrium. Atmospheric gravity waves are disturbances
generated by various types of disturbances in the troposphere, including airflow from over moun-
tains, jet streams, and thunderstorms. These disturbances can happen when the air is forced to rise
upwards in stable air, creating a wave pattern while the air sinks back down over time, in a similar
way that ripples are formed by a stone tossed into a still water surface [1]. Gravity waves can
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sometimes be detected using radar or satellites, and inside images they can be seen as producing
patterns shaped like ripples or clouds.

When present, gravity waves have a major effect on many weather phenomena. Simulations
of middle atmosphere circulation are more accurate when correctly factoring in gravity waves,
indicating that they influence circulation. It is theorized that they may even affect tidal waves [2].
Gravity waves also produce a type of turbulence called Clear Air Turbulence; up to 40% of all
aviation accidents can be attributed to this kind of turbulence [3].

Due to increased understanding of the importance of gravity waves in recent years, interest
in detecting and understanding them have drastically increased. Some researchers are turning to
machine learning techniques to grasp a better understanding of this phenomena.

We worked on machine learning techniques to detect gravity waves in the atmosphere. For
this paper, we address the two main challenges regarding the detection of gravity waves from
satellite images. The first main challenge was working with a noisy dataset. Because the images
were scanned from a satellite, the images could have been corrupted when acquired by a defective
sensor, transmitted by a faulty channel, or other factors that could degraded the quality of the
scanned images. The problem that we could expect from trying to use noisy images for training is
that the data could not get understood or interpreted correctly by the learning model. The second
main challenge was to deal with a small dataset that was provided to work with the gravity waves
classification problem, a dataset that consisted of 710 images for training, 140 images for validation,
and 236 images for testing. The problem when dealing with a small dataset is that the model gets
fewer examples to learn general features from. If a model is trained on data that is too specific,
then it will not be able to learn generalized features well and will increase the risk of over fitting.

To tackle the above two challenges, we explored various techniques and our contributions are
summarized below. We also open sourced our implementation and the source code can be accessed
at the Big Data REU GitHub repository [4].

• We explored different techniques to signify the signals and remove noises in our datasets.
Because the radiation signals in our raw data are very weak, we transformed the data before
saving them as images. We further used Fast Fourier transform (FFT) to reduce noises in
satellite images. With these preprocessing steps, gravity waves are much more visible, and
both signal to noise ratios (SNR) and pixel distributions are greatly improved.

• We proposed solutions using different types of transfer learning methods, such as autoencon-
ders and custom models using a pre-trained model for feature extraction, before transferring
that knowledge to a model that classifies whether or not the images contain gravity waves.

• We worked on several experiments to evaluate the performance of all the models we imple-
mented for training and testing. The results show the comparison of the accuracy scores
between all models, and present the ability of using deep learning methods to predict the
presence of gravity waves on scanned satellite images.

For the rest of the paper, the organization is as follows. We present related work regarding
studies that approach similar problems relatable to this research in Section 2. This is followed by
showing the dataset and the techniques used for the preprocessing of the images in Section 4. Details
are provided about the methods used for the approaches of using an autoencoder and a custom
model, for training and testing, in Section 5. The discussion and results from the experiments are
detailed in Section 6. Section 7 explained additional efforts that are in progress. The conclusion of
this paper is found in Section 8.
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2 Background and Related Works

2.1 Gravity Wave Detection

Most existing methods for gravity wave detection require researchers to take measurements
of features from the atmosphere in the target region. For example, studies by Zink et al. [5] and
Colligan et al. [6] identified gravity waves based on measurements of horizontal wind speed collected
through radiosonde sounding. They then applied a linear transformation to the measurements to
make them more directly intrepretable. In order to isolate the superimposed gravity waves, they
scanned the resulting function for local maxima and recorded the wave packet data at those points.
That data was recorded and further analyzed with Stokes parameter analysis to determine wave
direction, speed, and height- all of which help identify gravity waves. This general technique
produces fairly accurate results, but it requires access to various weather predicting instruments
and can only detect gravity waves in a small area.

Cöısson et al. determined that it was possible to detect tsunami-induced gravity waves using
satellite radio occultation measurements [7]. By analyzing the radio waves’ changing amplitude
and frequency, they could identify characteristics which suggested that the waves were not from
the ionosphere and were instead gravity waves excited by tsunamis. Koch et al. proposed an
automatic mesoscale gravity wave detection system in 1997 [8].

Gravity wave detection can be made much more efficient and accessible using the bountiful
and publicly available satellite image data. Thus far, very little research has been conducted yet
about how to detect them using artificial intelligence. There is a notable study by Lai et al. that
developed a convolutional neural network based program that extracts gravity wave patterns in all-
sky airglow images [9]. To achieve this, they used a convolutional neural network to classify images
of clear skies and unwarp them onto geographic maps. Then, the gravity waves were localized using
the Object Detection API from TensorFlow.

Our study seeks to establish machine learning methods for gravity wave detection using satellite
imagery. Specifically, we aimed to create an accurate model that could accurately classify a small
dataset of satellite images with 95% validation accuracy.

2.2 Transfer Learning

Transfer learning involves training a model on two tasks, typically referred to as the source and
target tasks while attempting only to maximize the model’s ultimate performance on the target
task. This differs from multi-task learning because, in multi-task learning, the researcher aims for
good performance in all of the domains that the model is trained in [10]. The strategy of transfer
learning covers a wide variety of approaches which are often further subdivided. One popular
taxonomy categorizes approaches according to what sort of labels are available for the source and
target tasks and how closely the samples in the source task resemble those in the target task [11].

The transfer learning we attempted involves transfer from the source task of categorizing images
in the Imagenet dataset to categorizing grayscale satellite imagery. This is referred to as ”inductive
transfer learning” because the training on the source domain is not meant to directly improve
performance on the target domain but rather to improve the model’s ability to learn the target
task. More specifically, Pan and Yang categorize our approach of using training on the source
domain as an initialization algorithm for our model as ”feature-representation-transfer” [10].

Generally, feature-representation transfer learning involves training a model on a domain struc-
tured similarly to the target domain, so that the features, which are important to understanding
samples from the source domain, tend to also be informative in the target domain. For instance,
Blitzer et al. designed a training method to perform transfer sentiment classification from one
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domain of text to another. They relied on structural commonalities between documents in the
same language but in different domains [12].

Another common approach to feature representation transfer learning is to perform unsuper-
vised feature extraction on unlabeled images from a domain very similar to the target domain.
Typically such approaches will compress the inputs with the intent of forcing a model to produce
abstract representations of the raw inputs which capture regularities within the input domain.
For instance, Glorot et al. use an unsupervised autoencoder model to transform textual reviews
into compressed summaries which they then used as input to sentiment classifiers, resulting in
significantly improved classification performance [13].

3 Overall Pipeline

Figure 3.1 shows the overall pipeline we used. The pipeline starts with raw data in the form
of hdf5 files supplied by the NASA Soumi NPP satellite. We then transformed the data into PNG
images that were comprehensible to humans. Some PNG images were labeled manually, while
the rest remained unlabeled. Since our input data consisted of noisy images which can negatively
impact performance of the models, the labeled images were also denoised with FFT denoising.

We used two methods for classification. For the first method (more at Section 5.1), we leveraged
the unlabeled images to train an autoencoder. We then saved the encoder block and used it as part
of a classification model trained on the labeled denoised dataset. For the second method (more at
Section 5.2), we cut off the Inception V3 model pretrained on ImageNet at the last layer with the
larger (14x14) feature map. We then added custom layers to this model and used transfer learning
to train the model on the labeled dataset.

Figure 3.1: Diagram of the Overall Pipeline.
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4 Data Preprocessing

In this study we used NASA VIIRS DNB (Day Night Band) images [14] collected from satellite
Suomi NPP.

4.1 Image Generation From Raw Data

The raw data consisted of measurements of the radiance of light with wavelength in the range
(0.5µm, 0.9µm). It was stored in a 1000x1000 matrix the cells of which corresponded to a spatial
mapping over a portion of the Earth’s atmosphere. Images were recorded every six minutes of the
region visible to the satellite at that time. Radiance values were in the range (−10−9, 10−9). We
transformed the raw data files according to Algorithm 1 to produce images that were comprehen-
sible to humans. See Figure 4.1 for an illustration. The resulting images were classified by hand
and then further processed.

4.2 Image Denoising using Fourier Transforms

One common technique for image processing is Fourier filtering. In Fourier filtering, one zeroes
out a subset of elements of the image’s frequency domain representation. This often serves to
significantly reduce the complexity of the image significantly with minimal impact on its visual
clarity. We implemented this by taking the 2D Fourier Transform of the image and zeroing out
all but the highest and lowest frequencies and finally taking the inverse Fourier transform of the
remaining frequencies to produce a denoised image.

The main idea of Fourier transforms is to transform an image into the frequency domain by
decomposing the image into sines and cosines of varying amplitudes and phases, which reveals
repeating patterns within the image [15]. The Fourier Analysis is a special case of a concept called
orthogonal functions. The main idea of the function is breaking down a complicated signal into a
linear superposition of simpler ”basis” functions to get the result for the original signal.

In this work all models are trained on denoised data as it offered an improvement in model
performance (described in later section) compared to other denoising techniques such as image
thresholding. See Algorithm 2 for a pseudocode implementation of the Fourier filtering used in this
work.

At first, we applied the FFT (fft2 ) algorithm that returns the two-dimensional fourier transform
matrix using a fast fourier transform algorithm. Later, we crop off all but the top and bottom 10%

Algorithm 1 HDF5 to PNG

Require: arr ∈ R1000x1000

1: F (x)← P (Z <= x) for Z ∼ Normal distribution fitted to the values of arr
2: arr ← arr −min(arr)
3: arr ← arr

median(arr) ∗ 0.5
4: arr ← clip(arr, 0, 1)
5: arr ← F (arr) ▷ Transform the approximately normally distributed values to uniform ones
6: arr ← clip(arr, 0, 1)
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Figure 4.1: Normalized raw data versus preprocessed PNG

Algorithm 2 FFT Denoising

INPUT : i← image
OUTPUT : image→ I

1: i← fft2(i)
2: i← (1− 2 ∗ fraction) ∗ i
3: I ← ifft2(i)

of the signals row and column-wise to remove the unneeded frequency elements. The next steps are
the reverse process of the first two steps where we reconstruct the image from signals. We utilized
python’s SciPy package in this process. Figures 4.2 and 4.2 illustrate the impact of denoising.
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Figure 4.2: Histograms of pixel values of an image before and after FFT denoising

Figure 4.3: Signal to noise ratio (SNR) graph for images before and after denoising (N = 150)
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5 Transfer Learning based Detection

5.1 Autoencoder based Feature Learning from Unlabeled Data

An autoencoder is a self-supervised learning model that is trained to output a recreation of its
input. They typically comprise of an encoder block, which reduces the input’s dimensions, and a
decoder block, which reconstructs the input back from the lower-dimensional representation [16].
We used a convolutional autoencoder, which is an autoencoder that uses convolutional layers in the
encoder and decoder blocks and is therefore more effective at reconstructing images [17]. Figure
5.1 shows the typical structure of a convolutional autoencoder. Lu et al. obtained favorable results
by training an autoencoder on a larger unlabeled dataset before using the convolutional layers in a
classification model [18].

This approach seemed likely to help with our difficulties caused by our limited supply of la-
beled data and the unusual structure of the images we were modeling. Training an autoencoder
allowed us to leverage our relatively large supply of unlabeled images to acquire a model which had
been pretrained on images from our domain rather than attempting to perform transfer learning
from models trained on the ImageNet dataset. By learning how to reconstruct input images from
our dataset, the autoencoder learned the images’ important features. We hypothesized that if an
autoencoder learned to reconstruct images from our domain, it would also learn a high-level rep-
resentation of gravity wave patterns which could be extracted from the encoded representation of
the images. This knowledge can then be transferred to a classification model.

We converted the raw hdf5 files into images as detailed in section 3.2.1 and trained a con-
volutional autoencoder on these images. The autoencoder input data for this study is a three-
dimensional array with the dimensions height x width x channel (256, 256, 1). The encoder block
consists of three sets of alternating convolution and max pooling layers. The convolutional layers
all have kernels of size 3 x 3, and the max pooling layers all have kernels of size 2 x 2. For all
convolution layers, padding is set to ”same,” the activation function is ReLU, and the layers have
16, 8, and 8 filters respectively.

The decoder block consists of three sets of alternating convolution and upsampling layers,
then ends with a convolution layer that outputs an image of the input image’s dimensions. The

Figure 5.1: General structure of a convolutional autoencoder
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Figure 5.2: Structure of the classification model

convolutional layers have the same kernel size, padding, and activation functions as in the encoder
block, and the order of the filters is reversed with the layers having 8, 8, and 16 filters respectively.
The autoencoder uses the Adam optimizer and the loss binary cross-entropy [19]. It was then
trained over 100 epochs with a batch size of 32.

The classification model used the encoder block of the autoencoder after it had been trained on
the unlabeled data. The layers in the encoder block were frozen, but each convolutional layer was
given an l2 regularizer (l = 0.01) and the UnitNorm kernel constraint. The last autoencoder layer
of 32 x 32 x 8 was flattened into a dense layer of 8192 elements. Two dense layers of 512 and 64
units were added, each followed by dropout layers with rate 0.5. Dropout layers reduce overfitting
by randomly dropping a certain percentage of the input layer during training [20]. We found that
for the autoencoder, dropping 50% of each dense layer yielded the best results for the autoencoder.
The output layer has one neuron, for binary classification, and a sigmoid activation function. This
model also used the Adam optimizer and binary cross-entropy loss, and was trained over 100 epochs
with a batch size of 32. Figure 5.2 shows the architecture of the classification model.

5.2 Customization of Pre-trained Models

Training a new model from scratch would requires a lot of labeled training data, but our
challenge was to work with a dataset that was relatively small. To deal with this problem, we
decided instead to create a custom model using some parts of a pre-trained model together with a
trainable custom classifier.

The intuition behind this is because the pre-trained model has been already trained on a large
and general dataset, thus it can serve as a generic model, and we can take advantage of the features
that has been learned from the pre-trained model without training our own model from scratch.
This way, we can create a custom model and train it to be specialized to identify gravity waves
from our dataset, and thus resolve the problem we were dealing with by the limits of using a small
dataset.

We used the Inception Model V3 as the base model because it performed well on our data com-
pared to other state-of-the-art architectures. Inception Model V3 is an image recognition model
that has been trained using the ImageNet dataset, which consists of millions of annotated images.
As shown in Figure 5.3, Inception Model V3’s deep learning network consists of 11 concatenated
layers, or modules, named from “mixed0” to”mixed10.” Each module includes layers like convo-
lutions, average pooling, max pooling, and many more. Every convolution layer is followed by a
batch normalization and applied to activation inputs, typically “ReLU”, which stands for Rectified
Linear Activation Function [21]. The lower layers detect simple patterns, and later layers detect
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Figure 5.3: Architecture of Inception Model V3

progressively more complex patterns.
When we used the Inception Model, we specified to not include the classification layers at the

top, and made the layers from the inception model non-trainable because we are only interested
in using the pre-trained model for feature extraction. We specified the last layer of the model to
be the concatenated layer ’mixed7’, because it is the last module that keeps a large feature map
(14x14). This keeps the model’s ability to extract low and mid-level features. If we were to use
any further layers, we would have a resulting 6x6 feature map which would be smaller and would
contain high level features that are too specified for images from the ImageNet dataset, and would
not help us for the classification of gravity waves.

For every 2D convolutional layer, we applied L1 and L2 Regularizers set to 0.0001. On top of
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Figure 5.4: Custom Layers

the layers used from the Inception model, we applied layers to build a custom classifier on top that
would be trainable with our dataset. For this we added a Flatten layer to make the multidimensional
input one-dimensional. The we applied a Dense layer of 1024 units, which defines the output from
the dense layer. After the fully connected layers we applied a Dropout layer of 0.3, meaning that
30% of inputs will be randomly excluded from each update cycle. At the end, we applied a Dense
layer of 1 with a ”sigmoid” activation, since we are looking only at labels that can be 0 or 1. The
custom layers are shown in Figure 5.4.

We compiled the model using Adam as the optimizer, with an initial learning rate of 1e-4. The
loss function was binary cross-entropy, and for the metrics we used the accuracy class. Additionally,
we added a learning rate scheduler as a callback function which is known as “ReduceLROnPlateau.”
This function reduces the learning rate during training when there is no longer improvement in the
accuracy or loss scores, and it is not required to define the number of epochs for the adjustment.

6 Experiments

Dataset. The dataset used in the experiments consisted of 710 images for training, 140 images
for validation, and 236 images for testing.

Hardware/Software settings. For the hardware, we used Google Colab and UMBC’s High
Performance Computing Facility (HCPF) [22]. For the software environment, we used tensorflow
2.4.0, keras 2.9.0, numpy 1.18.1, scikit-learn 0.23, Pandas 1.1.0, h5py 2.10.0, and Pillow 7.1.0.

6.1 Comparison Between Pre-Trained Computer Vision Models

In order to see how leading architectures perform on our data, we first ran several pretrained models
on the same preprocessed dataset. ResNet50 is a deep CNN that still achieved a high accuracy
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on ImageNet through the use of skip connections [23]. EfficientNetV2 is a small CNN that trains
very quickly [24]. VGG16 is a 16 layer CNN that uses a series of small 3x3 filters [25]. As shown
in Table 6.1, the original InveptionV3 model significantly outperformed all other base models we
tried. We also compared the model from Lai et. al. [9] which combines ten layers with an input,
two CNN, two pooling, three dropout, one flatten and finally a dense layer. Testing the model
with our dataset performs poorly (shown in the table). The poosible reasons of achieving the low
scores are due to the noisy images and not having enough data to train the model. Considering all
situations we chose InceptionV3 as the base model for our custom model.

Table 6.1: Performance from Baselines and Pre-Trained Models

Model Train Acc. Val Acc. Test Acc. F1 Score

ResNet50 1.0000 0.5000 0.5508 0.2418

EfficientNetV2L 0.5507 0.6643 0.6525 0.5922

VGG16 0.5104 0.5156 0.5593 0.2637

InceptionV3 0.9394 0.7286 0.6949 0.4672

CNN model [9] 0.5900 0.5000 0.5800 0.0000

6.2 Effects of AutoEncoder Approach

Table 6.2 shows the effects of transfer learning with an autoencoder pre-trained on unlabeled
data which was explained in Section 5.1. We construct a model using the encoder part of the
autoencoder and compare the model’s performance if we choose the encoder weights by pretraining
autoencoder against the same model with randomly initialized weights. For comparison, we also
implemented a baseline model that uses the exact same architecture and trained on the same
dataset, but randomly initialized weights.

The results show that without any pre-training, the model predicts only the ”no gravity waves”
class. On a evenly split dataset for the two classes, the training, validation, and test accuracies
remained at 0.5. Clearly, the baseline model was not learning anything. When using the pre-
trained weights from the autoencoder, the train accuracy rose to over 97%, and validation and test
accuracies rose to 70%. Although the pretrained model was overfitted, it significantly outperformed
the randomly initatialized baseline.

Table 6.2: Performance from the Models with and without the Autoencoder Transfer

Initialization
Method

Train Acc. Val Acc. Test Acc. F1 Score

Random
Initialization

0.5000 0.5000 0.5000 0.0000

Autoencoder
pretraining

0.9753 0.7000 0.6992 0.7296
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Figure 6.1: Two plots showing the performance of the Custom Model with Constant Learning
Rate.

6.3 Effects of Model Customization Approaches

Table 6.3 shows the performance of the custom models that used a pre-trained model for transfer
learning which was explained in Section 5.2. The two models in the table have the same structure.
The only difference is that the learning rate of the second model is decreased by the ReduceL-
ROnPlateau function when the validation loss is not improving during training. As the table
demonstrates, the model that decreased learning rate outperformed the best performing baseline
model, which is the pre-trained InceptionV3 architecture in Table 6.1, by 6.36% in terms of test
accuracy.

The results showed that both custom models could predict the ”gravity waves” and ”no gravity
waves” classes. For the dataset that was split evenly for both classes, we can see that for the first
customized model, which a constant learning rate of 0.0001, the training accuracy could achieve
the 100 percent mark, but the validation accuracy, test accuracy and F1 Scores were still lower
compared to the second customized model. As shown in Figure 6.3 and Figure 6.3, the overfitting
has been reduced for the second approach of the custom Inception model. Figure 6.3 shows how
the learning rate for the model changes when ReduceLROnPlateau is used.

Table 6.3: Performance from the Custom Models

Model Train Acc. Val Acc. Test Acc. F1 Score

Constant LR 1.0000 0.9063 0.6144 0.8800

Changing LR 0.9506 0.9499 0.7585 0.8181

6.4 Discussion

As shown by the above results, it appears that using a state-of-the-art pre-trained model yields
better results than transfer learning from an autoencoder. One reason for this could be that the
autoencoder, although trained on data that is far more relevant to our dataset, was trained for much
less time and on a much smaller dataset compared to the InceptionV3 model that was trained on
the much larger, much more varied ImageNet dataset. When examining the autoencoder, we also
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Figure 6.2: Two plots showing the performance of the Custom Model with Changing Learning
Rate.

Figure 6.3: Plot showing the learning rate changes during the training for the custom model that
uses ReduceLROnPlateau.

noticed that when the autoencoder bottleneck becomes too tight, the decoder stops reproducing
gravity waves. This indicates that it is more difficult for the autoencoder to compress gravity wave
patterns than other satellite image features, likely because of how varied and unstructured gravity
waves are. Further exploration on using autoencoder transfer learning would have to address these
concerns.

7 Other Efforts

7.1 Denoising Autoencoder Attempt

We tried to use a denoising autoencoder to remove noise from the images, but quickly abandoned
the attempt when we realized that in order to successfully denoise images, the autoencoder would
already need denoised versions of the images as labels.
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7.2 Diffranet Preprocessing

Diffranet is a dataset of diffraction pattern images that comes with models that can classify said
images with a high degree of accuracy [26]. The diffraction patterns in Diffranet show some similar-
ities to the patterns of gravity waves, so we suspected that techniques that worked on the Diffranet
dataset could also work on ours. After studying the source code of one of the models, Deepfreak,
we suspected that the high accuracy of the Diffranet model was partially caused by preprocessing
that better removed noise and more effectively showed their image’s diffraction patterns. We stud-
ied their open source code and created a dataloader that preprocessed images the way Diffranet
did. However, we saw no improvement in results. In retrospect, it is clear that although our data
and the Diffranet data both contained diffraction patterns, there are many differences between the
datasets that could have prevented Diffranet’s preprocessing from working on ours. Not only that,
but Diffranet’s dataset had far more images and therefore could more easily attain a high accuracy
regardless of the preprocessing used.

7.3 Horizontal Line Removal

Due to the nature of how the images are produced by the satellites, there is some ”dead space”
in each image that appears as a dark horizontal line. Each image has about 62 of these evenly
spaced lines in them, and we believed these would act as noise, interfering with the model’s ability
to identify gravity waves. In attempt to remove the horizontal lines from each image, we used
the fast fourier transform method to detect horizontal areas with darker brightness throughout
the whole image. This was made easier by the fact that all the lines were spaced evenly, so we
could predict about where each line would be. Then, the color of each pixel within the horizontal
line line was changed so that it would be an average of the pixel above and below it. Although
this method was effective in reducing appearance of the horizontal lines, they were not completely
removed. Also, when training the model with the original dataset vs. the dataset with horizontal
lines removed, there was no improvement in accuracy. We concluded that our method of removing
the appearance of horizontal lines does not make a significant change in the model performance,
but we believe it has potential if more work goes into it.

7.4 Pretraining on Synthetic Data

Our attempts to do transfer learning using the Imagenet dataset for our source task met with
limited success. It seems likely that that was at least partially due to the fact that our images differ
significantly from the images which appear in Imagenet.

We attempted to resolve this by creating a synthetic dataset using modified images from our
target domain to make the model’s understanding transfer more directly from the source task to
the target one. We created a method to generate random wave patterns in the style of gravity
waves and then overlayed them on existing unlabeled images to create a dataset of images in our
domain with synthetic gravity waves with known locations. We then trained a model to localize
synthetic gravity waves in hopes that that training would transfer effectively to our target task.

7.4.1 Synthetic Data

We created static validation and test sets from 0.1 and 0.2 of our unlabeled data, respectively.
The training set was not explicitly stored on disk - instead every sample shown to the model was
randomly generated, resulting in an approximately unlimited training dataset. We generated the
synthetic wave patterns by randomly sampling a parameters controlling the size, period, brightness,

15



Figure 7.1: Left: unlabeled image. Center: generated wave pattern. Right: image after augmenta-
tion

orientation, and radius of curvature. Each generated pattern is a bounded portion of a circular
wave pattern emanating outward from a fixed point source. See Figure 7.1

7.4.2 Training on the source task

Our model was an InceptionV3 model pretrained on Imagenet, with the output layer replaced
by a Dense layer with 4 output parameters and a linear activation function. We trained it on
the source task using the unlabeled data which was not part of the validation or test sets for 200
epochs, showing the model a total of 602,400 unique images. The loss was a mean squared error loss
interpretting the 4 outputs as the locations of the leftmost, topmost, rightmost, and bottommost
points in the added wave function (with all values normalized to lie between 0 and 1).

To evaluate the model, we measured its intersection over union (IOU) score. The IOU score
of a localization model is the quotient of the number of pixels shared between the true bounding
box and the predicted one (the intersection) and the number of pixels contained in either the true
bounding box or the predicted one (the union).

The model reached a peak validation IOU of 0.53 and test IOU of 0.56. This sounds really
unimpressive, but, due to limitations in the data generation process, the authors were unable to
localize the modifications in many of the images. See 7.2 for an example of such an image. For
images which the authors were able to solve, the model performed significantly better (test IOU
∼0.73). So we determined that the model had successfully learned the source task for purposes of
transfer learning.

7.4.3 Transfer to the target task

Once the model started to overfit, we moved on to retraining it on the target task. We replaced
the output layer with a Dense layer with a single output and sigmoid activation. Due to our limited
data for the target task, we dropped all layers after the mixed7 layer in our trained InceptionV3,
froze all remaining layers and added a small head which we retrained on the target task. The
result was that the pretraining did not improve the outcome relative to doing only the transfer step
without training on the synthetic dataset. The ultimate performance was not significantly better
than using the same model without pretraining on the synthetic dataset.
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Figure 7.2: Left: unsolvable training image. Right: solvable image. The white border shows the
’correct’ answer while the black is the predicted answer

Table 7.1: Synthetic Data Transfer

Model Train Acc. Val Acc. Test Acc. F1 Score

With Synthetic Transfer 0.9900 0.8833 0.7600 0.7843

Without Synthetic Transfer 1.0000 0.8167 0.7100 0.7027

7.4.4 Analysis

This approach hinged on the assumption that learning to localize synthetic gravity waves would
require the model to learn to both ignore irrelevant patterns (clouds, city lights, noise, ...) and to
attend to wave patterns. The former seems likely to be a valid assumption; those features are just
as extraneous in the localization task as in the synthetic one. However, the latter assumption has a
number of significant flaws. The most significant limitation to this approach is that the generated
gravity waves are not nearly as diverse as the real ones. Thus, the model might learn to attend to
the relevant patterns present in all of the synthetic gravity waves while only learning to recognize
a small fraction of ways that real gravity waves can appear. For this to work, the space of possible
synthetic gravity waves needs to be a superset of possible real gravity waves (no harm is done if the
space of synthetic gravity waves also includes wildly unrealistic images since the model will never
be asked to classify such images in the real task). A second major issue is that there are visual
artifacts present in many of the synthetic wave patterns where the process which generated them
skipped pixels or doubled the intended brightness of certain pixels. It is likely the model learned to
identify these visual artifacts, which is useful for the synthetic task but will not generalize at all.

In order to go further with this approach, it would be necessary to significantly increase the so-
phistication of the synthetic data generator (ideally without significantly increasing its run-time).
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8 Conclusions

We presented preprocessing methods to transform raw HDF5 data from our chosen domain into
usable images and evaluated the performance of two transfer learning methods on our classification
dataset. Our autoencoder method allowed us to leverage our large supply of unlabeled image data
to identify meaningful structures within our images and then to use identified features to perform
the classification task. Our customized IncpetionV3 model made use of the most relevant parts
of a state-of-the-art architecture while adding our own layers and modifications that best suit our
goals.

We anticipate these findings will be useful for classifying gravity waves in small datasets of noisy
satellite images and for overall future research on gravity wave classification. This work can also
be helpful for other transfer learning endeavors, especially those using small datasets.

For future research, we will observe how our models perform on datasets from other satellites, fix
overfitting issues, explore other promising transfer learning models, and refine fake data generation
techniques to combat our lack of labeled data.
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