
Improvements to the Deep Learning Classification of Compton
Camera Based Prompt Gamma Imaging for Proton Radiotherapy

Jonathan N. Basalyga1, Carlos A. Barajas1, Gerson C. Kroiz1,
Matthias K. Gobbert1, Paul Maggi2, and Jerimy Polf2

1Department of Mathematics and Statistics, University of Maryland, Baltimore County
2Department of Radiation Oncology, University of Maryland School of Medicine

Technical Report HPCF–2020–29, hpcf.umbc.edu > Publications

Abstract

Real-time imaging has potential to greatly increase the effectiveness of proton beam therapy
for cancer treatment. One promising method of real-time imaging is the use of a Compton
camera to detect prompt gamma rays, which are emitted along the path of the beam, in order
to reconstruct their origin. However, because of limitations in the Compton camera’s ability
to detect prompt gammas, the data are often ambiguous, making reconstructions based on
them unusable for practical purposes. Deep learning’s ability to detect subtleties in data that
traditional models do not use make it one possible candidate for the improvement of classification
of Compton camera data. The base network can be made cheaper via reducing hidden layer count
while maintaining comparable classification performance. Additionally, even a simple training
schedule can show improvements in the training process. Several variations of the network
showed promise in their ability to classify multiple beam energies. However more improvements
need to be made to the network for the performance on multiple beam energies to meet our goal
of 90% classification accuracy.

Key words. Proton beam therapy, Prompt gamma imaging, Compton camera, Machine
learning, Deep learning.

1 Introduction

Proton beams’ primary advantage in cancer treatment as compared to other forms of radiation
therapy, such as x-rays, is their finite range. The radiation delivered by the beam reaches its
maximum, known as the Bragg peak, at the very end of the beam’s range. Little to no radiation is
delivered beyond this point. By exploiting the properties of the Bragg peak it is possible to only
irradiate cancerous tissues, avoiding any damage to the healthy surrounding tissues [11]. However,
without some way to image proton beams in real time, limitations exist in our ability to take full
advantage of the dose delivery properties of the proton Bragg peak. This is due to uncertainties in
the beam’s position in the body relative to important organs that should not be irradiated.

The Compton camera is one method for real time imaging, which works by detecting prompt
gamma rays emitted along the path of the beam. By analyzing how prompt gamma rays scatter
through the camera, it is possible to reconstruct their origin. However, the raw data the Comp-
ton camera outputs does not explicitly record the sequential order of the interaction data which
represents scatterings of a single prompt gamma ray. In addition, it often records false events,
which mislabel scatterings of distinct prompt gamma rays as originating from a single ray. These
problems make reconstructions based on Compton camera data noisy and unusable for practical
purposes [11].

We approach these problems by leveraging several deep learning techniques. We used neural
networks which, in general, represent data transformations. The network is trained by passing data
through it, then updating it systematically so as to reduce the loss of its output compared with

1

hpcf.umbc.edu

some desired output. Doing this properly can create a model that exploits subtleties in the data
which traditional models are unable to use [6].

In order to reduce the noise present in Compton camera data, we train a neural network to
process the data so as to reduce false events and correctly order interactions within events. We start
with the network first proposed in [3] and then make a variety of changes to it. We then evaluate
how these networks affect the quality of prompt gamma based proton beam reconstructions. We
cannot see any strict improvements in the network’s accuracy performance but we are able to
make computations cheaper while maintaining competitive performance. We also test and train
the network on different datasets to see if there is any difference in performance.

The remaining sections of this work are organized as follows: Section 2 introduces proton beam
therapy for cancer treatment and its current limitations. Section 3 discusses how Compton camera
imaging can be used to overcome the limitations of proton beam therapy and explains how the
presence of false events and misordered interactions in Compton camera data limits its practical
usage. Section 4 gives a brief overview of neural networks. Section 5 discusses all variations and
changes we made to the network and training process used to generate later results. Section 6
details the original and current version of the preprocessing routines which must be used before our
data can be fed into the network. Section 7 describes how all variations of the networks performed
on different beam energies. Section 8 presents our conclusions from this work.

2 Proton Beam Therapy

Proton beam therapy was first proposed as a cancer treatment by Robert Wilson in 1946 [13]. To a
first order approximation, the radiation dosage emitted by a proton beam is inversely proportional
to the kinetic energy of the particles within the beam. Because the beam’s particles lose kinetic
energy as they traverse the patient, the amount of radiation delivered by the beam is low at its
entry point, gradually rising until the beam nears the end of its range, at which point the delivered
dosage rapidly reaches its maximum. This point of maximum dosage is called the Bragg peak.
Little to no radiation is delivered beyond the Bragg peak. These characteristics of proton beam
therapy give it a distinct advantage over x-rays. Exploiting its finite range, medical practitioners
can confine the radiation of the beam to solely areas affected by cancerous tumors. Vital organs
beyond the tumor can be spared [1, 7, 11].

Figure 2.1 shows two horizontal cross-sections of the chest comparing how radiation is delivered
by x-ray therapy and by proton beam therapy. At the top of each image is the vertebral body,

(a) (b)

Figure 2.1: (a) X-ray treatment as compared to (b) proton beam treatment.

2

Figure 2.2: (a) Optimal proton beam trajectory. (b) Suboptimal trajectory necessary to protect
heart.

which contains a tumor that should be irradiated. Since the heart, which is at the bottom center, is
still healthy, any radiation delivered to it should be avoided. In the case of x-ray therapy the heart
lies directly in the path of the x-rays. For proton beam therapy, however, all radiation is confined
to just the vertebral body. The greater level of precision that proton beam therapy possesses allows
for higher dosages of radiation to be delivered to cancerous tissues with minimal damage to healthy
tissues. This can lead to better patient outcomes [11].

While the characteristics of proton beam therapy explained above would in principle greatly
reduce the negative effects of radiation therapy, there are still practical limitations. In current
practice the patient’s body is imaged before undergoing treatment in order to map the position
of the tumor. Because proton beam therapy consists of multiple sessions over a period of one
to five weeks, the relative size and position of the tumor within the patient’s body may change
as surrounding tissues swell, shrink, and shift as a response to radiation. Therefore, whenever
using proton beams, a safety margin must be added to the position of the Bragg peak in order to
fully irradiate the tumor. This rules out certain beam trajectories that would otherwise minimize
damage to healthy tissue [11].

Figure 2.2 compares two possible beam trajectories through a cross-section of the chest [11].
In this case the heart, outlined in purple, is positioned at top-center of the figure and a tumor,
outlined in green is located next to it. The optimal trajectory, shown in the left image, uses a
single beam, which is represented as the space between the dashed white lines, to fully irradiate the
tumor while stopping before reaching the heart. However, due to uncertainty in the exact location
that the Bragg peak occurs (and the beam stops), a safety margin is added to the optimal beam
extent to ensure the tumor always receives the prescribed dose even in the presence of day-to-day
changes in patient setup and patient internal anatomy. This safety margin is represented in the
figure as an orange strip at the end of the beam. This partially overlaps with the heart, which
would mean to possibly irradiate the heart. Therefore, in practice the trajectory in the right image
using two beams is used. Because this trajectory passes through the lungs, delivering a small dose
of radiation to them, it is considered suboptimal [11].

3

3 Compton Camera Imaging

3.1 Introduction to the Compton Camera

In order to exploit the full advantages of proton therapy, many researchers are investigating methods
to image the beam in real time as it passes through the patient’s body [11]. One proposed method
for real time imaging is by detecting prompt gamma rays that are emitted along the path of the
beam using a Compton camera.

As the proton beam enters the body, protons in the beam interact with atoms in the body,
emitting prompt gamma rays. These prompt gamma rays exit the body, some of which entering
the Compton camera. Modules within the Compton camera record interactions with energy levels
above some trigger-threshold. These modules have a non-zero time-resolution during which all
interactions are recorded as occurring simultaneously. For each interaction (that is, Compton
scatter) an (x, y, z) location and the energy deposited are recorded. The collection of all interaction
data that a camera module collects during a single readout cycle is referred to as an event. [10].

In principle it is possible to use the data that the Compton camera outputs (paired with a
suitable reconstruction algorithm) in order to image the proton beam, however this has been shown
to only be feasible at low energy levels. At the higher energy levels more typical of proton beam
therapy, reconstructions of the beam are far too noisy to be helpful. This is a result of two main
limitations in how the Compton camera records events [10]:

• Reconstruction methods typically require that all interactions in an event be chronologically
ordered by their occurrence. However, as noted above, due to the camera’s non-zero time-
resolutions, the camera records all interactions within an event as occurring simultaneously.
Therefore, the order of interactions that it outputs is arbitrary.

• Reconstruction methods also assume that all interactions in an event correspond to the same
prompt gamma ray. However, since the Compton camera classifies all scatters occurring in
the same module during the same readout cycle as belonging to the same event, should two
prompt gamma rays enter the same module of the Compton camera during the same readout
cycle, the camera would record the resulting interactions in a single event. This results in
events that do not correlate to any actual physical event, which are referred to as false events.

At the higher energy levels typically used in treatment, proton beams emit a larger number of
prompt gamma rays per unit time, increasing the likelihood of false events. Also, prompt gamma
rays are more likely to scatter at higher energy levels, leading to more multi-scatter events, which,
as explained above will be unordered. These two effects greatly diminish the accuracy of Compton
camera reconstructions at high energy levels, making them unusable [10].

3.2 The Representation of Events

Multi-scatter events can be classified into five categories. A False Triple event consists of three
interactions which all originate from separate prompt gamma rays that happened to enter the
same module of the camera at the same time. These should be removed from the data before
reconstruction. Similarly, False Double events contain two interactions originating from separate
prompt gamma rays. These too should be removed. A Double to Triple event contains two inter-
actions corresponding to the same prompt gamma ray, and one interaction from a different prompt
gamma ray. The non-corresponding interaction should be removed before reconstruction. The two
remaining categories of events are true double and true triple events, which, once properly ordered,
can be used for reconstruction.

4

Figure 3.1: An illustration of events.

Figure 3.1 shows a schematic of the Compton camera as it records events. The left side shows
events produced at low energy levels and the right shows higher energy levels. Each row represents
an independent module of the camera. The red arrows represent scatters, with those originating
from the same prompt gamma ray being connected by a dotted line. A single readout cycle within
a module of length TA is represented by a raised pulse. The value n is how many interactions occur
during the readout cycle. Looking at just the left side, the first two rows show a True Double and
True Triple event, respectively. The third row shows a False Double event consisting of two scatters
originating from different prompt gamma rays. The fourth and fifth rows show two True Single
events that consist of separate scatters by the same prompt gamma ray. The right side representing
higher energy levels shows a far greater proportion of false events.

The raw data output by the Compton camera contains the information shown in Figure 3.2 (a).
The entire matrix represents an entire event, while each row represents a single interaction. There
are three rows because an event can contain up to three interactions. The variable ei represents the
energy level of the ith interaction, where i = 1, 2, 3, while (xi, yi, zi) represents the corresponding
position. Note that data representing double events still contains three rows even though double
events contain only two interactions. This is necessary, since the networks we introduce in Section 7
expect input data to be a consistent size. To account for the missing interaction the third row will
be zeroed out. Similarly, single events would have two rows zeroed out, however, single events have
only one possible ordering, so there is no need to classify them.

To improve the performance of our networks, we find it useful to use the appended data shown
in Figure 3.2 (b). In this version we add the distances δri,j and the differences in energy levels
δei,j between the ith and jth interactions, where i, j = 1, 2, 3. Since these values have physical
significance with regards to the ordering of interactions, explicitly including them in the data
makes it easier for the networks to learn. For double events, the non-relevant δri,j and δei,j are set
to zero. We use the value zero rather than NaN because our networks require that all data consist
of real numbers.

5

e1 x1 y1 z1
e2 x2 y2 z2
e3 x3 y3 z3

e1 x1 y1 z1 δe1,2 δr1,2
e2 x2 y2 z2 δe2,3 δr2,3
e3 x3 y3 z3 δe3,1 δr3,1

(a) (b)

Figure 3.2: (a) The initial input format representing a single event. (b) The appended input format
including distances and energy distances between each interaction.

4 Deep Learning

We propose to train a neural network to process the data output by the Compton camera by
removing false events and properly ordering the interactions within events.

The structure of a fully connected neural network is shown in Figure 4.1 [2]. The network
contains three main components: an input layer which accepts the data, hidden layers which each
perform some transformation on the data, and an output layer which returns the transformed
data in some prescribed format [6]. We would like to train the neural network to transform the
provided data in some useful way. In the case of the data output by the Compton camera, we would
like the neural network to transform each multi-scatter event so that it contains only interactions
originating from the same prompt gamma ray, and so that these interactions are in the correct
order.

Figure 4.2 shows the training and testing process for a neural network during what is called
supervised learning [2]. Supervised learning refers to training the neural network using labels for
the data which provide what the transformed data is supposed to look like. By feeding data into
the network and comparing it with the corresponding labels using a suitable loss function, we can
calculate the current loss of the neural network. The neural network can then be updated using an
optimization function. After training the network, it is then tested on data it has not seen before.
If the network performs well on data it was not trained on, this indicates that the network’s model
generalizes well and can be used on real-life data.

To improve the network’s performance, it is typical to train the network on all available data
multiple times. One pass through all the training data is referred to as an epoch. Often, the
network will be trained for hundreds or thousands of epochs. It is standard practice to set aside
some data with which to evaluate the network after each epoch. These data are called the validation
data. By evaluating the network at the end of each epoch, it is possible to plot how the network’s

→ →

DATA

LAYER LAYER LAYER LAYER

CORRECT ORDER
CE2, CE1, CE3

HIDDEN LAYERS

NETWORK

1 2 3 4

OUTPUT
1
0
1
1
0
1
0
1

Figure 4.1: The structure of a fully connected neural network.

6

PROVIDED
ANSWERS

OUTPUT
GUESSES

→

→ →

TRAINING
DATA

TEST
DATA

FULLY CONNECTED
NEURAL
NETWORK

FULLY CONNECTED
NEURAL
NETWORK

Figure 4.2: The training and testing process for a fully connected neural network.

performance improves over the training process, giving insight into whether or not the network
has been fully trained. After the network has finished training, a final data set separate from the
training data and validation data is used to test the network. This data set is referred to as the
test data.

One of the primary difficulties in deep learning is training a network so that it properly fits
the data it is being applied to. When there is still information in the data that has not been
incorporated into the network’s model this is referred to as underfitting. This occurs because
the network has either not been trained enough, or because the network size is too small to fully
process the data. When the network performs very well on the data it has been trained on but
does not generalize to data that it has not been trained on, this is called overfitting. Overfitting
occurs because the network has begun directly mapping inputs to outputs, that is, “memorizing”
the data. Since large networks have a greater capacity to store information about the data, they
are more likely to overfit. Therefore, using a larger network does not necessarily lead to better
performance [6].

Figure 4.3 compares the accuracy curves of three networks which originating from a textbook
example as they are being trained [6]. In each plot the blue curve represents training accuracy, that
is, how well the network performs on training data at each epoch, while the orange curve represents
validation accuracy, which measures how well the network performs on a validation set composed
of data the network was not trained on. The left plot shows training and validation curves typical
of underfitting. Since the network still has not fully internalized distinguishing features in the
training data, it performs just as well on the validation data as it does on the training data. The
plot on the right shows an overfitting curve. Here there is a large gap between training accuracy
and validation accuracy, indicating a lack of generalization. The plot in the center shows what the
training and validations curves of a suitable fitting look like. The training and validation curves are
just beginning to diverge, but are still very close. This occurs because the network has incorporated
as much information from the model as it can, so any additional training either has no effect on
the validation accuracy, or even lowers it.

7

(a) underfitting (b) suitable fitting (c) overfitting

Figure 4.3: The training and validation accuracy curves representative of underfitting, a suitable
fitting, and overfitting.

5 Network Design Options

The studies in this work use a distributed-memory cluster of compute nodes with large memory,
and connected by a high-performance InfiniBand network. Both the 2018 and 2013 GPU nodes
feature two multi-core CPUs, while the 2018 GPU node has four GPUs and the 2013 GPU nodes
have two GPUs. The following specifies the details:

• 2018 GPU node: 1 GPU node containing four NVIDIA Tesla V100 GPUs (5120 computa-
tional cores, 16 GB onboard memory) connected by NVLink and two 18-core Intel Skylake
CPUs. The node has 384 GB of memory (12 × 32 GB DDR4 at 2666 MT/s).

• 2013 GPU nodes: 18 hybrid CPU/GPU nodes, each two NVIDIA K20 GPUs (2496 com-
putational cores, 5 GB onboard memory) and two 8-core Intel E5-2650v2 Ivy Bridge CPUs
(2.6 GHz clock speed, 20 MB L3 cache, 4 memory channels). Each node has 64 GB of memory
(8 × 8 GB DDR3). The nodes are connected by a QDR (quad-data rate) InfiniBand switch.

These nodes are contained in the cluster taki of the UMBC High Performance Computing Facility
(HPCF), whose webpage at hpcf.umbc.edu can provide more details.

All studies and preprocessing using one or more of the following python packages with the
respective version:

• Python 3.7.6,

• Tensorflow 2.4.0 and the bundled Keras ,

• Numpy 1.18.1,

• Scipy 1.4.1,

• Pandas 1.1.0.dev0+690.g690e382 (configured for icc 19.0.1.144 20181018),

• mpi4py 3.0.3.

5.1 Activation Functions

Activation functions are one of the core parts of neural networks. Consider a single fully connected
layer. By definition, the unknowns of a fully connected layer are a weight matrix A with a bias
vector b. For simplicity we will use only a single record for x. Take some record x and do a matrix

8

hpcf.umbc.edu

vector product such that y = Ax+ b. To add another layer we repeat this operation again with a
weight matrix K and bias vector d such that Ky + d = z. Now we have two fully connected layers
with no activator. When we expand z we get z = KAx+ (Kb+ d). With a simple replacement of
F = KA and t = Kb + d we have z = Fx + t. Since we are only interested in finding out how x
becomes z there is no need to solve for K, A, d, or b, we can solve for F and t instead of the other
unknowns. In order to increase the problem complexity and artificially enforce the importance of all
unknowns we use non-linear functions called “activation functions”. We take a non-linear function
like tangent and apply it element wise to a matrix or vector. By using an activation between our
two layers and expanding z we get z = K tan(Ax+ b) + d where tangent is applied element-wise to
Ax+b. By weaving these non-linear functions into our compositions we introduce non-linearity and
create a situation where the weights of both A and K need to be solved for. For a more in-depth
explanation about the underlying mathematics associated with fully connected networks see [12].
The struggle we have now is choosing a non-linear function to use.

In [3] we used a Scaled Exponential Linear Unit (SeLU) proposed in [9] and stated as

s(x) =

{
λx x > 0,

λαex − λα x ≤ 0.
(5.1)

The constants α and λ could be treated as hyperparameters but [9] actually computed optimal
values with proof in the publication. One of the major benefits of SeLU is that it has a self-
normalizing property. By bundling the normalization into the activator we actually make the
network cheaper by removing all batch normalization which occurs between layers.

Through experimentation with hyperparameter settings we found that normalization shows no
noticeable accuracy benefits. Since batch normalization seems to have little, if any, impact on
our outcomes the self-normalizing property of SeLU is more of a hindrance. Why bother with the
expense of e when we can opt for a cheaper activator function like ReLU or Leaky ReLU.

ReLU, otherwise known as

r(x) =

{
x x > 0,

0 x ≤ 0,
(5.2)

is one of the more commonly used activators and is discussed in [6]. Notice how it has no mathe-
matical operations but is still a non-linear function making it extremely cheap compared to SeLU.
When neural networks use ReLU and become sufficiently deep they experience a “dying” effect.
The neurons gradually become 0 as the network feeds network forward and during back propagation
these 0 neurons cause a 0 gradient. This makes ReLU incompatible with our desire to create a very
deep network. Instead we opt for Leaky ReLU

l(x) =

{
x x > 0,

βx x ≤ 0,
(5.3)

which has single multiplication with a small positive constant β. We consider β to be a hyper-
parameter which can be tuned but we decided to use Keras’ default value of 0.3. This non-zero
β fixes the dying gradient problem seen with ReLU. With Leaky ReLU we get a much cheaper
activator which uses only scalar multiplication instead of scalar multiplication, exponentiation, and
subtraction combined.

5.2 Wide Network to Long Network

In [3], we hit a GPU memory limit using the due to the size of our network. The network itself
was several GB on disk and took ten to twenty seconds to load onto the GPU. In order to use the

9

Figure 5.1: An example of transitioning from a network with few layers with many neurons per
layer to a network with many layers and few neurons per layer.

network, we were limited in our choices for batch size and could not run any power of two beyond
4096 and expect the run to finish. If we did a run which had near perfect memory usage the run
would fail within several epochs due to small amounts of memory leakage present in Keras and
Tensorflow.

To allow for more creative changes to the network, we decreased the neurons per layer from
40962 to 10242 and increased the number of layers from 24 to 256. This causes us to go from about
400 million total neurons to about 268 million total neurons. This design shift is captured visually in
Figure 5.1. Our longer network has fewer total neurons but the data is passed through significantly
more non-linear functions. Ideally, our long network should be just as capable of learning from the
data as the wider network. With a long network that has considerably fewer neurons per layer, we
can start shrinking and cutting layers without needing to worry about whether the network should
be longer than it is now. This allows us to easily make the network cheaper to train and test with
very minor changes.

With the wide network, we are forced to remove layers or shrink dimension. If we shrink the
dimension of the wide network then we have to ask, “would the network perform better if it was
longer with same neurons per layer?”, which further increases the complexity and scope of our
hyperparameter searches. With the long network, we are confident that network elongation would
serve little benefit for a fully connected network which maintains a constant neurons per layer even
if the neurons per layer was decreased.

5.3 Alternative Training Methods

We attempt to determine if alternative training routines for our network could be of any benefit.
Consider that since the creation of Generative Adversarial Networks (GANs) by Goodfellow in [8],
other researchers have found that special training processes help improve training quality. Initially,
the discriminator was trained on false data and real data simultaneously. However after years of
researchers working with GANs, many rule of thumbs for the training process have bubbled to the
surface. When training the discriminator we see in [4] that one should train on real data and false
data separately on a per epoch basis.

The parallel we draw is that given false inputs and real inputs we feed one input category at a

10

time to the GAN’s discriminator. If we train first on triples, then doubles, then doubles to triples,
and so on, we would be training our network in a similar fashion to how the a discriminator is
trained. We aim to create a generator which does this automatically in conjunction with Keras to
train a network.

The generator performed several operations, given only the input data, output data, and batch
size. First the generator converted the one hot encoded output into an array of index values. The
value of every entry in the new array was the index of the 1 in the one hot encoded vector. Now
the generator knows that if a 1 was present in the first 6 places, it was a triple event. The following
2 entries were doubles. The next 6 entries after the doubles were double to triples. The last entry
represents false events. Then the generator isolates all data associated with a particular input
category. This isolation process creates a view of the input category. The new data structure has
a starting index of 0 and a final index equal to one less than the number of entries. The generator
then creates an incremental array which starts at 0 to one less than the number of records. We
treat this new array as a collection of indices of the view and shuffle it. We then batch up the array
of indices. If the number of entries does not evenly divide by the batch size, then the final batch is
a batch of the remaining entries. The generator proceeds to iterate over the batched indices. Given
a batch of indices the generator returns a view of a batch of input/output data by indexing the
input category view with the batch of indices. It continues this batching until it has exhausted all
batches under an input category at which point it moves on to the next input category. When all
input categories have been handled we know one epoch has elapsed. We repeat the entire process
again until all epochs have completed.

5.4 An Efficient Prism Shaped Network

One of the major hurdles of our network is briefly detailed in Section 5.2. The network is very
long and, as seen in Section 7.1, takes a very long time to train. Here we play with the idea that
we can cut away layers but maintain accuracy. It was shown in [5] that deep networks actually
develop redundancy and hold duplicate bits of information everywhere. By shrinking the network,
thereby reducing the redundancy, we can speed up the time it takes to train while retaining all the
important knowledge the network has acquired. This work motivates the results in Section 7.2.

To go beyond simply shrinking the network, we also intend to use all of the tools possible to
improve training times and accuracy out of the network. In a typical optimization problem we
use algorithms to determine the optimal direction to move in and we have a separate algorithm to
determine how far in that direction we should move. In the case of a neural network our optimizer
only chooses the optimal direction. The step size is actually retitled to be “learning rate” in the
context of neural networks. With this idea in mind, we can draw some basic conclusions about
how learning rate should affect the iterative or “epoch” process. A constant learning rate which is
sufficiently small should give you convergence to your minimum but you pay a price in time. It will
take significantly more operations at a small constant learning rate than a large learning rate. If
you have a large learning rate of, say 1, your network will move huge jumps in accuracy and loss.
When the learning rate is very large during the entire training process, it is likely that you will
be unable to reach the minimum. This is because your current point in the loss landscape is close
enough to the minimum that the learning rate pushes you past the minimum rather than closer to
it. What type of learning schedule we use is a deep rabbit hole in its own right. With a training
schedule we are essentially creating an algorithm that takes some data about our neural network’s
status at that epoch and then returns the learning rate to be used at that point. The starting
learning rate we leave coarse. In general, the tightening occurs when a run without a schedule
would normally stagnate with the given accuracy. The exact values and number of tightenings are,

11

themselves, hyperparameters. We explore this idea in Section 7.4.
We then take the lessons learned and create a shorter network with a simple learning schedule

which produces the results in Section 7.5.

6 Preprocessing

6.1 Method for Class Generation from the Proton Data

This section explains how we create classes for the network from the Compton camera simulation
data. This was already used in [3], though not documented. Let T , D, and S be the number of
triples, doubles, and singles respectively. Keep in mind that we have significantly more singles than
doubles and significantly more doubles than triples. We use the number of triples as our basis for
how many events per class we should have. Triples only have 6 possible orderings and to keep our
input classes balanced, we know that there must be T/6 many events per class.

Now we will proceed to detail the process through which we balance and generate our data.
Our first goal, as seen in Figure 6.1, is to take the simulated camera data and split it into the
five input categories: triples, double to triples, doubles, false doubles, and false triples. First, we
load in a perfect data file produced by a proton beam simulation. Then we split the data file
into triples, doubles, and singles. From our D doubles, we randomly select 2T/6 doubles and set
them aside for later use. We then randomly select T doubles from the remaining r = D − 2T/6
doubles and T many singles to combine into T double to triple events. We use some distance
calculations to ensure that the selected singles are in the same module as their doubles while also
being a reasonable distance away from the doubles. If we do not force a single to be a minimum of
1 pixel away from the double, then the camera never would have detected it in the first place. To
make false doubles we have to combine two singles which are at least 1 pixel away and in the same
module. To do this, we randomly choose T/6 many singles to create T/6/2 = T/12 false doubles.
To make false triples, we have to combine three singles which are at least 1 pixel away from each
other and in the same module. We randomly choose T/4 many singles to create T/4/3 = T/12
many false triples. For the purpose of future reordering, we ensure that for the double to triples,
the single is always the third interaction.

At this point we have gone to great lengths to ensure that our data set has the correct pro-
portions so that, post-shuffling, it is completely balanced. Now we must split our categories into
classes. We know that there are six different interaction arrangements for our triples. We know
that every arrangement is just as likely as any other. We take, then shuffle the triples such that
there are T/6 triples for each arrangement as seen in Figure 6.2. Next we take the 2T/6 doubles
and swap the interactions for half of them giving us T/6 perfect doubles and T/6 swapped doubles.
We know that there also exist six different arrangements for double to triple events. Similar to how
we handled the triples we take the T double to triples and put T/6 of them into each arrangement.
We do not swap false doubles or false triples because doing so serves no purpose. It is important
to know that we have T/12 false doubles and T/12 false triples as they both fall under the false
category giving us T/6 false events in total.

We then normalize the data by feature using sklearn’s normalizer.

6.2 Updated Method

While looking through the original data we realized that the data generator produced triples and
doubles which were technically impossible. Some of the scatters for double and triples were not in
the same module as their other scatters. The design of the Compton camera is such that it would

12

Figure 6.1: We leave some 2T/6 doubles and all T triples untouched. We pair some of the remaining
r doubles with a single to make T many double to triple events. We also use singles to generate
T/6 false events.

Figure 6.2: We split the T many triples into their 6 different orderings such that each ordering has
T/6 many events.

never produce data that had interactions from different modules for an event. The proton beam
simulator does not have this restriction. To accommodate this difference we removed all events
which had inter-module interactions after separating the data file into doubles, triples, and double
to triples.

After shuffling and data generation has finished we then compute and add the module number
to each event.

6.3 Complete Rewrite and Streamlining Process

The original preprocessing methods that were used in [3] and detailed in Section 6.1 had several
problems. The largest problem is that the preprocessing method systematically destroyed data.
It is not clear when the bug started happening and we are not sure what results are based on
this bad data. The preprocessing code had grown so large and unwieldy that it was hard to pin
down at what point in the preprocessing the problem was happening. The quickest option was to

13

completely rewrite the majority of the preprocessing code. We took an array first approach which
means we used numpy vectorized operations wherever and whenever possible. This idea caused the
time taken to preprocess the data to become significantly better than its pure Python counterpart
while also being easier to debug. Additionally the preprocessing code became much shorter when
speaking of a line by line comparison.

7 Results

7.1 Dominant Classifications for Single and Multi Beam Studies

In this subsection we will be using the most recent classification system introduced in [3]. For
completeness we will restate the general ideas of the system. Let the data structure for the input
record be as seen in Section 3.1. Given an event whose interactions are marked as 1, 2, and 3,
we reorder them or decouple them. When we say a record is a 213 this means that the second
interaction should actually be the first interaction, the first should be the second, and the third
should be the third. When we say a record is a 314 this means that the third interaction should be
the first, the first should be the second, and the second interaction should be decoupled. We use
the case of 124 and 214 to mean a double and swapped double respectively. We use the special case
of 412 and 421 to mean a double to triple where the third interaction should be decoupled but the
classification is different than a true double. By extension is a 213 is classified as a 412 this means
that we have improperly decoupled the third interaction and also computed the incorrect ordering
of the first two interactions.

Figure 7.1 is the training and accuracy plot for the network detailed in Section 5.2 trained on
150MeV data for 4096 epochs. The training accuracy continually increases as the epochs elapse
with no noticeable dip in accuracy. There is small decrease in the rate of increase around 500 epochs
but this is most likely due to a suboptimal dropping of neurons during the training phase. The
validation accuracy shows some abnormal trends compared to the training accuracy. Only some
neurons are available when training the network but all neurons are available during the validation

Figure 7.1: The validation and training accuracy for the 256 layer network with 10242 neurons per
layer trained for 4096 epochs using 150MeV beam data.

14

Table 7.1: Confusion matrix for a 150MeV trained network classifying 150MeV beam data normal-
ized using a 150MeV normalizer. The leftmost column is the correct input class and the percent in
the each proceeding column represents the amount of data put into the class at the top.

123 132 213 231 312 321 124 214 412 421 134 314 234 324 444
123 69.3 4.9 2.5 3.5 2.1 7.1 0.0 0.0 1.0 1.3 0.2 0.3 4.4 2.4 1.0
132 6.7 62.8 3.2 5.6 6.3 3.8 0.0 0.0 0.4 0.4 1.5 1.5 3.1 3.7 1.1
213 3.6 2.2 68.2 7.4 6.6 3.6 0.0 0.0 0.8 1.4 2.2 1.8 0.5 0.3 1.4
231 2.9 2.4 5.1 73.3 3.2 6.3 0.0 0.0 1.3 1.2 1.0 1.4 0.4 0.3 1.1
312 3.5 4.8 6.3 3.6 65.8 5.0 0.0 0.0 0.3 0.5 1.5 2.6 2.9 2.1 1.1
321 5.5 2.5 2.3 6.3 3.0 72.0 0.0 0.0 1.0 1.9 0.2 0.3 2.1 2.1 0.9
124 0.0 0.0 0.0 0.0 0.0 0.0 73.8 20.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3
214 0.0 0.0 0.0 0.0 0.0 0.0 17.2 76.5 0.0 0.0 0.0 0.0 0.0 0.0 6.2
412 0.4 0.3 0.2 0.8 0.2 0.5 0.0 0.0 93.9 0.8 0.0 0.1 0.0 0.0 2.8
421 0.2 0.2 0.3 0.4 0.3 0.7 0.0 0.0 0.0 94.2 0.3 0.0 0.0 0.0 3.4
134 0.5 0.2 0.5 0.4 0.3 0.3 0.0 0.0 0.0 0.3 89.6 4.1 0.0 0.0 3.8
314 0.2 0.3 0.5 0.7 0.5 0.6 0.0 0.0 0.0 0.1 2.3 90.7 0.3 0.0 3.7
234 1.2 0.5 0.5 0.3 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.3 89.4 2.1 4.4
324 1.0 0.9 0.3 0.9 0.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 2.2 88.5 4.3
444 0.3 0.2 0.3 0.5 0.2 0.5 2.9 3.1 2.0 2.1 1.8 1.9 2.1 1.9 80.3

process. The large dips in accuracy are most likely related to suboptimal neuron configurations
when all the available neurons are used. Around 700 epochs validation accuracy starts to become
jittery which can be seen in as a thicker line when compared to training accuracy. The jittering
behavior does not improve but it also does not get worse as the epochs progress. The validation
accuracy peaks at 81% near the end of the training process. The network that produced Figure 7.1
also produced the results seen in Tables 7.1, 7.2, and 7.3.

Table 7.1 is the confusion matrix for the network detailed in Section 5.2 trained on a 150MeV
beam classifying 150MeV beam data which was normalized with a 150MeV normalizer
(150MeV/150MeV). The leftmost column is the correct input class and the percent in each proceed-
ing column represents the amount of data put into the class at the top of the column. The darkest
entry in each row is the dominant classification of the input class. The dominant classification for
each input class is the class itself. The dominant classification for the triples has a large lead over all
of the other potential classifications and averages 70% for all cases of triples. Doubles have a high
average classification accuracy of 75% but still fail to break into our 90% accuracy threshold. The
double to triples have an average classification accuracy of 90% with less than 5% being mistaken
as true triples and less than 5% being classified as false data. With the false data being correctly
classified with an 80% accuracy we are successfully trashing the bulk of our bad data. Everything
comes together to show that we are recovering a lot of data via reordering and also scrapping a lot
of bad data. The network proposed in Section 5.2 is confirmed to classify at least as accurately as
the network used in [3].

Table 7.2 is the confusion matrix for the network detailed in Section 5.2 when trained on
a 150MeV beam classifying 70MeV beam data which was normalized with a 150MeV normalizer
(70MeV/150MeV). The leftmost column is the correct input class and the percent in each proceeding
column represents the amount of data put into the class at the top of the column. The darkest
entry in each row is the dominant classification of the input class. The dominant classification for
each input class is the class itself except for some double to triple orderings. The classification
accuracy for triples have an average accuracy of 67% with data misordering being the primary
problem. The classification accuracy for double events is about 75%. The dominant classification
for 412, 421, and 134 is not the class themselves but actually some form of triple. The dominant
classification for the 314 class is itself and the percent classification is a meager 28%. The second
highest classification percent for 314 is 25% for 231.

For triples the 213 case has considerably higher accuracy than the 150MeV classification despite
no change to the network or normalization process. The double classification accuracy for the
70MeV/150MeV case is the same as the 150MeV/150MeV case. The double to triple classification

15

Table 7.2: Confusion matrix for a 150MeV trained network classifying 70MeV beam data normalized
using a 150MeV normalizer. The leftmost column is the correct input class and the percent in the
each proceeding column represents the amount of data put into the class at the top of the column.

123 132 213 231 312 321 124 214 412 421 134 314 234 324 444
123 71.5 5.2 1.9 4.8 2.4 10.5 0.0 0.0 0.0 0.0 0.0 0.2 2.8 0.8 0.0
132 8.0 62.7 3.2 9.4 7.0 5.4 0.0 0.0 0.0 0.0 0.0 0.3 1.6 2.1 0.3
213 3.9 2.5 66.5 13.7 7.5 5.1 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.2
231 2.3 1.9 4.0 80.6 2.9 6.8 0.0 0.0 0.0 0.1 0.0 0.2 0.7 0.2 0.4
312 4.5 7.4 6.2 6.2 64.2 6.7 0.0 0.0 0.0 0.0 0.0 0.5 2.2 2.2 0.1
321 8.2 2.7 3.0 9.8 2.0 71.6 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.3 0.0
124 0.0 0.0 0.0 0.0 0.0 0.0 75.3 21.6 0.0 0.0 0.0 0.0 0.0 0.0 3.1
214 0.0 0.0 0.0 0.0 0.0 0.0 20.9 76.1 0.0 0.0 0.0 0.0 0.0 0.0 3.0
412 9.3 1.0 7.1 23.5 0.6 14.0 0.0 0.0 16.9 0.0 0.0 0.0 6.8 0.0 20.8
421 8.5 0.3 9.9 15.4 0.7 22.9 0.0 0.0 0.0 12.1 0.0 9.1 5.6 3.5 12.2
134 1.3 6.3 13.7 22.7 8.7 0.6 0.0 0.0 0.0 0.0 14.8 0.0 6.7 5.3 19.9
314 0.8 5.3 8.6 25.5 13.9 2.9 0.0 0.0 0.0 0.0 0.0 28.0 4.2 2.6 8.2
234 8.1 3.0 1.2 2.1 2.5 8.4 0.0 0.0 0.0 0.0 0.0 0.0 58.5 15.3 1.1
324 4.6 4.7 0.6 3.2 1.2 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 77.1 2.1
444 0.6 0.3 0.6 2.0 0.4 1.1 21.4 16.8 0.0 0.0 0.0 0.5 2.2 2.9 51.3

accuracy suffered greatly compared to the 150MeV/150MeV classification accuracy. The majority
of the events under 234 and 324 are correctly classified but the percentages are far below the 90%
accuracy seen in the 150MeV/150MeV classification. In the cases where double to triple events are
misclassified it would be preferred if they were just thrown out entirely. Unfortunately we do not
have the ability to throw out double to triple events prior to the classification process because if
there was we would not need the network to pick them out among the triples. An optimistic view
is that a small number of recovered doubles to triples is a technical improvement even if it is not
preferred.

Table 7.3 is the confusion matrix for the network detailed in Section 5.2 when trained on
a 150MeV beam classifying 70MeV beam data which was normalized with a 70MeV normalizer
(70MeV/70MeV). The leftmost column is the correct input class and the percent in each proceeding
column represents the amount of data put into the class at the top of the column. The darkest entry
in each row is the dominant classification of the input class. The dominant classification for each
input class is not the input class itself for most classes. The majority of all triple classes ended up
misclassified under other classes. The only positive take away from triple classification is that the
majority of all triples stay under the larger category of triples rather than say double to triples or
false events. The classification accuracy of doubles has an average of about 72%. The 412, 421, 134,
314, and 324 have dominant classifications which are not the classes themselves. The classification
percentage for 134, 314, 324 is less than 50% with the second highest classification, also not the
correct class, being around 30%. For 412 and 421 the dominant classification is incorrect but is at
least correctly labeled as a double to triple event. Additionally the dominant classification contains
the majority of the events in the class. Only the 234 double to triple event has the correct dominant
classification. The dominant classification also contains the majority of the data and the second
highest classification was at least a double to triple event.

The double classification accuracy is a little lower than the accuracy for the 70MeV/150MeV
and 150MeV/150MeV cases. Despite being a little lower the accuracy for doubles is still comparable
to other normalizer scenarios despite all other input classification accuracies being ruined by this
new normalization technique. The majority of correctly ordered data was ruined by the misclassifi-
cations. There are a multitude of reasons both known and unknown why doubles are comparatively
unaffected. The most obvious known reason is that the by feature normalization plays nicer with
doubles over other input classes. All doubles have all zeros for the third interaction meaning that
non-doubles have their third interaction normalized with a bunch of non-measured zeros causing a
skewed mean and standard deviation compared to the first two interactions.

While the false data classification accuracy is comparable to the 70MeV/150MeV scenario at

16

Table 7.3: Confusion matrix for a 150MeV trained network classifying 70MeV beam data normalized
using a 70MeV normalizer. The leftmost column is the correct input class and the percent in the
each proceeding column represents the amount of data put into the class at the top of the column.

123 132 213 231 312 321 124 214 412 421 134 314 234 324 444
123 7.1 0.2 0.2 27.9 0.1 53.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 0.5 0.0
132 0.9 1.2 0.5 43.2 0.2 46.0 0.0 0.0 0.0 0.0 0.0 0.2 5.5 2.0 0.5
213 0.6 0.0 3.8 52.7 0.5 32.4 0.0 0.0 0.0 0.0 0.0 0.2 9.8 0.0 0.0
231 0.9 0.0 0.5 61.0 0.0 32.2 0.0 0.0 0.0 0.0 0.0 0.2 5.0 0.0 0.2
312 0.9 0.2 0.5 45.3 1.8 43.8 0.0 0.0 0.0 0.0 0.0 0.2 5.4 1.2 0.7
321 0.7 0.0 0.2 29.4 0.0 62.1 0.0 0.0 0.0 0.0 0.0 0.0 7.2 0.5 0.1
124 0.0 0.0 0.0 0.0 0.0 0.0 68.3 28.1 0.0 0.0 0.0 0.0 0.0 0.0 3.6
214 0.0 0.0 0.0 0.0 0.0 0.0 19.9 76.2 0.0 0.0 0.0 0.0 0.0 0.0 3.8
412 0.0 0.0 0.0 15.8 0.5 7.9 0.0 0.0 0.7 0.0 0.0 0.0 74.2 0.0 0.9
421 0.4 0.4 0.1 9.0 0.1 28.4 0.0 0.0 0.0 0.9 0.0 0.8 57.1 0.4 2.4
134 0.1 0.0 1.0 44.2 0.4 4.3 0.0 0.0 0.0 0.0 0.0 0.0 28.6 1.5 19.9
314 0.1 0.1 0.3 43.8 0.2 13.5 0.0 0.0 0.1 0.0 0.0 6.2 30.9 0.4 4.6
234 0.2 0.0 0.0 3.8 0.0 29.7 0.0 0.0 0.0 0.0 0.0 0.0 61.5 3.6 1.3
324 0.2 0.3 0.6 11.8 0.6 44.5 0.0 0.0 0.0 0.2 0.0 0.5 9.2 29.9 2.4
444 0.0 0.0 0.0 1.2 0.0 1.5 18.3 12.7 0.0 0.0 0.0 0.1 10.8 0.6 54.8

51%, it suffered greatly compared to the 150MeV/150MeV case. The neural network seems to
struggle greatly to correctly throw out bad data when not presented with false data from the
original beam energy. This does not mean that the network is not generalizing correctly but may
instead imply that the false events for the 70MeV are vastly different than those generated by a
150MeV beam. To better gauge the generalizability of the network it must be trained on both
beam energies first and then tested on the two data sets separately.

Figure 7.2 is the network detailed in Section 5.2 trained on 150MeV data and 70MeV for
4096 epochs. The data was normalized independently meaning that when normalizing by feature
the 150MeV data was normalized separately from the 70MeV data. The hyperparameters of the
network are identical to the network which generated Figure 7.1. The training accuracy is very
smooth for the entire training process and with no noticeable dips in accuracy. Training accuracy
caps at the end of training with a peak accuracy 82%. The validation accuracy starts out much
higher than the training accuracy for the first couple hundred of epochs. Around the 250 epoch
mark the validation accuracy is overtaken by the training accuracy and remains consistently lower
than the training accuracy the remainder of the run. The training accuracy does experience small
jittering behavior in the data file but this is normal during the iterative process. However the
validation accuracy becomes noticeably jittery around the 300 epoch marks and becomes much
worse till around the 1500 epoch mark. Near the 1500 epoch marker the jittering starts to improve
until the end where the line is only noticeably more jittery than the training accuracy.

The training accuracy in Figure 7.2 is nearly identical in path, shape, and behavior to the
training accuracy in Figure 7.1 but the peak validation accuracy is lower than what is shown in
Figure 7.1. The validation line in Figure 7.2 has similar behavior to the validation line in Figure 7.1
until the wiggly behavior starts in the multi beam case. At that point the validation accuracies no
longer share similar behavior except that both improve until the end of training.

Attempting to train the network on multiple beam energies does show some success but there
are clear problems with generalization compared to training only on a single beam energy. Some
new preprocessing methods could be designed to try and more properly blend the data sets to help
remove the jittering in validation accuracy and maybe even improve generalizability of the network.

7.2 Training Smaller Networks

Since networks using fewer layers require less memory and are typically faster to train for a given
number of epochs, we would like to explore how small our network can be while still performing
at a similar accuracy to what is seen in Section 7.1. Figure 7.3 shows the training and validation

17

Figure 7.2: The validation and training accuracy for the 256 layer network with 10242 neurons per
layer trained for 4096 epochs using 150MeV and 70MeV beam data.

accuracy curves for four different numbers, each employing a different number of layers. These
networks are trained for 4096 epochs using a constant learning rate of 5 × 10−6. Notice that all of
the networks achieve a validation accuracy above 78%, with the 8, 16, and 32 layer networks all
having an accuracy above 80%. This is comparable to the validation accuracy achieved by the 256
layer network trained in Section 7.1. In the case of the 4 layer network, the accuracy curves have
not yet plateaued after 4096 epochs. It is possible that with more training time it too could reach
an accuracy above 80%. We therefore conclude that smaller network sizes than 256 layers can be
used for further studies.

7.3 Higher Learning Rates

Motivated by the results in Section 7.2, we explore the effects that different learning rates have on
the training of smaller networks to determine whether we can train our networks in fewer epochs
without sacrificing accuracy.

Figure 7.4 shows the training and validation accuracy curves of four different 8 layer networks
trained over 8000 epochs, each with a different learning rate, varying from 1 × 10−5 to 5 × 10−4.
Notice that as learning rate increases, accuracy plateaus earlier. With a learning rate of 1 × 10−5

the accuracy is still increasing after 8000 epochs of training. The other three networks do plateau,
with the 5×10−4 learning rate network plateauing in well under 1000 epochs. However, the 5×10−4

learning rate network also has a lower peak accuracy of 78.65%, as compared to the 79.97% and
79.90%, respectively, peak accuracies of the 1 × 10−4 and 5 × 10−5 learning rate networks. This
indicates that the network is stuck at some local minimizer of the loss. We can see from this that
5 × 10−4 is too coarse of a learning rate to achieve maximum accuracy after training.

The corresponding training and validation accuracy curves using 16 layer and 32 layer networks
are shown in Figure 7.5 and Figure 7.6, respectively. When layers are kept constant, the change
in the validation accuracy curves as learning rate increases shows the same trend as seen in the
the 8 layer case: higher learning rates cause the validation accuracy to plateau earlier. However,
these networks using higher layer counts begin to show signs of overfitting. This can be seen by

18

(a) 4 layers (b) 8 layers

(c) 16 layers (d) 32 layers

Figure 7.3: Training accuracy and validation accuracy curves for networks of different layer counts
with a learning rate of 5 × 10−6, trained for 4096 epochs.

observing the training accuracy curves. In both Figure 7.5 and Figure 7.6, the training accuracy
curves of the 5×10−5 and 1×10−4 learning rate networks both continue increasing after validation
accuracy has peaked. This is particularly prominent in the 32 layer case shown in Figure 7.6.
Larger networks have a greater capacity to store information particular to the training dataset that
does not generalize to larger datasets, so it makes sense that the these networks with higher layer
counts would exhibit overfitting. However, notice that for the 5× 10−4 learning rate case, for both
the 16 layer and 32 layer networks, training accuracy plateaus without showing signs of overfitting.
This is because, with such a coarse learning rate, the networks are unable to integrate as much
information specific to the training dataset, even though the networks have enough storage capacity
to do so.

7.4 Learning Rate Schedules

In Section 7.3 it was observed that, while coarser learning rates can allow a network to be trained
to in a fewer number of epochs, if the learning rate is too coarse then the network will plateau at
a lower accuracy. One method to combat this is to vary learning rates during training, using a
coarse learning rate only at the beginning of training, then using a finer learning rate later on to
prevent the network from skipping over local minimizers of the loss. The set of different learning

19

(a) learning rate 1 × 10−5 (b) learning rate 5 × 10−5

(c) learning rate 1 × 10−4 (d) learning rate 5 × 10−4

Figure 7.4: Training accuracy and validation accuracy curves for 8 layer networks, trained with
different learning rates for over 8000 epochs.

rates the network employs during training is referred to as a learning rate schedule. It is possible
that an appropriate learning rate schedule can allow networks to be trained more quickly to higher
accuracies.

The training and validation accuracy curves for a 16, 32, and 64 layer network resulting from
the first learning schedule we explore are shown in Figure 7.7. This learning schedule begins with a
constant learning rate of 1×10−3, then, after 100 epochs, reduces the learning rate to 5×10−4. After
another 100 epochs, the learning is again reduced to 1 × 10−4, and this pattern is continued until
the learning rate reaches 1× 10−6 at 600 epochs, from which point the learning rate stays constant
for the remainder of training. The step wise nature of this learning schedule is especially prominent
in the accuracy curves of the 16 and 32 layer networks. Notice that, at first, each time the learning
rate is decreased, both training and validation accuracy show a sudden increase. However, before
the 500th epoch, changes in learning rate no longer seem to make a difference. Both the 16 and
32 layer networks plateau around the 500th epoch at a validation accuracy of around 78.5%, which
is lower than the peak validation accuracies reached by the networks of corresponding size trained
with constant learning rates shown in Section 7.3. So, despite the increase in training speed, this
particular learning schedule has a negative effect on accuracy. The peak validation accuracy of the
64 layer network is much lower, at only 75.7%. Notice that the step wise nature of the learning
schedule is less clear in the 64 layer network’s accuracy curves. Unlike the 16 and 32 layer networks,

20

(a) learning rate 1 × 10−5 (b) learning rate 5 × 10−5

(c) learning rate 1 × 10−4 (d) learning rate 5 × 10−4

Figure 7.5: Training accuracy and validation accuracy curves for 16 layer networks, trained with
different learning rates for over 8000 epochs.

the accuracy never reaches a plateau for each learning rate. This indicates that a learning schedule
that decreases the learning rate more slowly might produce better results.

We use a learning schedule that decreases the learning rate in the same pattern as the previous
learning schedule, but doing so every 200 epochs rather than every 100 epochs, in order to produce
the training and validation accuracy curves shown in Figure 7.8. In this case all three network sizes
perform similarly, reaching a peak accuracy slightly over 79%. This is on par with the performance
seen in Section 7.3. Notice that for the l6 and 32 layer networks, accuracy takes longer to peak for
later steps in the learning rate than it does for earlier steps.

For this reason we test another learning schedule using a variable step size shown in Figure 7.9.
Specifically, the learning rate begins at 1×10−3, at 100 epochs decreases to 5×10−4, at 300 epochs
decreases to 1 × 10−4, at 600 epochs decreases to 5 × 10−5, and continues this pattern until the
learning rate reaches 5×10−6 at 1500 epochs, remaining constant afterwards. This learning schedule
performs similarly to the previous one, however notice that for the 32 layer case the peak validation
accuracy reaches 80%, which is higher than what any network used in Section 7.3 achieves. Also
notice that for the 64 layer network the accuracy still does not plateau for the early learning rate
steps. It is possible that the 64 layer case requires a significantly larger number of epochs for each
step of the learning rate in order to achieve its maximum possible accuracy, which may be higher
than what is seen in the 32 layer case.

21

(a) learning rate 1 × 10−5 (b) learning rate 5 × 10−5

(c) learning rate 1 × 10−4 (d) learning rate 5 × 10−4

Figure 7.6: Training accuracy and validation accuracy curves for 32 layer networks, trained with
different learning rates for over 8000 epochs.

(a) 16 layers (b) 32 layers (c) 64 layers

Figure 7.7: Training accuracy and validation accuracy curves for networks of different layer counts,
trained for over 2000 epochs, with learning rate starting at 1 × 10−3 and decreasing every 100
epochs until it reaches 1 × 10−6 at 600 epochs, then remaining constant from then onward.

22

(a) 16 layers (b) 32 layers (c) 64 layers

Figure 7.8: Training accuracy and validation accuracy curves for networks of different layer counts,
trained for over 2000 epochs, with learning rate starting at 1 × 10−3 and decreasing every 200
epochs until it reaches 1 × 10−6 at 1200 epochs, then remaining constant from then onward.

(a) 16 layers (b) 32 layers (c) 64 layers

Figure 7.9: Training accuracy and validation accuracy curves for networks of different layer counts,
trained for over 2000 epochs, with learning rate starting at 1 × 10−3 and decreasing with an
increasing step size until it reaches 5 × 10−6 at 1500 epochs, then remaining constant from then
onward.

23

7.5 First Attempt at Using a Cheaper Network for Proper Classification

Figure 7.10 is the network detailed in Section 5.4 trained on a 150MeV beam. The training accuracy
shoots to 75% in less than 100 epochs. The accuracy then continues to climb until the final epoch
capping out with an accuracy of 80%. The validation accuracy follows same pattern but passes
training accuracy at around 80 epochs and stays slightly higher than training accuracy until the
final epoch capping out at 81%

Figure 7.10: The validation and accuracy for the 64 layer network with 10242 neurons per layer
trained 1024 epochs using 150MeV beam data.

The network itself is the first attempt to create a network with suitable accuracy using the
results in Section 7.2 as a basis for improvement. We manage to maintain the same accuracy as
seen in Section 7.1 but with about an eighth of the runtime. The improvement in runtime with
comparable accuracy shows that a considerably smaller network can adequately classify the data.
There is still the question of how the network will perform on multiple beam energies. It is possible
that when using additional beam energies we will hit a limit where more beam energies lead to worse
prediction because the data is too complex to be learned with only 64 layers. Though considering
the number of neurons in our network it is likely this will take more beam energies than we would
use for training.

7.6 Alternative Training via Isolated Input Categories

Figure 7.11 is the network detailed in Section 5.2 trained using the generator discussed in Section 5.3
on a 150MeV beam for 1300 epochs. The training accuracy starts out at less than 15% and remains
that way for several hundred epochs. At around 500 epochs the training accuracy starts rising at
a rapid rate hitting 50% before the 600 epoch marker. The improvement slows and the accuracy
is at 60% at near 700 epochs. The training accuracy continues to improve at a much slower rate
until the end of the training session with a peak accuracy of 75%. The validation accuracy starts
out considerably higher at 25% and does not show any considerable improvements until the 500
epoch marker. At the 500 epoch marker, accuracy steadily increases until the last epoch where it
obtains a final peak accuracy of 73%. Once validation accuracy passes 40% the validation accuracy
becomes jittery.

24

Figure 7.11: The validation and training accuracy for the 256 layer network with 10242 neurons per
layer train for 1300 epochs using 150MeV beam data and the input category isolation generator.

The use of dropouts provides some explanation as to why learning seemed to stall in the earlier
parts of training. Additionally the idea of feeding it input categories can also play a role. The
generator is designed such that, as we feed a batch to the network it learns on one specific input
category. After we exhaust that input category we feed the next input category. This means that
the network may be over compensating when it starts to learn on a new input category. It then
overcompensates repeatedly before a single epoch completes. After a sizable amount of the training
time has passed, the network has honed in on weights which work for multiple input categories.
This is when it starts to improve in accuracy and is making better and less drastic adjustments
to the weights. We can say that while a different batch routine was initially not effective it ended
up having comparable accuracy at around the same number of epochs. The accuracy around 1400
epochs in Figure 7.1 is around 75% compared to Figure 7.11 finishing at 73%. We can say that
different batching routines show promise for at least comparable accuracy while also maintaining
the stance that they could lead to improved accuracy.

8 Conclusions

The first step for this work is our conversion from a wide short network to a thin long network
as discussed in Section 5.2. We tested this network on a single beam energy and multiple beam
energies in in Section 7.1. For the single beam scenario training accuracy continually increases as
the epochs elapse with no noticeable dip in accuracy. The validation accuracy shows some abnormal
trends compared to the training accuracy. Around 700 epochs the validation line becomes much
thicker than the training line which implies a small amount of jitter as the epochs progress. The
jittering behavior does not improve but it also does not get worse as the epochs progress. The
validation accuracy peaks at 81% which occurs near the end of the training process.

We proceeded to dig deeper into an accuracy breakdown using a confusion matrix on several
scenarios. First we looked at how a 150MeV beam normalized with its own normalizer is classified
by a network trained on a 150MeV beam. The dominant classification for each input class is the

25

class itself. We recover a lot of data via reordering and also remove a lot of bad data which would
otherwise pollute our reconstruction. At the end we can confirm that the network proposed in
Section 5.2 can classify at least as accurately as the network used in [3].

Then we looked at how a 70MeV beam normalized with a 150MeV normalizer is classified by
a network trained on a 150MeV beam. The dominant classification for each input class is the
class itself except for some double to triple orderings. The classification accuracy for triples have
a lower accuracy of around 67% with data misordering being the primary problem. The dominant
classifications for 412, 421, and 134 are not the classes themselves but actually some form of triple.
In the cases where double to triple events are misclassified it would be preferred if they were just
thrown out entirely. Unfortunately we do not have the ability to throw out double to triple events
prior to the classification process because if there was we would not need the neural network in the
first place. An optimistic view is that a small number of recovered doubles to triples is a technical
improvement even if it is not preferred.

Finally we looked at how a 70MeV beam normalized with its own normalizer is classified by a
network trained on a 150MeV beam. The dominant classification for each input class is not the
input class itself for most classes. The majority of all triple classes ended up misclassified under
other classes. The only positive take away from triple classification is that the majority of all triples
stay under the larger category of triples rather than say double to triples or false events. For the
double to triples we saw that 412 and 421 have an incorrect dominant classification but is still
labeled as a double to triple event. Only the 234 double to triple event has the correct dominant
classification of all input classes. The false data suffered greatly compared to the 150MeV/150MeV
but is comparable to the 70MeV/150MeV with an accuracy of 51%.

Given the ideas in Section 5.4 we experimented with network length and training schedules.
The networks trained in Section 7.2 show that it is feasible to use networks employing a relatively
small number of layers. This allows for faster training time and more flexibility in terms of what
hardware is used. For instance, the 2013 GPU nodes on which these networks were trained have
already been surpassed in power by consumer GPUs. Section 7.3 establishes upper bounds for what
constant learning rates can be used to achieve accuracy comparable to that in Section 7.1. It is also
seen that networks with larger number of layers quickly begin to overfit when higher learning rates
are used. The networks in Section 7.4 are trained for a shorter number of epochs, but, through
the usage of a learning rate schedule show similar or higher levels of accuracy to what is shown
Section 7.3. Learning schedules that decrease the learning rate more rapidly at the beginning of
training, then more slowly later on seem to perform better than learning schedules that decrease
the learning rate at a constant rate.

We continued to test these ideas in Section 7.5. We put together a network which uses just 64
layers and a simple step schedule that could maintain the same accuracy as seen in Section 7.1 but
with about an eighth of the runtime. The improvement in runtime with comparable accuracy shows
that a considerably smaller network can adequately classify the data. There is still the question of
how the network will perform on multiple beam energies. It is possible that when using additional
beam energies we will hit a limit where more beam energies lead to worse prediction because the
data is too complex to be learned with only 64 layers. Though considering the number of neurons
in our network it is likely this will take more beam energies than we would use for training.

As a side avenue we looked into how to improve the accuracy of the network without changing
the configuration. We settled on creating a new training process using the Python generator
detailed in Section 5.3 with the corresponding results in Section 7.6. The generator is designed
such that, as we feed a batch to the network it learns on one specific input category. After we
exhaust that input category we feed the next input category. This means that the network may
be over compensating when it starts to learn on a new input category. It then overcompensates

26

repeatedly before a single epoch completes. The use of different batching routines show promise for
at least comparable accuracy while also maintaining the stance that they could lead to improved
accuracy.

Acknowledgments

This work is supported by the grant “CyberTraining: DSE: Cross-Training of Researchers in Com-
puting, Applied Mathematics and Atmospheric Sciences using Advanced Cyberinfrastructure Re-
sources” from the National Science Foundation (grant no. OAC–1730250). The research reported in
this publication was also supported by the National Institutes of Health National Cancer Institute
under award number R01CA187416. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institutes of Health. The hardware
used in the computational studies is part of the UMBC High Performance Computing Facility
(HPCF). The facility is supported by the U.S. National Science Foundation through the MRI pro-
gram (grant nos. CNS–0821258, CNS–1228778, and OAC–1726023) and the SCREMS program
(grant no. DMS–0821311), with additional substantial support from the University of Maryland,
Baltimore County (UMBC). See hpcf.umbc.edu for more information on HPCF and the projects
using its resources. Co-author Carlos Barajas additionally acknowledges support as HPCF RA.

References

[1] Fernando X. Avila-Soto, Alec N. Beri, Eric Valenzuela, Abenezer Wudenhe, Ari Rapkin
Blenkhorn, Jonathan S. Graf, Samuel Khuvis, Matthias K. Gobbert, and Jerimy Polf. Paral-
lelization for fast image reconstruction using the stochastic origin ensemble method for proton
beam therapy. Technical Report HPCF–2015–27, UMBC High Performance Computing Facil-
ity, University of Maryland, Baltimore County, 2015.

[2] Carlos A. Barajas. An Approach to Tuning Hyperparameters in Parallel: A Performance Study
Using Climate Data. M.S. Thesis, Department of Mathematics and Statistics, University of
Maryland, Baltimore County, 2019.

[3] Jonathan N. Basalyga, Gerson C. Kroiz, Carlos A. Barajas, Matthias K. Gobbert, Paul Maggi,
and Jerimy Polf. Use of deep learning to classify Compton camera based prompt gamma
imaging for proton radiotherapy. Technical Report HPCF–2020–14, UMBC High Performance
Computing Facility, University of Maryland, Baltimore County, 2020.

[4] Vladimir Bok and Jakub Langr. GANs In Action. Manning, 2019.

[5] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. Model compression and acceleration for deep
neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine,
35(1):126–136, 2018.

[6] François Chollet. Deep Learning with Python. Manning, 2018.

[7] James Della-Giustina, Carlos Barajas, Matthias K. Gobbert, Dennis S. Mackin, and Jerimy
Polf. Hybrid MPI+OpenMP parallelization of image reconstruction in proton beam therapy on
multi-core and many-core processors. In Proceedings of the Symposium on High Performance
Computing, HPC ’18, pages 1–11. Society for Computer Simulation International (SCS), 2018.
article 11.

27

hpcf.umbc.edu

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information
Processing Systems, volume 27, 2014.

[9] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks, 2017.

[10] Paul Maggi, Stephen W. Peterson, Rajesh Panthi, Dennis S. Mackin, Hao Yang, Zhong He,
Sam Beddar, and Jerimy Polf. Computational model for detector timing effects in Compton-
camera based prompt-gamma imaging for proton radiotherapy. Phys. Med. Biol., online
April 22, 2020.

[11] Jerimy C. Polf and Katia Parodi. Imaging particle beams for cancer treatment. Phys. Today,
68(10):28–33, 2015.

[12] Seth Weidman. Deep Learning from Scratch. O’Reilly Media, Inc., 2019.

[13] Robert R. Wilson. Radiological use of fast protons. Radiology, 47(5):487–491, 1946.

28

	Introduction
	Proton Beam Therapy
	Compton Camera Imaging
	Introduction to the Compton Camera
	The Representation of Events

	Deep Learning
	Network Design Options
	Activation Functions
	Wide Network to Long Network
	Alternative Training Methods
	An Efficient Prism Shaped Network

	Preprocessing
	Method for Class Generation from the Proton Data
	Updated Method
	Complete Rewrite and Streamlining Process

	Results
	Dominant Classifications for Single and Multi Beam Studies
	Training Smaller Networks
	Higher Learning Rates
	Learning Rate Schedules
	First Attempt at Using a Cheaper Network for Proper Classification
	Alternative Training via Isolated Input Categories

	Conclusions

